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1 Introduction

In a diverse range of social and economic interactions - including public goods provision,

job search, political alliances, trade, friendships, and information collection { an agent's

well being depends on her own actions as well as on the actions taken by other agents in

close proximity; i.e., her neighbors.1 For example, the decision of an agent of whether or

not to buy a new product, or to attend a meeting, might be inuenced by the choices of

her friends and acquaintances. The pattern of neighborhoods a�ecting each agent is often

formalized in terms of a network of relations. Our goal in this paper is to examine how

individual behavior varies with position within a network as well as how changes in the

network structure - increasing the number of connections or redistributing connections -

a�ect individual behavior and welfare.

The paper develops a general framework to address these questions. There are two

distinctive features of this framework. First, we allow for a rich class of payo� structures.

Second, we allow for variations in what agents know about the underlying network structure.

In a network game, individual incentives depend on the actions of her neighbors since

her neighbors' choices of actions alter the marginal returns to her own actions. We focus on

settings where a player's actions can be ordered, and so they can be thought of as doing more

or less of the action (or in a special case, either taking an action or not taking it). There are

two features of this neighborhood e�ect that play an important role in our analysis. The �rst

is whether the underlying payo� structure, and hence the network game, exhibits strategic

substitutes or complements. Indeed, strategic complementarities determine how a change in

a neighbor's actions a�ects incentives for own actions. The second and equally important

aspect of the neighborhood e�ect is the expectations concerning the neighbors' actions, which

in turn depend on neighbors' expectations on their neighbors' actions, and so on. In other

words, agents' information regarding the network structure can have a signi�cant impact

on individual choices. In reality, prevailing networks are complicated objects, so in many

1For empirical work on network e�ects see Coleman (1966), Conley and Udry (2005), Granovetter (1994),
Topa (2001), and Glaeser, Sacerdote, and Scheinkman (1996), among others.

1



cases an individual will only have imperfect knowledge of the details of their structure. This

observation motivates a study of the role of incomplete information in network games.2

We study information issues in terms of each player's knowledge of the number of her

own and others' connections in the network (i.e., their degrees). Suppose that P (k) is the

probability that a given player has degree k in a network. The analysis in this paper starts by

focusing on the case of Incomplete Information (II) where each player knows only the degree

distribution P (k) and her own degree (i.e., how many neighbors she herself has). We contrast

this with the traditional \benchmark case" of Complete Information (CI) where players

possess complete knowledge of the prevailing network. Finally, in order to better understand

the implications of information in a network context, we also discuss how matters are a�ected

if players have intermediate levels of local information; that is, they know something about

the degrees of all other players who are no more than some given distance away (in terms of

minimum path length in the network).

In general, our approach to analyzing the strategic situation is based in Harsanyi's appa-

ratus of Bayesian games and the corresponding notion of Bayesian Nash Equilibrium. The

type of each player coincides with the \local" information she enjoys. Under II, her type is

given by her own degree, while if her information radius is one it includes her own degree

and those of her neighbors, and under CI it is given by the full network. In this latter case,

Bayesian Nash equilibrium coincides with the standard concept of Nash Equilibrium.

Our �rst set of results, Propositions 2-3, relate to a comparison of equilibrium actions

and payo�s of players who di�er in their position in a given network, captured in terms

of their degree. We show that, under incomplete information, in every (symmetric) equilib-

rium,3 actions are increasing in player degree if neighbors' actions are strategic complements,

and decreasing in player degree if neighbors' actions are strategic substitutes. We also show

that, in every equilibrium, expected payo�s are increasing in player degree if payo�s exhibit

positive externalities, and decreasing in player degree if payo�s exhibit negative external-

2For empirical evidence on incomplete network knowledge see, e.g., Kumbasar, Romney and Batchelder
(1994), Bondonio (1998), and Casciaro (1998).

3Existence of such equilibrium is established by Proposition 1.
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ities. These results help us in understanding how the nature of the underlying strategic

game determines whether well-connected players, say, work harder or free ride on their less

connected cohort and if having more connections is good or bad for personal payo�s. We

�nd, however, that such clear-cut monotonicity results crucially depend on the information

enjoyed by players. As a �rst illustration of this, we provide examples showing that these

degree-monotonicity properties can be violated under complete information.

The second set of results, Propositions 4-7, concern changes in network structure in terms

of adding links. Under incomplete information, this is studied by comparing networks whose

degree distributions can be related via First Order Stochastic Dominance (FOSD). The key

insight here is that a more connected network induces uniformly higher equilibrium actions

as a function of a player's degree. While we are able to prove this conclusion in full generality

for games where actions are strategic complements, we restrict attention to certain classes

of games (binary-action games4 and continuous-action games with quadratic payo�s) for

the case of strategic substitutes. In games with strategic complements, a FOSD shift in

the degree distribution increases equilibrium actions. In contrast, in games with strategic

substitutes, the results can be qualitatively reversed. For instance, in a binary-action game,

the overall percentage of players taking the action 1 decreases.

We also study the e�ects of FOSD shifts in degree distribution on equilibrium payo�s.

In games with strategic complements and positive externalities, we show that payo�s of

players of any degree as well as average payo�s increase. In games with strategic substitutes,

the payo�s of players of any degree actually decrease while the impact on average payo�s

depends on the details of the changes in the degree distribution.

The third set of results, Propositions 8-9, address the issue of characterizing the e�ect

of a general redistribution of weight in network connectivity { in particular, one that might

keep the number of links �xed (i.e., the average degree constant) and simply allocate them

4In binary-action games, a widely applicable class, players choose one of two actions (say 0 and 1, for
instance buying a product or not, changing a behavior or not, etc.). Equilibria in such games have a
particularly simple structure. There is a threshold degree (type) t̂ with all degrees t < t̂ choosing action 1
(0) and all degrees t > t̂ choosing action 0 (1) in strategic-substitute (-complement) games.

3



di�erently (e.g., in a more or less \polarized" fashion). Given the generality of the objective,

we are only able to provide concrete results for binary-action games. In this context, both

for games of strategic complements and substitutes, the change in the threshold de�ning

the equilibrium is found to solely depend on how the total probability weight is shifted

relative to those thresholds. This, in turn, has implications for welfare depending on the

type of strategic interaction (complements or substitutes) and the nature of the externalities

(positive or negative).

The above results are obtained in a setting where players know the degree distribution

and their own degree. The monotonicity of actions with regard to degree in all symmetric

equilibrium plays a central role in the derivation of these results. However, as we mentioned

above, these monotonicity properties do not necessarily obtain under complete information.

This �nding leads us to examine monotonicity properties of equilibrium for intermediate

levels of information between incomplete and complete information. We show that in a

setting where players know the degree distribution, their own degree as well as the degree of

all their neighbors, there always exists a (suitably de�ned) monotonic equilibrium, although

there may also exist some non-monotonic ones. This result then suggests that we can recover

some of the key insights obtained under incomplete information also in a setting where players

have richer information about the network.5

We now place the paper in the context of the literature. The main contribution of the

current paper lies in the development and analysis of a general framework to study the

e�ects of social interactions on individual behavior. Three aspects of the framework: the

rather general nature of payo�s, the general network structure, and the allowance for varying

levels of information are worth emphasizing and contrasting with the existing literature

in the �eld. In particular, almost all the existing work on network games to date { see,

e.g., Ballester, Calv�o-Armengol, and Zenou (2005), Bramoull�e and Kranton (2005), Galeotti

(2005), Goyal and Moraga-Gonzalez (2001) { has assumed complete information and worked

with speci�c formulations both with regard to payo� functions and with regard to the network

5The interpretation of the model with incomplete information is discussed in greater detail in section 2.
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structures.6 In order to further clarify the scope of our paper, we now discuss in greater detail

its relationship with three recent papers: Bramoull�e and Kranton (2005), Galeotti and Vega-

Redondo (2005) and Sundararajan (2005).7

Bramoull�e and Kranton (2005) consider a game where players search for valuable infor-

mation and information is freely shared among neighbors. Players' utilities depend on a sum

of their own e�orts and e�orts of neighbors. They assume that e�orts of players are strategic

substitutes and that each player has complete network information. They �nd that there

is multiplicity of equilibria and that the comparative statics within and across networks are

ambiguous. By contrast, Propositions 2-3 show that if information is incomplete then equi-

libria are monotone in actions and payo�s. Moreover, Proposition 5 shows that the e�ects

of adding links (in a binary version of their game) are clear cut: every degree player chooses

actions with greater probability, receives lower expected externalities from their neighbors,

and earns lower payo�s. These results highlight the important role of network information

in shaping behavior.

Galeotti and Vega-Redondo (2005) and Sundararajan (2005) analyze a network game

with incomplete information. Sundararajan (2005) studies games with strategic comple-

ments under a speci�c information setting { incomplete information. The present paper

develops and analyzes a general framework which allows for games with complements as

well as substitutes, studies the e�ect of network changes (e.g., as it becomes more connected

or more heterogenous), and allows for di�erent levels of information. Galeotti and Vega-

Redondo (2005) assume that payo�s are given by the product of neighbors' actions (i.e.,

are multiplicative complements) and also focus on the incomplete information case. Their

payo� speci�cation does not quite �t into our setting, as we will discuss below, as it violates

a condition which is instrumental to our work in deducing how network changes inuence

6In particular, regular networks (in which all players have the same degree) and core-periphery structures
(the star network is a special case of such structures) have been extensively explored in the literature.

7It is worth noting that Lopez-Pintado and Watts (2005) study social inuence games and their general
motivation is similar to ours. However, they abstract from network structure altogether, the e�ects of which
are the focus of the present paper.
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behavior (this condition is satis�ed in most applications that have been studied in the litera-

ture. For example, existing models of crime networks, local public goods, and collaboration

among �rms, all constitute special cases of our framework). As such, there is no overlap in

our analyses or conclusions.

The paper also relates to a strand of papers in the computer science literature on graphical

games (see, e.g., Kearns, Littman, and Singh, 2001, and Kakade, Kearns, Langford, and

Ortiz, 2003). While the underlying model tackled in that literature is close to ours, the

focus is completely di�erent. The literature on graphical games is concerned with e�cient

algorithms for �nding Nash equilibria, and is not concerned with what those equilibria look

like or how they are inuenced by the setting. Our results are complementary in that they

provide a characterization of the equilibria that these algorithms ultimately reach, and focus

on how the setting inuences the structure of the equilibria.

The rest of the paper is organized as follows: Section 2 develops the theoretical model.

Section 3 presents results on equilibrium behavior as a function of location within a network.

Sections 4 and 5 examine the e�ects of changing networks on equilibrium behavior. Section

6 discusses levels of knowledge between incomplete and complete information, while Section

7 concludes. The proofs are relegated to an Appendix.

2 The General Model

This section presents the main elements of our theoretical framework: the network relations

between players, the nature of strategies and payo�s, the information a player has about the

network relations, and the equilibrium concepts.

Networks: The connections between a �nite set of players N = f1; : : : ng are described by

an undirected network. That network is represented by a symmetric matrix g 2 f0; 1gn�n,

with gij = 1 denoting that i and j are connected. We follow the convention of setting gii = 0

for all i. The set of all possible non-directed networks with n vertices is denoted by G.
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Let Ni(g) = fjjgij = 1g represent the set of direct neighbors of i. For any integer k � 1,

Nk
i (g) denotes the k-neighborhood of i in g; that is, all the players that can be reached from i

by paths of length no more than k. So, inductively N1
i = Ni and N

k = Nk�1
i [ ([j2Nk�1

i
Nj).

The degree, ki(g), of player i is the number of i's direct connections:

ki(g) = jNi(g)j:

We denote the degree distribution of the network by P , where P (k) is the frequency of

nodes with degree k.8

Strategies and Payo� Functions: Each player i takes an action xi in X; where X is a

compact subset of [0; 1]. Without loss of generality, we assume throughout that 0; 1 2 X:We

consider both discrete and connected action sets X. The payo� of player i when the pro�le

of actions is x = (x1; :::; xn) is given by:

ui(x; g) = vki(g)(xi; xNi(g))

where xNi(g) is the vector of actions taken by the neighbors of i. Thus the payo� of a player

depends on her own action, as well as on the actions that her direct neighbors take.

Note that the payo� function depends on the player's degree but not on her identity.

Therefore, any two players who have the same degree have the same payo� function. We

shall also assume that vk depends on the vector xNi(g) in an anonymous way, so that if x
0 is

a permutation of x (both k-dimensional vectors) then vk(xi; x) = vk(xi; x
0) for any xi. If X

is a connected action set then vk is taken to be di�erentiable in all arguments and concave

in own action.

The Nature of Payo� Interdependence: There are two di�erent aspects regarding how

other players' actions a�ect a given player's utilities that we need to keep track of. The

�rst is whether increasing the actions by other players leads a player to want to increase or

8In this paper, we focus on undirected networks; in some applications such as learning from others'
actions, it is possible that player i observes j but the converse is not true. Directed networks are more
appropriate for such applications. Many of the arguments that we develop in this paper will carry over to
the setting of directed networks.
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decrease her actions. The second is whether increasing the actions of other players increases

or decreases a player's utility.

A game exhibits strategic complements if it satis�es increasing di�erences. That is, for

all k, xi > x
0
i, and x � x0: vk(xi; x) � vk(x0i; x) � vk(xi; x0) � vk(x0i; x0). Similarly, the game

is said to exhibit strategic substitutes if it satis�es decreasing di�erences. That is, for all k,

xi > x
0
i, and x � x0: vk(xi; x) � vk(x0i; x) � vk(xi; x0) � vk(x0i; x0). These notions are said to

apply strictly if the payo� inequalities are strict whenever x 6= x0.

A game exhibits positive externalities if for each vk, and for all x � x0, vk(xi; x) �

vk(xi; x
0), whereas it displays negative externalities if vk(xi; x) � vk(xi; x0). Correspondingly,

the game exhibits strict externalities (positive or negative) if the former payo� inequalities

are strict whenever x 6= x0.

In order to make comparisons of actions and payo�s across players of di�erent degrees,

we make the following assumption.

Assumption A vk+1(xi; (x; 0)) = vk(xi; x) for any (xi; x) 2 Xk+1.

Thus adding a link to a neighbor who chooses action 0 is payo� equivalent to not having an

additional neighbor.

Assumption A is critical to a number of our results and is important in drawing welfare

conclusions. It is restrictive, as it implies that adding new neighbors is akin to increasing the

action that a player perceives being played by neighbors. This assumption is appropriate

in situations such as information sharing, where it is the total information gathered by

neighbors and shared with a player that is important. It applies to local competition among

�rms, where a �rm cares about the total activity (e.g., production or advertising) by its

neighbors. It also applies to local collective action problems (e.g. a local version of the

model studied by Chwe (2000)) when the payo� to a player depends on the aggregate e�ort

of her neighbors.

Assumption A is violated if a player cares about the average action of her neighbors

(rather than the absolute levels) or the fraction of individuals choosing a particular action

8



(rather than the total number). This is true in the coordination game studied by Morris

(2000). Assumption A is also violated if payo�s are a product of the actions of neighbors,

as in Galeotti and Vega-Redondo (2005).9

There are two important remarks that we make here.

First, in situations where the number of neighbors taking di�erent actions matters, net-

work structure has important implications, as having more or fewer neighbors a�ects the

nature of payo�s across players in the network. Thus, position in a network can matter in

interesting ways. In settings where one only cares about the average number of neighbors

taking an action, network structure plays a much more limited role. In that case, having

more or fewer neighbors might have no impact if the fraction of them taking an action is the

same.10

The second comment is that there is no right or wrong assumption about how payo�s

depend on neighbors' actions. Assumption A captures many applications of interest, and

there are others where it fails. The following example illustrates the scope of Assumption A

as well as clari�es di�erent kinds of possibilities that arise.

Example 1 Payo�s Depend on the Sum of Actions

Player i's payo� function when she chooses xi and her k neighbors choose the pro�le

(x1; :::; xk) is:

vk (xi; x1; :::; xk) = f(xi + �
kX
j=1

xj)� c(xi); (1)

where f(�) is non-decreasing and c(�) is a \cost" function associated with own e�ort. The

parameter � 2 < determines the nature of the externality (positive or negative, if � is cor-

respondingly positive or negative). This general example yields (strict) strategic substitutes

or complements when (assuming di�erentiability) �f 00 is negative or positive, respectively.

9They use the payo� function: ui(xi; x) = xi
Q

j2Ni(g)

xj � �x
2
i

2 ; where xj 2 <+ for all j:
10Network structure still plays some role in overall behavior. For instance, in Morris (2000), it inuences

whether more than one action can survive in an equilibrium in a coordination game. But it plays a much
less direct role than it does in our analysis.
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More speci�cally, the case where f is concave, � = 1; and c(�) is increasing and linear

corresponds to the case of information sharing as a local public good studied by Bramoull�e

and Kranton (2005), where actions are strategic substitutes. In contrast, if � = 1, but f

is convex (with c00 > f 00 > 0), then we obtain a model with strategic complementarities of

the sort proposed by Goyal and Moraga-Gonzalez (2001) to study collaboration among local

monopolies. In fact, the formulation in (1) is general enough to accommodate a good number

of further examples in the literature such as human capital investment (Calvo-Armengol and

Jackson 2004, 2005), crime networks (Ballester, Calv�o-Armengol, and Zenou, 2005), some

coordination problems (Ellison 1993), and the onset of social action (Chwe, 2000).

The following two specializations of Example 1 are also useful to keep in mind.

Example 2 Quadratic Payo� Functions

Here X = [0; 1] and we specialize Example 1 to a case where f(y) = y + �y2 and

c(xi) = �x
2
i for some ; �; � > 0.

Example 3 \Best-Shot" Public Goods Games

X = f0; 1g and we may interpret 1 as acquiring information (or providing any local and

discrete public good) and 0 as not acquiring it. We posit that f(0) = 0, f(x) = 1 for all

x � 1; so that acquiring one piece of information su�ces. Costs, on the other hand, are

assumed to satisfy 0 = c(0) < c(1) < 1 so that no individual can �nd it optimal to dispense

with the information but prefers one of her neighbors to gather it.11

Information Structures: What a player knows about the network in which she resides

can certainly make a di�erence regarding her behavior. At one extreme we can consider a

situation where a player knows the entire network, including her own degree, the degrees of

11The Best-Shot game is a good metaphor for many situations in which there are signi�cant spillovers
between players' actions. For instance, consumers learn from relatives and friends (Feick and Price, 1987),
in research and development, innovations often get transmitted between �rms, and similarly in agriculture,
experimentation is often shared amongst farmers (Foster and Rosenzweig, 1995, Conley and Udry, 2005).
For a discussion of best shot games within the context of public good games, see Hirshleifer (1983).
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her neighbors, and the degrees of the neighbors of her neighbors and so on. We refer to this

as complete information. Near the other extreme is a case where a player knows nothing

more than her own degree and the degree distribution of the network. We refer to this as

incomplete information.

In Section 6, we shall return to discuss some other cases.

Independently of the depth of their network knowledge, players are always assumed to

be informed of the degree distribution P (�); which is taken to be common knowledge. More

speci�cally, we suppose that players believe that the prevailing network g has been drawn

stochastically from a family of networks G so that the following two properties are satis�ed:

(a) The probability of any given player having k links in g is P (k):

(b) The degrees ki(g) and kj(g) displayed by any two players i and j (even if they happen

to be neighbors) are stochastically independent.

Under (a) and (b), for any given player, the probability that a random neighbor of hers

is of degree k is given by:

~P (k) =
kP (k)

hki ; (2)

where hki = EP [k] is the average degree in the network. This is the standard formalization

of the idea that a randomly chosen link is likely to point to a node of a certain degree in

proportion to that node's degree.

In order for a mechanism to exist that guarantees (a) and (b), we must take n ! 1:12

While we assume independence across degrees of players in the network, it is worth noting

that many of our results hold under certain directions of degree correlation (e.g., see the

remark following Proposition 2).

12An example of such a mechanism is the con�guration model in the theory of random graphs, e.g. Bender
and Can�eld (1978) or Bollob�as (1980). But this mechanism only guarantees (a) and (b) in the limit, as
the set of nodes grows unboundedly. In this sense, therefore, all of our results must be interpreted either as
requiring some bounds on rationality of the players' beliefs, or as holding approximately for a large enough
population.
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The strategic implications of di�erent information structures can be analyzed within the

usual Harsanyi framework of Bayesian games by a suitable speci�cation of the type spaces

of players, Ti. That is, given the type ti 2 Ti revealed to any given player i; her beliefs are

simply obtained as the posterior induced by such ti and the prior satisfying (a) and (b).

More precisely, the two contexts we focus on are as follows.

Incomplete Information (II): Ti = f0; 1; :::; n � 1g for all i; and the type ti(g) revealed

to i when any given g prevails is ti(g) = ki(g).

Complete Information (CI): Ti = G for all i; and the type ti(g) revealed to i when any

given g prevails is ti(g) = g.

Equilibrium A strategy of player i is a mapping �i : Ti ! �(X), where �(X) is the set

of distribution functions on X. A strategy pro�le is denoted by � = f�1; �2; ::; �ng. The

expected payo� to player i, facing a strategy pro�le � = f�i;��ig, is

U(�; ti) =
X
g2G

"Z
(xi;xNi(g))2X

ki(g)+1

vk(xi; xNi(g))d�(g)

#
P (gjti); (3)

where d�(g) is the measure on x induced when g is the realized network and players employ

the pro�le of strategies �.

We now elaborate on di�erent possible interpretations of the information structure. There

are several reasons for examining these two information structures. First, there are di�erent

applications where one or the other might be more appropriate. Incomplete information is

more relevant in situations where the network is more volatile and actions are not easily

adjusted. For instance, if an individual might interact with some number of individuals over

time, but detailed information about their identities, friends, and behaviors is not available,

and the individual must choose an action which is not then easily changed, incomplete

information is appropriate. This applies, for instance, to a context in which an agent chooses

whether or not to learn a (human or computer) language.
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In contrast, there are situations where actions are more easily coordinated or adjusted.

Given that players only care about their neighbors' actions, if they can observe those actions

and they choose an action that is a best response, then they must be at an equilibrium.

For instance, consider a group of students choosing whether to attend some social event or

not. Suppose each student is interested in attending the event if at least some number of

their friends also attends. Each student can then discuss their intentions with their friends

and update the decision to go out or not. The student's friends do the same, as do their

friends, and so on. If the process of discussion and updating of action choice continues, it will

ultimately reach a complete information equilibrium. This can happen even if the agents

know nothing about the larger network structure. In fact, any process where actions are

adjusted to best reply to neighbors' actions, will either cycle or eventually come to rest at a

complete information equilibrium.13

Thus, both information settings apply, but possibly to di�erent situations. Our formal

analysis of these two information structures illustrates how the information structure a�ects

behavior. Furthermore, the analysis teaches us which equilibrium features are robust to

changes in available information and which ones are more sensitive.

Definition 1 An equilibrium is a pro�le of strategies � such that for all i, ti 2 Ti, and

xi 2 Xi,

U(�; ti) � U(xi;��i; ti): (4)

We say that a pro�le of strategies is symmetric if �i = �j for all i and j, and an equilibrium

is said to be symmetric if it is comprised of a symmetric strategy pro�le. Finally, we say

that an equilibrium is in pure strategies if for every i 2 N and for every type ti 2 Ti, �i(ti)

places probability 1 on some element in X.

13See Jackson and Yariv (2006) for an analysis of dynamic processes exhibiting this avor.
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Proposition 1 There exists an equilibrium in the network game de�ned above under either

information structure. Under incomplete information there always exists a symmetric equi-

librium. If the game is of strategic complements, then it has an equilibrium in pure strategies

(that can be chosen to be symmetric in the case of incomplete information).

The proof of the �rst two claims is standard and omitted.14 The proof for the case of strategic

complements follows from arguments in Propositions 4 and 6 below.

3 Comparing Choices Within a Network

We now study how position in a network a�ects behavior, by examining how equilibrium

actions change with players' degrees.

Under incomplete information, we denote a symmetric strategy pro�le by � = f�1; �2; �3; :::; �n�1g

where �k � �(k) speci�es the `action' chosen by every player with degree k.

We say that a strategy � is monotone increasing whenever �k FOSD �k0 , for each k > k
0.

A monotone decreasing strategy is de�ned analogously. For brevity, a symmetric equilibrium

is called monotone (increasing or decreasing) when it is given by a monotone strategy.

Proposition 2 In a game of incomplete information with strict strategic complements (sub-

stitutes) every symmetric equilibrium is monotone increasing (decreasing).

The strictness in complements or substitutes is important for this result. For instance, if

players were completely indi�erent between all actions, then non-monotone equilibria would

clearly be possible.

The intuition of the proposition is as follows. Consider the strategic complements case.

Consider a player with degree k + 1. Suppose all of her neighbors follow a symmetric

equilibrium strategy, but her (k+1)'th neighbor chooses the minimal 0 action. Assumption

A implies that her best response would be identical to the equilibrium best response of a

14Existence of a symmetric equilibrium follows from standard arguments. For example, see remark (ii)
following Theorem 2 in Jackson, Simon, Swinkels and Zame (2002), and note that the games here are a
special case where communication is unnecessary as the outcome is single-valued.
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degree k player. However, in any non-trivial equilibrium (where at least one player chooses

an action di�erent from 0), the (k+1)'th neighbor would be choosing, on average, a positive

action. Strict complementarities imply that our player best responds with (weakly) higher

actions than her k degree peers. The opposite reasoning applies to the case of strategic

substitutes.

This intuition underlying the above result suggests that it can be extended to settings

with degree correlations. The following remark elaborates on this.

Remark 1 Positive association arises when the conditional degree distribution of any given

neighbor of a player of degree k, denoted ~Pk, �rst order stochastic dominates the correspond-

ing distribution ~Pk0 of a player of degree k
0, where k > k0. The positive-monotonicity property

holds in games of strategic complements if the degrees of neighbors are positively associated.

Similarly, the negative-monotonicity result for strategic substitutes also holds if the degrees

of neighbors are negatively associated.

We now turn to the relation between degree and payo�s. The following result shows that

equilibrium payo�s satisfy a monotonicity property in the incomplete information case.

Proposition 3 In a game of incomplete information with positive (negative) externalities

every symmetric equilibrium has expected payo�s that are non-decreasing (non-increasing)

in degree.

We emphasize that under positive externalities, players with more neighbors earn higher

payo�s irrespective of whether the game exhibits strategic complements or substitutes. Thus,

even if the game displays strategic substitutes and higher degree players exert lower e�ort,

they still earn a higher payo�. In every case, therefore, there is a clear advantage to being

well connected in terms of having more connections. In the case of complements this comes

from the fact that players with a higher degree expect higher overall actions by neighbors.

In the case of substitutes, the results may be interpreted as saying that better connected

players exploit network connections to free ride on those that are less-well connected.
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The intuition behind Proposition 3 is as follows. Consider the case of positive externalities

and look at a player with degree k+1. Suppose, as before, that all of her neighbors follow the

symmetric equilibrium strategy, but her (k + 1)'th neighbor chooses the minimal 0 action.

Assumption A implies that our player would be able to replicate the expected payo� of a

k degree player by simply using the strategy of the degree k player. However, if there is

a positive probability that the (k + 1)'th neighbor chooses a positive action then positive

externalities imply a higher expected payo� for our k + 1 degree player. Thus, the (k + 1)

degree player can assure herself an expected payo� which is at least as high as that of any

k degree player.

Propositions 2 and 3 establish a clear-cut e�ect of a player's degree on her relative

e�ort levels and payo�s for a broad class of games. These results are dependent on the

incomplete information setting. For example, these results contrast with results obtained

by Bramoull�e and Kranton (2005) for a public-good context where the payo� function is

as speci�ed in (1), with a concave f , a linear cost function c(�), and � = 1. Under the

implicit assumption of complete information, they �nd that there exist Nash equilibria in

which higher degree individuals choose higher actions and earn lower payo�s as compared

to lower degree players.15 To provide a concrete illustration, consider the particular case

given by the best-shot game from Example 3 and a star network with n � 3 players. In this

network, there is a Nash equilibrium in which the center (of degree n� 1) chooses 0 and the

other players choose 1. There is also, however, an equilibrium in which the center chooses 1

and the other players choose 0. This second equilibrium violates the monotonicity both in

action and payo�.

The best-shot game satis�es strategic substitutes and positive externalities. Therefore,

our results establish that the actions displayed at an equilibrium under incomplete informa-

tion must fall in degree while payo�s must correspondingly increase. That is, an outcome

such as that induced by the second of the above complete-information equilibria is ruled out.

15Our results also di�er from the results of Galeotti and Vega-Redondo (2005) obtained under incom-
plete information. This is because, as discussed earlier in the paper, their payo� function does not satisfy
Assumption A.
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This indicates that information conditions can have an important role in network games and,

in general, one may expect that more detailed information on the network should allow for

a wider range of equilibrium outcomes { some consistent with the monotonicity established

in Propositions 2 and 3 and others that are not. We shall return to this important issue in

Section 6, where we also explore the implications of intermediate cases between incomplete

and complete information.

4 Comparing Choices Across Networks: Adding Links

This section examines the e�ects of adding links in a network on individual behavior and

social outcomes. Under incomplete information, we formalize this idea through the notion

of First-Order Stochastic Dominance (FOSD). It is useful to divide the analysis between the

two payo� scenarios considered: strategic complements and strategic substitutes. Whereas

the �rst case admits sharp and general results, the second one is substantially more di�cult

to tackle and only allows us to obtain results for a restricted class of games. In what follows,

we address each of these cases in turn, and then compare the analysis with the situation

prevailing under complete information.

Consider two di�erent situations where the underlying network displays degree distribu-

tions P and P 0. If we want to think of P as embodying a higher connectivity than P 0, then

the key comparison from the viewpoint of a given player does not pertain to those distribu-

tions per se but to the distributions that reect the degree of one of her typical neighbors;

that is, the respective conditional (neighboring node) distributions ~P and ~P 0 given by (2).

In what follows, we therefore focus on these conditional degree distributions.16

Let us say that an equilibrium � dominates an equilibrium �0 if for every i and type ti,

�i(ti) FOSD �
0
i(ti).

16 It is important to note that �rst order stochastic dominance in the degree distribution does not imply
a similar relation for the neigboring node degree distribution. To see this, consider a degree distribution P 0

in which degree 2 or 10 arise probability 1=2 each and a distribution P in which degrees 8 or 10 arise with
probability 1=2 each. Clearly P FOSD P 0. Next consider the conditional degree distributions, ~P and ~P 0.
Under ~P 0, the probability that a neighbor has degree 10 is 5=6, while under ~P , the same probability is 5=9.
Thus, ~P does not FOSD ~P 0.
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Proposition 4 Consider a game of incomplete information with strategic complements and

suppose that ~P FOSD ~P 0. Then for every equilibrium �0 under P 0 there exists a symmetric

equilibrium � under P which dominates it.

To get some intuition for this result consider the case where players' choices are com-

plements in the strict sense and let �0 be a symmetric equilibrium under P 0. Proposition

2 assures us that this equilibrium is monotone. In particular, as we shift weight to higher

degree neighbors by switching to the conditional degree distribution ~P , any player's highest

best response to the original equilibrium pro�le would be at least as high as the supremum

of her original strategy's support. We can now iterate this best response procedure. Since

the action set is compact, this process converges and it is easy to see that the limit is a

symmetric equilibrium which dominates the original one.

Consider now the e�ect on welfare of a FOSD shift, where this welfare is assessed by the

expected payo� of a randomly chosen player (according to the prevailing degree distribution).

Naturally, it must depend on whether the externalities are positive or negative. Suppose,

for concreteness, that they are positive and let ~P FOSD ~P 0. Then, from Proposition 4, we

know that for every equilibrium �0 under P 0 there exists an equilibrium � under P in which

players' actions are all at least as high. Let us further assume that P FOSD P 0: Then, since

payo�s are non-decreasing in degree (cf. Proposition 3), the ex-ante expected payo� must

rise when one moves from P 0 to P . But, of course, one could also have that P does not shift

weight to high-degree nodes in such a clear-cut fashion despite the fact that ~P does (recall

Footnote 16). In that case, the overall e�ect on welfare might be negative. We present an

example in the appendix which illustrates this possibility.

Next, we turn to network games in which actions are strategic substitutes, where matters

are substantially more complicated. The source of the complication is the following. In

view of the monotonicity results in Proposition 2 an increase in degrees of a neighbor (on

average) implies a fall in her action (on average), which, from strategic substitutes, suggests

that the best response of a player should increase. However, this increase in action of every
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degree may come into conict with the expectation that neighbors must be choosing a lower

action, on average. To make progress we restrict attention to binary-action games and to

games with linear quadratic payo�s (where payo�s depend only on the sum of other players'

actions).

The useful feature of binary-action games with strict strategic substitutes is that, in view

of the monotonicity established by Proposition 3, there is a unique symmetric equilibrium

strategy � that is fully characterized by a threshold. That is, there exists some t 2 f1; 2; :::g

such that for all ti < t we have �(ti) = 1, for all ti > t we have �(ti) = 0, and for ti = t the

induced �(ti) may be some probability mixture between 0 and 1. The following result shows

that FOSD changes in (conditional) degree distributions have clear cut e�ects on equilibrium

behavior in such games.

Proposition 5 Consider a game of incomplete information with strict strategic substitutes

and X = f0; 1g. If ~P FOSD ~P 0 then the equilibrium under P dominates that under P 0 but

the probability that a randomly selected neighbor chooses 1 is lower.

The intuition behind this result is as follows. Consider a symmetric strategy with thresh-

old t0: As the distribution of neighbors' degrees shifts, in the FOSD sense, each player believes

that it is more likely that her neighbors will have a higher degree. This means that the neigh-

bor is less likely to choose 1: Since the game is one with strategic substitutes, each player's

incentives to choose 1 increases and the �rst part of the result follows. Of course, if ulti-

mately the probability of each player choosing 1 rises, then the incentives to choose 1 for

each player are lower, which would generate an inconsistency. The second part of the result

then follows.

Proposition 5 relies on the observation that the incentives of a player depend on the

expected probability that each of her neighbors provides the public good. With this obser-

vation in hand, we can extend the conclusions of Proposition 5 to speci�c continuous action

games { namely, to games in which the expected marginal payo� of a player can be written

as a linear function of her own action and the total e�ort of each of her neighbors.
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Example 4 Equilibria in Quadratic Games

Consider the quadratic games from Example 2. The expected marginal payo� to a degree

k player is proportional to  + 2(� � �)xi(k) + 2�k~x, where ~x is the expected action of a

random neighbor. Concavity in own actions and strategic substitutes imply that � < 0 and

� < �. For an interior solution we require that  > 0. With these observations we can now

write, after some algebra, an interior equilibrium action for a degree k player as follows:

xi(k) =


2(� � �)

"
� � �� �(~k � k)
� � �� �~k

#
(5)

where ~k is the expected degree of a neighbor, and � must be large enough to ensure this

quantity is positive. It is now easily veri�ed that if ~P FOSD ~P 0, then for every degree k

equilibrium action levels under P are higher than under P 0 while the conditional expected

action of every neighbor is lower under ~P .

We now turn to e�ects of FOSD shifts in degree distributions on welfare. The gen-

eral observation here is that these e�ects are ambiguous, for similar reasons as in the case

of strategic complements { i.e., they require a comparison of both the absolute and the

conditional degree distributions. To see this, let us focus for concreteness on the case of

binary-action games studied in Proposition 5 (the same considerations apply to games with

quadratic payo�s whose equilibrium strategy is given by (5)). Consider the case where

the degree distribution switches from P 0 to P where their conditional counterparts satisfy

~P FOSD ~P 0. From Proposition 5 we know that the probability that any given neighbor

chooses 1 falls. Thus, if the externalities are positive, the expected payo� of a player with

a given degree falls as well. The overall e�ect of this change on welfare now depends on

how the new P redistributes the weight among the di�erent degrees and this can go either

way. In some instances, however, it is possible to derive de�nite results. This happens, for

example, if the game exhibits positive externalities and, despite the fact that ~P FOSD ~P 0, we

have a converse comparison concerning the absolute degree distributions so that P 0 FOSD
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P . The former FOSD relationship implies that, for any given player with a �xed degree, the

expected payo� is lower under P than under P 0 (this happens because the probability that

each of her neighbors chooses 1 decreases). Therefore, if P 0 FOSD P it follows from the

latter observation and the fact that expected payo� is increasing in degree (due to positive

externalities) that welfare is lower under P as compared to P 0.

Finally, we note that the insights gathered from Propositions 4 and 5 extend to complete

information in the case of strategic complements. This is stated in the following result, which

considers how these equilibria are a�ected by the addition of links.

Let g be a network with gij = 0 and denote by g
0 = g + ij the network obtained from g

by adding the link between i and j.

Proposition 6 Consider a complete information game with strategic complements. For any

equilibrium � under g there exists an equilibrium �0 under g0 that dominates it.17 Moreover,

if X is connected, the game is of strict strategic complements, and � is interior, then there

exists an equilibrium �0 under g0 in which all players in the component of i and j play strictly

higher actions.

Turning now to games of strategic substitutes under complete information, in order to

draw the sharpest comparison with Proposition 5, let us focus on Best-Shot games (Example

3). In these games it is the unique best response to choose action 0 if any neighbor chooses

1 and it is the unique best response to choose 1 if all neighbors choose 0. As highlighted by

Bramoull�e and Kranton (2005) in a related class of games, this implies that the pure-strategy

equilibria of these games are related to graph-theoretic objects termed independent sets.

An independent set for a network g is a set I � N such that for any i; j 2 I; gij 6= 1; so

that no two players in I are linked.

It is clear that there is a one-to-one mapping between the (pure-strategy) Nash outcomes

of a Best-Shot game played in a network g and its maximal independent sets { i.e., inde-

17In the present complete-information scenario, the general notion of dominance across strategies intro-
duced above is understood as follows: for every i 2 N; �0i(g0) FOSD �i(g):
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pendent sets that are not contained in any other independent set. Best-Shot games played

on the empty network (no links) prescribe that all players choose action 1 in the unique

equilibrium, while any Best-Shot game played on the full network (in which every pair of

players has a direct link) has a set of n pure equilibria characterized by exactly one player

choosing action 1: As it turns out, there is a gradual and monotone transition between these

two extremes as links are added to the network.

Proposition 7 Consider a Best-Shot game played under complete information. Consider

any pure strategy equilibrium � of g+ ij. Either � is an equilibrium under g, or there exists

an equilibrium under g in which a strict superset of players chooses 1. Moreover, if g 6= g+ij

then there are equilibria under g that are not equilibria of g + ij.

The intuition of the proof is quite simple. Indeed, start with an equilibrium under g+ ij:

From the above discussion, this equilibrium corresponds to a maximal independent set in

g + ij: Consider that set of nodes when the underlying network is given by g: Of course,

it is still an independent set. If it is a maximal one, then it indeed identi�es the original

equilibrium strategies in g + ij as equilibrium strategies when the prevailing network is g:

Otherwise, it is a strict subset of a maximal independent set, which identi�es an equilibrium

under g in which a strict superset of players chooses the action 1.

This result can be interpreted as a natural complete-information counterpart of Proposi-

tion 4 for the class of Best-Shot games. Just as it was established for incomplete information,

we �nd that the addition of new links tends to lower the prevalence of the high action at

(pure-strategy Nash) equilibria under complete information.

5 Comparing Behavior Across Networks: Redistribut-

ing Links

In this section, we study how changes in the network structure in terms of redistributing

links across players (in the sense of SOSD of the degree distribution) a�ects behavior. Given
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the generality of the objective, we can only obtain full characterization results for binary-

action games. For these games, we ascertain the equilibrium implications of any change of

the degree distribution, both for the case of strategic complements as well as that of strategic

substitutes. We also briey discuss quadratic games.

As explained above, the key feature that simpli�es the analysis of binary-action games

is that their symmetric equilibria are threshold equilibria { that is, the choice of action

solely depends on where the player's type lies relative to a given threshold. Our analysis is

summarized by the following two results, for each of the payo� scenarios under consideration:

strategic complements and strategic substitutes.

In the following propositions P and P 0 are two di�erent degree distributions. Denote by ~F

and ~F 0 the induced cumulative distribution functions of the conditional degree distributions,

~P and ~P 0, respectively. Let t and t0 stand for the threshold types de�ning the (unique)

threshold equilibria under P and P 0, respectively, with m and m0 denoting the probabilities

with which, respectively, types t and t0 choose action 0.

Proposition 8 Consider an incomplete information binary-action game with strict strate-

gic complements. If ~F 0(t) � ~F (t)� ~P (t)(1�m) then there is an equilibrium with corresponding

threshold type t0 � t whereas, conversely, if ~F 0(t) � ~F (t)� ~P (t)(1�m) there is an equilibrium

with corresponding threshold type t0 � t. Moreover, if the equilibrium threshold rises (falls),

the probability that any given neighbor chooses 0 rises (falls).

The key issue here is the change in the probability mass relative to the threshold. If the

probability of types (degrees) equal or below the threshold goes down then the probability

of action 1 increases and from strategic complements, the best response of threshold type t

and all higher types must be 1. In other words, the threshold should fall weakly. Analogous

considerations allow us to state the following result which pertains to games with strategic

substitutes.

Proposition 9 Consider an incomplete information binary-action game with strict strate-

gic substitutes. If ~F 0(t) � ~F (t � 1) + ~P (t)(1 �m) then t0 � t whereas, conversely, ~F 0(t) �
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~F (t � 1) + ~P (t)(1 �m) implies t0 � t. Moreover, if the equilibrium threshold rises (falls),

the probability that any given neighbor chooses 1 falls (rises).

The novel contribution of these results is that they allow us to examine the e�ect of any

change of the degree distribution. A natural and important example of such changes involves

increasing the polarization of the degree distribution by shifting weights to the ends of the

support of the degree distribution, as is done under a mean preserving spread of the degree

distribution. In particular, the above results can be directly applied in the case of strong

MPS shifts in degree distributions. We say that P is a strong MPS of P 0 if they have the

same mean and there exists L and H such that P (k) � P 0(k) if k < L or k > H, and

P (k) � P 0(k) otherwise. Propositions 8 and 9 imply that, in the context of binary-action

games, the equilibrium e�ects of any such change can be inferred from the relative values of

the threshold t, and L and H.

Next, we briey discuss our alternative leading context, namely, continuous action games

with quadratic linear payo�s. In such games, as explained, the expected marginal returns are

proportional to the degree of the player and the expected e�ort of each neighbor. Further-

more, the equilibrium actions (see (5)) are linear in degree. In this context, any redistribution

of existing links (that keeps their number �xed) does not a�ect the average action if players

keep playing according to the original equilibrium strategy that is linear in degree. This in

turn entails that the original equilibrium strategy continues to de�ne an equilibrium after

the change. The equilibrium, in other words, is solely a�ected by the expected degree and no

change in the degree distribution that a�ects only higher-order moments will have an e�ect

on expected neighbor behavior. Of course, this includes mean-preserving spreads.

Finally, we turn to welfare concerns. In general, no clear-cut results can be found for the

e�ect on average payo�s of general changes in the degree distribution, even for the games

within our restricted classes (binary-action games or those with quadratic linear payo�s).

The reason is that, after such changes, not only choice probabilities are a�ected (and thus

the probabilities that players face concerning their neighbors' behavior) but this generally
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impinges on players di�erentially depending on their types. Thus, in the end, the average

e�ect must depend crucially on the precise weight given to each possible type by the original

and revised degree distributions. The results, therefore, are bound to be ambiguous unless

the type of changes in the degree distribution are restricted to some particular kind (e.g. to

FOSD changes, as in Section 4).

6 Intermediate Information Structures

Our analysis has focused on two polar information cases: the \incomplete information"

situation where players only know their own degree, and nothing about their neighbors and

best respond to the anticipated actions of their neighbors based on the degree distribution,

and the \complete information" situation where players best respond to the actual strategies

of their neighbors. Other information conditions are also interesting for many applications.

As a natural �rst step along these lines, we examine situations where a player knows not

only how many neighbors she has, but also how many neighbors each of her neighbors has.

Our analysis of network games has been organized around two themes: a comparison

of choices within a network (Section 3) and a comparison across networks (Sections 4 and

5). A cornerstone of this analysis was the fact that equilibrium strategies are monotone

in player type/degree. As we already saw, while all (symmetric) equilibria are monotone

under incomplete information, there is a multiplicity of equilibria with complete information,

including some non-monotone equilibria. We now show that this multiplicity of equilibria,

with some failing to be monotone, can arise as soon as players know the degree of their

neighbors. Thus, adding a small amount of information to the incomplete information setting

is enough to introduce a multiplicity and bring in some non-monotone equilibria.

Here we let d denote the information radius of a player. d = 1 indicates that a player

knows how many neighbors she has. d = 2 indicates that a player knows how many neighbors

she has, and how many neighbors each of them has. We use d = 1 to indicate complete

information.
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So, consider a case where players know their own degree and the degrees of each of

their neighbors (d = 2). The type space Ti of a player i consists of elements of the form

(k; `1; `2; :::; `k) where k 2 f0; 1; 2; :::; n�1g is the degree of the player and `j is the degree of

neighbor j (j = 1; 2; :::; k); where (in an anonymous setup where the identity of neighbors is

ignored) we may assume without loss of generality that neighbors are indexed according to

decreasing degree (i.e., `j � `j+1). Given the multidimensionality of types in this case, the

question arises as to how one should de�ne monotonicity in this case. In particular, the issue

is what should be the order relationship � on the type space underlying the requirement

of monotonicity. For the case of strategic complements, it is natural to declare that two

di�erent types, t = (k; `1; `2; :::; `k) and t
0 = (k0; `01; `

0
2; :::; `

0
k); satisfy t � t0 i� k � k0 and

`u � `0u for all u = 1; 2; :::; k0: On the other hand, for the case of strategic substitutes, we

write t � t0 i� k � k0 and `u � `0u for all u = k� k0 + 1; :::; k: Given any such (partial) order

on Ti, we say that a strategy � is monotone increasing if for all ti, t0i 2 Ti, ti � t0i ) �(ti)

FOSD �(t0i): The notion of decreasing monotonicity is de�ned analogously.

Example 5 Non-monotone Equilibria with Knowledge of Neighbors' Degrees (d = 2)

Consider a setting where nodes have either degree 1 or degree 2, as given by the cor-

responding probabilities P (1) and P (2). Suppose that the game is binary-action with

X = f0; 1g and displays strategic complements. Speci�cally, suppose that the payo� of

a player only depends on her own action xi and the sum �x of her neighbors' actions as given

by a function v(xi; �x) as follows: v(0; 0) = 0, v(0; 1) = 1=2, v(0; 2) = 3=4, v(1; 0) = �1,

v(1; 1) = 1, v(1; 2) = 3.

It is readily seen that, for any P with support on degrees 1 and 2, the following strategy

� de�nes a symmetric equilibrium: �(1; 1) = 1; �(1; 2) = 0; �(2; `1; `2) = 0 for any `1; `2 2

f1; 2g. Here, two players that are only linked to each other both play 1, while all other

players choose 0.

Similar non-monotonic equilibrium examples can be constructed for games where actions

are strategic substitutes.
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The previous example illustrates that whenever players enjoy some local network informa-

tion, neighboring players can rely upon such enhanced information (which is partly shared)

to extend the possibilities on which they may coordinate at equilibrium. This naturally

suggests the question of whether, nevertheless, the existence of some monotone equilibrium

strategy can still be guaranteed in general, both under strategic complements and substi-

tutes. This is con�rmed by the following result.

Proposition 10 In the setting where players know their own degree and the degrees of their

neighbors, there exists a symmetric equilibrium which is monotone increasing (decreasing) if

the game displays strict strategic complements (substitutes).

The proof of the proposition, which appears in the appendix, follows standard approaches

for establishing the existence of monotone equilibria. That is, we show that if all players

use monotone strategies, then there exists a monotone best reply. Then working within

monotone strategy spaces there exists an equilibrium, and it remains an equilibrium in the

broader strategy space.

A direct implication of Proposition 10 is that there is always an equilibrium that, on

average across the types (k; `1; `2; :::; `k) consistent with each degree k, prescribes an (av-

erage) action that is monotone in degree. Equipped with the above monotonicity result,

it is also possible to recover some of the insights gathered before under the assumption of

incomplete information. For example, if we consider changes in network connectivity and

the game displays strategic complements, it is not di�cult to show that whenever two degree

distributions satisfy that P FOSD P 0; there are respective monotone equilibria � and �0 such

that �(ti) FOSD �
0(ti) for every ti:

Example 5 and Proposition 10 suggest that expanding the information radius may lead

to a wider range of outcomes being supported in equilibrium. This motivates the question:

are there games in which the equilibria actually shrink as the information radius expands?

The answer is yes. Consider the following example:
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Example 6 Complete Information (d = 1) versus a Large Information Radius (1 < d <

1)

Suppose that players have either one or two neighbors and let:

~P (1) =
P (1)

2P (2) + P (1)
� �

~P (2) =
2P (2)

2P (2) + P (1)
= 1� �:

Let X = f0; 1g, and suppose payo�s v(xi; �x) only depend on a player's own action xi and the

sum �x of her neighbors actions, as given by v(0; �) = 0, v(1; 0) = v(1; 1) = �1, v(1; 2) = 1.

First note that, independently of the degree distribution (i.e., of the value of �), the game

always has an equilibrium where every player, whatever her type, chooses action 0. Thus

the issue here is under what conditions are there also other equilibria (where some types

choose 1)? It is possible to show that for any �nite information radius d < 1 additional

outcome pro�les can be sustained, but that in the limit, at d = 1, the equilibrium set

actually shrinks and (roughly speaking) only the 0 action outcome can be sustained. The

details of this construction are given in the appendix. Examples 5 and 6 illustrate that a

greater radius of information can expand as well as shrink the set of outcomes which can be

sustained in equilibrium, depending on the game that is being played.

We now turn to the important issue of how additional network information a�ects pay-

o�s. The previous example provides us with an instance in which payo�s may decline as

information expands (at least in the limit). Can the e�ects go the other way as well? To

see how this may come about, note that in the best-shot game it is best for players to co-

ordinate so that each neighborhood has a provider, but that no two neighbors provide the

public good. With incomplete information such coordination is impossible. Thus, it is easy

to construct examples where for a low value of d the only symmetric equilibrium involves

too much provision, and this yields an ine�cient outcome. On the other hand, the complete

information equilibrium results in more e�cient coordination (and with appropriate mixing,
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one can get strict Pareto dominance). Indeed, this possibility can arise even with a slight

increase in radius going from d = 1 to d = 2; we present an example in the appendix to

illustrate this possibility. These observations suggest that additional network information

can raise payo�s or lower payo�s depending on the game being played.

7 Concluding Remarks

We have examined a model of social interactions in which a player's payo� depends on

her own action and the actions of her neighbors in an underlying network of connections.

We have investigated how location within a �xed network as well as changes in overall

network structure a�ect individual behavior. In particular, the paper makes two innovations:

we allow for a rather general class of payo�s (which subsumes as special cases practically

all the models studied so far in the literature) and we allow for incomplete information

about network structures (in contrast to most existing work which assumes complete network

information). Our results yield a number of insights about how network structure, location

within a network, nature of the game (strategic substitutes versus complements and positive

versus negative externalities), and the level of information (incomplete versus complete)

shape individual behavior and payo�s.

Our results suggest some directions for further work. First, we have assumed that de-

grees of players in the network are independent. As we have pointed out in the discussion

following Proposition 2, some of our results do carry over to particular cases of degree cor-

relation. A general analysis of equilibria under degree correlation is clearly important as

actual networks exhibit degree correlations. Second, we have assumed that payo�s satisfy

Assumption A, which rules out payo� functions where the average actions of neighbors mat-

ters. One should not expect our results to extend to the \average" case, as then degree

becomes largely irrelevant, but there are situations that fall between Assumption A and the

average case. Extending the analysis to cover such cases appears to be an interesting avenue

for further work. Third, we have examined problems where players care only about their
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direct neighbors' actions. There are also contexts where the externalities in behavior extend

more broadly (e.g., due to congestion), and players might care about broader play in the

game.

8 Appendix: Proofs

Proof of Proposition 2: We present the proof for the case of strategic complements. The

strategic substitutes case is analogous and omitted. Let f��kg be a symmetric equilibrium

of the network game. If f��kg is a trivial pro�le with all degrees choosing action 0 with

probability 1, the claim follows directly. Therefore, from now on, we shall assume that the

equilibrium is non-trivial and that there is some k0 and some x0 > 0 such that x0 2 supp(��k0):

Consider any k 2 f0; 1; :::; ng and let xk = sup[supp(��k)]: If xk = 0; it trivially follows

that xk0 � xk for all xk0 2 supp(��k0) with k0 > k: So let us assume that xk > 0: Then, for

any x < xk; the assumption of (strict) strategic complements implies that

vk+1(xk; xl1 ; ::::; xlk ; xs)� vk+1(x; xl1 ; ::::; xlk ; xs) � vk(xk; xl1 ; ::::; xlk)� vk(x; xl1 ; ::::; xlk)

for any xs; with the inequality being strict if xs > 0: Averaging over all types, the fact that

at least xk > 0 implies that

U(xk;�
�
�i; k + 1)� U(x;���i; k + 1) > U(xk;���j; k)� U(x;���j; k):

On the other hand, note that from the choice of xk;

U(xk;�
�
�j; k)� U(x;���j; k) � 0

for all x: Combining the aforementioned considerations we conclude:

U(xk;�
�
�i; k + 1)� U(x;���i; k + 1) > 0

for all x < xk: This in turn requires that if xk+1 2 supp(��k+1) then xk+1 � xk; which of

course implies that ��k+1 FOSD �
�
k: Iterating the argument as needed, the desired conclusion

follows, i.e., ��k0 FOSD �
�
k whenever k

0 > k:
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Proof of Proposition 3: We present the proof for positive externalities; The proof for

negative externalities is analogous and omitted. The claim is obviously true for a trivial

equilibrium in which all players choose the action 0 with probability 1. Consider a non-

trivial equilibrium ��. Suppose xk 2 supp(��k) and xk+1 2 supp
�
��k+1

�
: By assumption,

vk+1(xk; xl1 ; ::::; xlk ; 0) = vk(xk; xl1 ; ::::; xlk)

for all xl1 ; ::::; xlk :

Since the payo� structure satis�es positive externalities, it follows that for any x > 0,

vk+1(xk; xl1 ; ::::; xlk ; x) � vk(xk; xl1 ; ::::; xlk):

Looking at expected utilities, it follows that

U(xk;�
�
�i; k + 1) � U(xk;���j; k):

Since ��k+1 is a best response in the network game being played,

U(xk+1;�
�
�i; k + 1) � U(xk;���j; k)

and the result follows.

Proof of Proposition 4: Let � be an equilibrium of the network game with underlying

network characterized by P 0:We �rst show that there exists an equilibrium in the game with

degree distribution P 0 which dominates f�i(t)g and is monotone. Indeed, start with the

(symmetric) pro�le of actions prescribing each player to use her 1 action with probability 1:

Now consider the best response pro�le for all players, placing a probability 1 on the highest

possible action for each player who is indi�erent. Clearly, we are left with a pro�le that

dominates f�i(t)g : Furthermore, from strategic complementarities and Assumption A, the

pro�le is monotone. Continuing iteratively in this manner, we converge to a symmetric

pure equilibrium pro�le characterized by fxkg (each player i uses the strategy ~�i(t); where

~�i(k) = xk for all i) which dominates f�i(t)g and is monotone.
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Since fxkg is a monotonic sequence, strategic complementarities than guarantee that for

any x � xk:

X
l1;:::;lk�1

k�1Y
j=1

~P (lj)[vk(x; xl1 ; ::::; xlk) �
X

l1;:::;lk�1

k�1Y
j=1

~P 0(lj)[vk(x; xl1 ; ::::; xlk):

In particular, if players are playing the symmetric pro�le fxkg in the network game

with underlying degree distribution P; there is a best response of each degree k player

which is at least as high as xk: Consider the pro�le of best responses (and, as before, upon

indi�erence, choose the highest best response to be played with probability 1): The new

pro�le dominates fxkg and is monotone. Proceeding iteratively in that way, we converge

to a symmetric equilibrium pro�le in the network game with degree distribution P that

dominates the original equilibrium f�i(t)g.

Example of e�ects of adding links in games with strategic complements: Let

X = f0; 1g and suppose that the payo�s v(x; y) of a typical player only depend on her own

action x and the sum of her neighbors' actions y. More speci�cally, suppose that v(1; y) = 1 if

y > 1; v(1; y) = �" for some small " > 0 if y � 1, and v(0; �) = 0: This game exhibits strategic

complements and positive externalities. Now consider two di�erent degree distributions P

and P 0 given by P (1) = 3=5 and P (5) = 2=5 whereas P 0(1) = P 0(3) = 1=2: Clearly, P does

not FOSD P 0: However, ~P (1) = 3=13 and ~P (5) = 10=13 while ~P 0(1) = 1=4 and ~P 0(3) = 3=4:

Thus, ~P FOSD ~P 0 and Proposition 4 applies.

In particular, consider the strategy �0 given by �0(k) = 0 for k � 1 and �0(k) = 1 for

k � 2: This strategy is an equilibrium under P 0 for " small enough. On the other hand, it

is clear that the only strategy � that dominates �0 and is also an equilibrium under P is

� = �0: For P 0 the average welfare can be approximated (for small ") as the probability that

a randomly chosen node has degree 3 and at least two of its neighbors have this degree as

well. This is W 0 = 1
2

�
1�

�
(1
4
)3 + 3(1

4
)2 3
4

��
' 0:42: Analogously, the average welfare W for

P can be bounded above by the probability P (5) = 2=5 that a randomly chosen node has

degree higher than one. Thus, we have that W 0 > W; which shows that a FOSD shift of the
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conditional degree distribution may indeed lead to a welfare loss even if the game displays

strategic complements and positive externalities.

Proof of Proposition 5: Suppose that the equilibrium has threshold t0 under P 0; where m0

is the probability of a player of degree t0 choosing action 0. Since we assume that ~P FOSD

~P 0, from the monotone decreasing action property of the equilibrium strategy it follows that

the equilibrium threshold under P cannot be lower than t0. To see this, note that for any

player of degree k, the probability that l 2 f0; 1; :::; kg of her neighbors choose action 1 is

given by: �
k

l

� 
1� ~P 0(t0)x�

n�1X
k=t0+1

~P 0(k)

!l 
~P 0(t0)x+

n�1X
k=t0+1

~P 0(k)

!k�l
:

Since ~P FOSD ~P 0;

~P (t0)m0 +
n�1X
k=t0+1

~P (k) � ~P 0(t0)m0 +
n�1X
k=t0+1

~P 0(k);

and so the (binomial) distribution of the number of neighbors choosing the 1 action under

P 0 FOSD that under P: Thus, from strict strategic substitutes, the threshold t under P must

be weakly higher, i.e. t � t0.

This implies that the probability of choosing action 1 increases for all types whenever

t 6= t0: If instead t = t0; that probability remains equal for all types except, possibly, for t:

So assume, for the sake of contradiction, that the probability for this type under P is 1�m

and m > m0: Then,

~P (t)m+

n�1X
k=t+1

~P (k) > ~P 0(t)m0 +

n�1X
k=t+1

~P 0(k);

and it would be a strict best response for t to choose 1, in contradiction.

Finally, we argue that the probability that any randomly selected neighbor chooses 1 must

fall. For suppose it were to rise instead. Then, based on the former considerations, the prob-

ability of choosing action 1 should fall, which contradicts the �rst part of the proposition.
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Proof of Proposition 6: Consider the �rst statement. Fix an equilibrium � under network

g. If � is an equilibrium under g0 then we are done. Otherwise, consider best responses to �;

by strategic complements, there exists best responses which are weakly higher than the orig-

inal pro�le. Iterations of best responses lead to weakly higher pro�les at each iteration stage

and, from compactness of X, converge. The limit strategy pro�le (say) �0 is an equilibrium

under g0. This completes the proof of the �rst statement. On the other hand, for the second

statement, note that if X is connected, there are strict complementarities, and the starting

equilibrium is interior, then each iteration leads to a strictly higher pro�le of actions. Thus,

the aforementioned iterations reach a strictly higher equilibrium pro�le under g0.

Proof of Proposition 7: Let us show the second statement �rst. Start with a set containing

both i and j. This forms a (possibly non-maximal) independent set of g. Add a node that

keeps it an independent set. Iterate until a maximal independent set is reached. This is a

set S 0 which is a maximal independent set of g, but not of g+ ij. Now, let us show that any

maximal independent set of g + ij which is not a maximal independent set of g is a subset

of a maximal independent set of g. Consider any maximal independent set S of g + ij. It

can have at most one of i and j in it. If it has neither in it, then it is also clearly a maximal

independent set of g. Suppose that i is in S but that j is not in S. If some neighbor of

j, other than i, is in S, then S is a maximal independent set of g. So consider the case

where the only neighbor of j that is in S is i. Consider S 0 � S [ fjg. Then S 0 is a maximal

independent set of g.

Proof of Proposition 8: Consider the �rst part and note that the condition ~F 0(t) �
~F (t)� ~P (t)(1�m) is equivalent to[

n�1X
�=t+1

~P 0(t) �
n�1X
�=t+1

~P (t) + ~P (t)(1�m):

Then simply conduct an iterative process (along the lines of the proof of Proposition 4) that

starts with an initial threshold strategy where a type � chooses 1 i� � � t and subsequently
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applies repeatedly the highest best response mapping. The equilibrium attained in the limit

has a threshold t0 � t:

For the second case, note that ~F 0(t) � ~F (t)� ~P (t)(1�m) is equivalent to
n�1X
�=t+1

~P 0(t) �
n�1X
�=t+1

~P (t) + ~P (t)(1�m):

Then, start with an initial threshold strategy where a type � chooses 1 i� � � t+1 and apply

iteratively the lowest best response. The equilibrium attained in the limit has a threshold

t0 � t:

Finally, we want to show that (t0 � t)( ~F 0(t0)m0 � ~F (t)m) � 0. But this simply follows

from the fact that if, say, t0 > t then the assumption of strategic complements rules out the

possibility that ~F 0(t0)m0 < ~F (t)m.

Proof of Proposition 9: With the notational conventions used in the statement of the

proposition, suppose that ~F 0(t) � ~F (t� 1) + ~P (t)(1�m) but, contrary to what is claimed,

t0 > t: Then, when the prevailing degree distribution is P 0; the probability ~F 0(t0) perceived by

a player that, at equilibrium, any one of her neighbors chooses action 1 is bounded below by

~F 0(t) and, therefore, by ~F (t�1)+ ~P (t)(1�m). From the assumption of strategic substitutes,

this implies that t0 � t; a contradiction that establishes the �rst part of the result.

Now consider the converse case where ~F 0(t) � ~F (t� 1) + ~P (t)(1�m) and assume that

t > t0: Then, the equilibrium probability ~F 0(t0) that, under degree distribution P 0, any one

randomly selected neighbor chooses action 1 is bounded above by ~F 0(t) and, therefore, by

~F (t�1)+ ~P (t)(1�m). Again from the assumption of strategic substitutes, this yields t0 � t;

a contradiction.

Finally, we want to show that (t0� t)( ~F 0(t0)(1�m0)� ~F (t)(1�m)) � 0. But this simply

follows from the fact that if, say, t0 > t then the assumption of strategic substitutes rules

out the possibility that ~F 0(t0)(1�m0) > ~F (t)(1�m).

Proof of Proposition 10: Let us consider �rst the case of strategic complements and

denote by
Pm the set of monotone strategies. The proof is based on the following two
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claims:

Claim 1: For any player i; if all other players j 6= i use a strategy �j 2
Pm there is always

a strategy �i 2
Pm that is a best response to it.

Claim 2: An equilibrium exists in the strategic-form game where all players' strategies are

taken from
Pm.

To establish Claim 1, we can rely on a direct adaptation of the approach used to prove

Proposition 2. Consider a player i and let ti; t
0
i 2 Ti such that t0i � ti; where � is the

partial order applicable to the case of strategic complements (see Section 6). For any ��i

where �j 2
Pm for every j 6= i; let BR(��i; ti) be the set of best-response strategies by

player i to ��i when her type is ti. Let us assume that, for all j 2 N; �(tj) 6= 0 for some

tj 2 Tj: (Otherwise, the desired conclusion follows even more directly, since the best-response

correspondence is una�ected by being connected to a player whose strategy chooses action

0 uniformly.) By de�nition, for every xti 2 BR(��i; ti), we must have that

8x 2 X; U(xti ;��i; ti)� U(x;��i; ti) � 0

Then, since t0i � ti, the assumption of (strict) strategic complements readily implies that

8x � xti ; U(xti ;��i; t
0
i)� U(x;��i; t0i) > 0: (6)

Indeed, this follows from a two-fold observation:

(i) From Assumption A, if ti = (k; `1; `2; :::; `k) and t
0
i = (k

0; `01; `
0
2; :::; `

0
k) and t

0
i � ti we

can think of ti involving k
0 neighbors with all neighbors indexed from k + 1 to k0 (if any)

choosing the action 0;

(ii) Since `0u � `u the probability distribution over actions corresponding to each of her

neighbors under ti, u = 1; 2; :::; k, is dominated in the FOSD sense by the corresponding

neighbor under t0i:
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Let us now make use of (6) in the case where xti is the highest best response by type ti

to ��i. Then, it follows that any xt0i 2 BR(��i; t
0
i) must satisfy:

xt0i > supfxti : xti 2 BR(��i; ti)g;

which establishes Claim 1.

To prove Claim 2, we can simply invoke the concavity postulated for each payo� function

vk(�; x) for any given x 2 Xk and the fact that the set of monotone strategies is compact and

convex. To see the latter point, note that the monotonicity of a strategy � is characterized

by the condition:

8ti; t0i 2 Ti; t0i � ti ) �(t0i)FOSD�(t
0
i): (7)

Clearly, if two di�erent strategies � and �0 satisfy (7), then any convex combination �̂ =

�� + (1 � �)�0 also satis�es it. Now, starting from any pro�le of monotonic strategies,

iterations of best responses will remain within �m and converge to an equilibrium in �m as

well.

Finally, to prove the result for the case where the game displays strategic substitutes, note

that the above line of arguments can be applied unchanged, with the suitable adaptation

of the partial order to be used to de�ne the notion of monotonicity. In this second case,

as explained in Section 6, we say that t � t0 if and only if k � k0 and `u � `0u for all

u = k � k0 + 1; :::; k.

Example 6 continued: Complete Information (d =1) versus a Large Information Radius

(1 < d < 1): Consider a situation where all players have either one or two neighbors and

the respective conditional probabilities for the degree of a neighboring node given by

~P (1) =
P (1)

2P (2) + P (1)
� �

~P (2) =
2P (2)

2P (2) + P (1)
= 1� �:

The game is of binary-actions and payo�s are given by a function v(xi; �x) that only depends

on a player's own action xi and the sum �x of her neighbors actions, as given by v(0; �) = 0,

v(1; 0) = v(1; 1) = �1, v(1; 2) = 1.
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Clearly, independently of the degree distribution (i.e., of the value of �), the game always

has an equilibrium where every player, whatever her type, chooses action 0. Thus the issue

here is under what conditions there are also other equilibria (where some types choose 1).

In this respect, let us consider the following cases:

(i) Incomplete Information (d = 1)

Here, if � � 1� 1=
p
2, the strategy � with �(1) = 0 and �(2) = 1 de�nes a (symmetric)

equilibrium.18

(ii) Any Finite Information Radius Including Neighbor's Degrees (1 < d <1)

We can think of the connected component containing i as a horizontal line. In particular,

the type space Ti of a player i can be identi�ed with a suitable subset of f1; 2g�f0; 1; 2g2(d�1)

such that a typical element of it is of the form

ti = (r0; r1+ ; r1� ; :::; r(d�1)+ ; r(d�1)�) 2 Ti

where r0 is interpreted as the degree of node i and ru+ and ru� are the degrees of those

players that are at distance u to the right and left of i, respectively, with the convention that

du+ = 0 (or du� = 0) means that there are no players to the right (or left) of i at distance

u.19

In this context, we now argue that for all d, and provided � � 1 � 1=
p
2; the following

strategy � de�nes a symmetric equilibrium:

�(ti) =

�
1 ifti = (2; 2; :::; 2)
0 otherwise:

To see this, simply note that for a player i with two neighbors, the only relevant con-

sideration is whether or not one of the following events occur: (a) player i observes an

18Simply note that a player with two neighbors has an expected payo� of playing action 1 given by
(1� �)2 � 1 + (1� (1� �)2)� (�1); which is nonnegative i� � � 1� 1=

p
2.

19Naturally, the following condition must hold: [9u = 0; 1; :::; r � 1s:t:du+ = 1] ) [8u0 > u;du0+ = 0] (and
similarly for the left neighbors).
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\end-player" with only one neighbor, or (b) any of her two neighbors, say j and k; observe

an end-player (who would be at the outer end of their respective information range but whom

player i does not observe). If (a) applies, a straightforward inductive argument implies that

i must choose ai = 0: If (b) applies to either of i's neighbor, say j; then j will choose aj = 0

and thus i should choose ai = 0 as well. Now notice that the probability that neither j

nor k (neighbors of i) observe an end-player not observed by i is (1 � �)2: This indicates

that the relevant threshold for player i to choose optimally ai = 1 in case (b) is just as for

d = 1: Combining all the aforementioned considerations, the above strategy is seen to be an

equilibrium strategy if � � 1� 1=
p
2:

The above considerations apply to all �nite d. Thus, it follows that, for any such d, there

is a lower bound n0 on the population size such that if n � n0 there is an equilibrium where,

with probability bounded above zero, a positive fraction of players will choose 1. In fact,

such a fraction (as well as the corresponding probability) will be close to 1 if n is large and

� is su�ciently low.

(iii) Complete Information (d =1)

The situation is qualitatively di�erent if d =1. In this case, independently of the value

of n and �; all equilibrium outcomes involve everyone choosing action 0, except players who

happen to be in components that only involve players of degree 2. Those components have

equilibria where all players play 1 or all players play 0. However, any component with any

player of degree 1 has a unique equilibrium where all players play 0.

This example illustrates that having more information may actually narrow the set of

equilibria.20 There is one equilibrium (all playing 0) which exists all along the sequence

and is the only ex-post equilibrium. However, for less than complete information there also

exist other equilibria that are more e�cient. Here, having less information allows players to

coordinate on an equilibrium which leads to higher expected utility for all players (weakly

20We remark that although the multiplicity disappears at d =1, there still is a sort of continuity here in
that the set of parameter values (�'s) for which the non-zero equilibrium exists shrinks as d grows.
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for the degree 1 players21).

Example with enhanced coordination for d = 2: The degree distribution has only

players with degree 1 and 3 and conditional probabilities for neighboring nodes given by

~P (1) � �; ~P (3) = 1� �. Again, let the action space be X = f0; 1g and payo�s only depend

on own action xi and the sum �x of neighbors' actions as given by the function v(xi; �x) de�ned

as follows: v(0; �) = 0; v(1; 0) = v(1; 1) = �c; v(1; 2) = v(1; 3) = 1, where c > 0 is a suitably

chosen parameter (see below).

Consider �rst the case of d = 1: Let

q0 � 1� [�3 +
�
3

2

�
�2(1� �)]

be the probability with which a player with three neighbors expects to have at least two

neighbors of degree 3: Then, if

q0 � 1� (1� q0)� c < 0

or

q0 <
c

1 + c
;

it is clear that all players must choose action 0 at any equilibrium.

Next, consider a slight increase in information to d = 2: Consider a particular player i,

who has at least two neighbors with degree 3, say j and k: Since d = 2, player i knows this

fact. But also because d = 2; j and k know that one of their neighbors (namely i) has degree

3. The key question now is what is the probability perceived by i that both of these two

neighbors have an additional neighbor (di�erent from i) with degree three. This probability

is

q1 � (1� �2)2:
21The example is easily modi�ed so that even the degree 1 players have higher utility if their neighbor

chooses 1 instead of 0.
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Comparing q0 and q1 we �nd

q1 � q0 = [1� 2�2 + �4]� [1� (�3 + 3�2 � 3�3)]

= �2 � 2�3 + �4 = �2(1� �)2 > 0:

Therefore, there is a value of c such that

q0 <
c

1 + c
� q1: (8)

In a case where (8) holds, as explained above under d = 1 any symmetric-equilibrium

strategy � must have all players choose 0; however, if d = 2, then the following strategy �0

also de�nes a symmetric equilibrium:

�0(1; �) = 0

�0(3; 3; 3; �) = 1:

Finally, we point that, at the above equilibrium, there is a positive fraction of players

who will choose action 1 with positive probability. In fact, it can be readily shown that, if

p(3) > 1=4; the set of those players includes a giant component (i.e. a component of the

network that, even for arbitrarily large n; includes a fraction of players that is bounded away

from zero).22

22This follows from the Molloy-Reed conditionX
�

P (�)�2 � 2
X
�

P (�)� > 0

for the existence of a giant component in random networks. For our example, this condition is equivalent to
p(3) > 1=4:
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