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Introduction to heat engines 
 
In the following sections the fundamental operating principles of the ideal heat engine, the Carnot 
engine, will be discussed. This ideal engine has the highest possible efficiency, i.e. no engine can 
perform better than the Carnot engine in terms of converting heat energy into useful mechanical 
work. However, even for the Carnot engine, we’ll find that the efficiency is not 100% - we can 
never convert heat entirely into work. As we’ll see, this is fundamentally due to the 2nd law of 
thermodynamics.  
 
4.7 Reversible and Irreversible Processes 
 
The Carnot engine involves reversible processes and in the discussion that follows we’ll spend a 
considerable amount of time ensuring that irreversibility is eliminated from the Carnot cycle. A 
reversible process - and the Carnot engine itself – is an idealisation. Irreversible processes play a 
role in any real engine. There are two key types of irreversible process that we need to be sure to 
eliminate when we construct a Carnot cycle:  
 

(i) Friction. We will construct a simple engine comprising a piston, gas and container. 
Friction must be eliminated because it will convert the kinetic energy of the piston’s 
motion into heat energy and thus increase the total entropy of the Universe (dS = 
dQ/T).  

(ii) Thermal energy transfer with a large temperature difference. As we covered in 
some detail in Section 3 of the notes, thermal energy transfer between two objects 
increases the total entropy of the Universe. If we bring two blocks of material 
together, the smaller the original temperature difference between the blocks the closer 
to a reversible process we get (Coursework 7). Hence, to ensure a reversible, ideal 
Carnot cycle there can be no large temperature differences during transfer of heat 
energy. 
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You might then ask why we can’t use very small temperature differences in the real world to 
approach a reversible process and thus have very efficient heat engines. The problem is that the 
rate of heat transfer (heat current) is dependent on the temperature difference: 
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where dQ/dt is the rate of heat transfer, k is the thermal conductivity, A is the cross sectional area, 
and ∆T/∆x is the temperature gradient. If the temperature difference, ∆T, approaches 0 (as it does 
for a reversible process) then so too does the rate of heat transfer which means that the engine 
will run incredibly slowly. So, although a reversible engine has maximum efficiency in terms of 
converting heat to work it operates very, very slowly.  
 
4.8 Efficiency of a reversible heat engine 
 

The key question we will address is: how easily can heat 
(‘disordered’ thermal energy) be converted into work? The 
Kelvin-Planck statement of the 2nd law of thermodynamics 
may be worded as follows (taken from Grant & Phillips, 
p.435): 
 
If work is to be obtained from a heat engine by removing 
heat from a hot reservoir, all of the heat cannot be 
converted into work. 
 
We’ll investigate why this is the case in the following 
sections. Let’s first define what we mean by the efficiency 
of a (reversible) heat engine. The heat engine shown in Fig. 
4.12 takes in heat from a hot reservoir, converts some of 
that heat into mechanical work, and rejects the remainder 
into a cold reservoir. The efficiency, η, of the engine is 
given by: 
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(Note that |W| = QH – QL due to the conservation of energy). 
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Fig. 4.12 Schematic illustration  

of a heat engine.
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4.9 The Carnot cycle† 
 
The first stage: a reversible isothermal expansion 
 
In addition to our engine (which we take as the piston + ideal gas + 
container system we’ve discussed throughout the module), for the 
first stage of the Carnot cycle we need a heat reservoir so large that 
extracting energy from it causes a negligible decrease in the 
reservoir temperature. We will couple the gas engine to this 
reservoir, the gas will then expand and do work on the surroundings. 
To have a Carnot engine we must ensure that there are no large 
temperature differences (otherwise we won’t have reversible 
processes). Hence, before coupling the gas engine to the reservoir we 
must ensure that the temperature of the engine is only infinitesimally 
lower than TH. 
 
When the engine is placed on the reservoir there is a flow of heat 
into the gas and it reversibly (and isothermally) expands. In the 
isothermal expansion, the entropy change of the reservoir, dSreservoir, 
is given by the following expression: 
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where dQH is the heat that has flowed into the gas. Note that the entropy change of the reservoir 
is negative because heat has left the reservoir. The entropy change of the gas is: 
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Note that the net change in entropy is 0, as it must be for a reversible process. A potentially 
confusing issue here is related to the fact that the gas expanded isothermally. Therefore, as this is 
an ideal gas, there is no change in the internal energy and you might ask how the entropy of the 
gas can increase. Note that the volume of the gas increases and thus there are more ways to 
arrange the molecules in the larger volume. It is this volume change that gives rise to the increase 
in entropy. 
 
At this point a consideration of the 1st law (i.e. conservation of energy) produces the following 
argument. The expansion was carried out isothermally, therefore ∆U = 0. Hence, from the 1st law 
|dQ| = |dW| i.e. all the heat has been converted into work. Does this not contradict what was said 
earlier – it appears that our engine thus far is 100% efficient? 

                                                 
† Although in the following we’ll focus on the piston + ideal gas + container system that we’ve discussed in detail 
throughout this section of the module, it’s important to realise that the working substance in a Carnot engine need not 
be an ideal gas.   
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An engine must operate in a cycle 
 
Although the engine thus far is apparently 100% efficient, any engine must 
operate in a cycle. We need to be able to continually repeat a process with the 
gas being returned to its initial state at the end of each cycle. So, let’s 
recompress the gas back to its original state and complete the cycle….. 
 

Unfortunately, if we simply carry out a reversible isothermal compression 
of the gas (i.e. exactly reverse the isothermal expansion) then there is no 
NET thermal energy transfer and thus no NET work done. Carnot realized 
that heat cannot be taken in at a single temperature and converted into 
work with no other change in the surroundings.  
 
We need to devise a scheme whereby we can run the engine in a cycle so 
that the piston is raised to do useful work but where it requires less work 
to return the piston to its original position (and thus return the gas to its 
original state). To do this we need to cool the gas. 
 
Completing the cycle 
 
However, to cool the gas we need a second, cold reservoir. Also, bear in mind that we’re 
constructing a reversible heat engine. Just as we needed to ensure that the difference between the 
temperature of the engine and that of the heat reservoir was infinitesimally small in the reversible 
expansion at the start of the cycle, we’ll need to ensure that we don’t have a large temperature 
difference when we couple the engine to the cold reservoir. If we wish to reversibly compress the 
gas we must ensure that its temperature is almost exactly that of the cooler reservoir before we 
make contact with the reservoir. To do this a reversible adiabatic expansion is required (to cool 
the gas) before connecting to the cold reservoir.  
 
Steps in the Carnot cycle 
 
The entire cycle we need to follow is: 
 

1. An isothermal expansion in contact with a reservoir at temperature TH 
2. An adiabatic expansion (no contact with reservoir) – the temperature of the gas falls to TL. 
3. An isothermal compression in contact with the reservoir at TL. 
4. An adiabatic compression (no contact with reservoir) to increase the temperature of the 

gas to just below TH. 
 
See the slides for Lecture 16 for an animation of this process.  
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The Carnot cycle represented on a PV diagram. 
 

A PV diagram for the Carnot 
cycle is shown in Fig. 4.14. 
Note that the gas is taken 
cyclically round a loop 
involving an isothermal and 
adiabatic expansion followed by 
an isothermal and adiabatic 
compression. In CW Set 8 you 
were asked to calculate Q, W 
and ∆U for each step of the 
cycle. In addition, you should 
note that there are a number of 
questions in previous 
examination papers for the Heat 
and Properties of Matter course 
that are concerned with cyclic 
processes such at that shown in 
Fig.4.14. You should attempt 
these questions.  

 
 
In the isothermal expansion of the gas (step A to B in Fig. 4.14), the change in internal 
energy is? 
 
 
If the volume at point B is twice that at point A, derive an expression for the work done in 
the isothermal expansion. 
 
 
…hence the value of QH is? 
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Fig. 4.14 A PV diagram for the Carnot cycle 
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Functions of State 
 
The internal energy is a function of state i.e. it is path independent which in turn means that the 
net change in internal energy in a reversible cycle is 0. This must be the case because we return 
the gas to its original state. However, heat and work are NOT functions of state – the net changes 
in these quantities around a Carnot cycle (or another cyclic process involving adiabatic and 
isothermal changes) will not be 0. It is also important to realise that entropy is a function of state. 
As for the internal energy, the net change in entropy around the Carnot cycle shown in Fig. 4.14 
is 0. It is because entropy is a function of state and, therefore, changes in entropy are path 
independent  that we could calculate the change in entropy for the process discussed in Section 
3.8 of the notes. 
 
Entropy in a cycle of the Carnot engine 
 
The entropy change of the high temperature reservoir is dShigh = - QH/ TH. The entropy change of 
the low temperature reservoir is dSlow = + QL/ TL (positive entropy change because heat is 
rejected from the engine into the lower temperature reservoir). The Carnot engine is a reversible 
engine and therefore there can be no change in the total entropy of the Universe, so: 
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Using the equation above and the expression for η, the efficiency of a reversible heat engine, 

given earlier (
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−== 1||η ) we can show that no engine running between the temperatures 

TL and TH can be more efficient than a reversible engine. 
 
 
A Carnot engine has the maximum possible efficiency 
 

Imagine an inventor claims to have made a cyclic engine that has a higher efficiency than 
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when running between TL and TH. In that case, for a given QH the engine must reject a smaller 
amount of heat QL into the lower reservoir (so that η is closer to 1). This would mean that: 
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However, this cannot be the case because the total entropy of the Universe would decrease and 
this violates the 2nd law of thermodynamics. Hence, no other engine can be more efficient than a 
reversible (i.e. Carnot) engine. 
 
 
 



Running a reversible heat engine in reverse: a refrigerator 
 
If we run the Carnot cycle in reverse the net result will be that we do work on the gas. However, 
we will also have transferred heat from the low temperature reservoir to the high temperature 
reservoir! Hence, by doing work on the gas we can cause heat to flow from cold to hot. This is 
not a violation of the 2nd law of thermodynamics because, although heat is flowing in a direction 
contrary to our expectations, the total entropy increase associated with the entire cycle is positive. 
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4. 10 Maxwell’s demon 
 
In Lecture 17 I’ll spend a little time discussing Maxwell’s demon. This is not part of the 
examinable syllabus for the Thermal & Kinetic module but for those of you who are interested in 
learning about this creature and its impact on the 2nd law of thermodynamics, I’ve provided a 
couple of links on the module website to relevant web pages. You should also consult the slides 
for Lecture 17. 
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4. 11 Phase diagrams and real gases 
 
In the final part of Section 4 of the module we’ll briefly consider systems that are not ideal gases, 
i.e. real gases and other substances which exhibit changes of phase. When discussing phase 
diagrams and real gases (including the van der Waals equation of state) I will follow p. 460 – p. 
463 of Grant & Phillips. No material other than that covered in Grant & Phillips will be 
introduced. You may find it helpful to consult the slides for Lecture 17 which are available on the 
module website (www.nottingham.ac.uk/~ppzpjm). 
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