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Abstract

The paper shows that the interactions between incentives, risk sharing, and wealth

may drive economic cycles in the steady state, where the economy oscillates between two

equilibrium modes. When the economy is poor, it is in the incentivized mode, where the

young agents take risks, work hard, and are more productive. Consequently, the economy

gets richer, making it harder to incentivize the young generation. Eventually the economy

falls into the disincentivized mode, where young agents obtain full insurance, shirk, and

are less productive. As a result, the economy becomes poorer and eventually falls back into

the incentivized mode. Such oscillations arise only when the productivity of the economy

falls in a medium range.
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1 Introduction

Could intrinsic frictions of an economy, such as ubiquitous moral hazard problems, drive economic

�uctuations? A strand of literature, starting with Suarez and Suzzman (1997), shows they could,

via mechanisms where the moral hazard problems exert in�uences by a¤ecting the economic

agents�capability to raise external �nance. This paper shares with the literature in emphasizing

the importance of the intrinsic frictions to economic �uctuations, but uncovers a complementary

mechanism, at the core of which is the trade-o¤between incentives and insurance, a fundamental

trade-o¤ underlined by the economic theory in relation to moral hazard. By focusing on this

trade-o¤, the paper neatly links together the cyclic movements of investment (both quantity and

return), wealth, incentives and risk sharing.

The paper considers an overlapping generations economy where young agents provide labor

and older agents provide capital to produce the consumption good. After earning the wage from

this production, young agents engage in projects to produce capital. The projects are risky

and subject to a typical moral hazard problem: the project of an agent succeeds with a higher

(lower) probability if he works hard (shirks), and the choice of e¤ort is his private information.

The risks of the projects are idiosyncratic. This naturally gives rise to arrangements in which

agents pool together their projects and obtain mutual insurance. Driven by the typical trade-o¤

between insurance and incentive, two types of insurance contracts could prevail in equilibrium:

(a) incentivizing contracts with which the participating agents work hard but bear part of the

idiosyncratic risks of their projects; and (b) disincentivizing contracts with which they get full

insurance and hence shirk.

The main result of the paper is that in the steady state the economy �uctuates between two

distinct modes of equilibrium: an incentivized mode where the incentivizing contracts prevail,

and a disincentivized mode where the disincentivizing contracts prevail. During periods when

the capital stock is low and the economy is thus poor, the incentivized mode reigns: the young

agents work hard and, as a result, the economy keeps becoming richer in terms of higher capital

stocks. However, when the capital stock surpasses a threshold, the incentivized mode is not

sustainable. Then the disincentivized mode prevails: the young agents now shirk and, as a result

the economy keeps becoming poorer. But when the capital stock falls below a threshold, the

disincentivized mode is not sustainable and the incentivized mode reigns again, reversing the

2



economy back onto a upward path.

The switches in the equilibrium mode are driven by the interaction between optimal con-

tracting determined by at the micro level and the wealth of young agents determined at the

macro level. When the economy is rich, the high level of the capital stock gives rise to a high

wage rate in the labour market, thus creating larger wealth for the young agents. They now, in

order to smooth consumption inter-temporally, seek to transfer more wealth to the future across

all contingencies, which comes into direct con�ict with the provision of incentives. As a result,

the optimal insurance contracts are the disincentivizing ones, which allow for full insurance and

perfect inter-temporal consumption smoothing. On the other hand, when the capital stock is

low, young agents earn a low wage rate and hence they have little to pass on to the future even

under full insurance. Consequently, they prefer the incentivizing contracts, with which they

work hard and produce more capital for the next period.

The paper predicts that the scale of investment is larger during booms than it is during busts,

but the productivity (or the rate of return) of investment is lower during booms than during

busts. The latter result is because of incentives: in the paper agents work less hard during booms

than they do during bust; it is thus in line with a �nding by Favara (forthcoming) that recession

features productivity-improving activities "due to the strengthened incentives".

The paper contributes to the literature where cycles may arise in the absence of exogenous

shocks and because of information frictions;1 see Aghion and Banerjee (2005), Aghion, Banerjee

and Piketty (1999), Favera (forthcoming), Matsuyama (2007), Myerson (2010), and Suarez and

Suzzman (1997), among others, and for a survey of this literature, see Brunnermeier, Eisenbach,

and Sannikov (2012) and Tirole (2005).2 The closest paper to ours is Suarez and Suzzman (1997):

in both papers, how stressful the moral hazard problems are, re�ected in the level of e¤ort chosen,

varies with the economic cycles; and in both papers, globally stable cycles arise in the steady

state. But di¤erently from his paper and other ones in the literature, which all underline the

1There is another strand of literature that examines how information frictions amplify �uctuations that origi-

nate from exogeneous shocks; see Bernanke and Gertler (1989), Bernanke, Gertler and Gilchrist, (1999), Brunner-

meier and Sannikov (2011), Cordoba and Ripoll (2004), Kiyotaki and Moore (1997), and Krishnamurthy (2003),

and for a survey see Brunnermeier, Eisenbach, and Sannikov (2012), and Chapters 13 and 14 of Tirole (2005).
2The early literature, seeking to endogenize cycles, resorts to the curvature of the utility or production func-

tions, imperfect competition, or dynamic complementarities; see Boldrin (1992), Kyotaki (1988), Grandmont

(1985) and Reichlin (1986), among others; and for a survey see Guesnerie and Woodford (1992).
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constraints on the capacity of raising external �nance, the mechanism for cycles in our paper is

driven by the interaction between wealth, incentives and risk sharing. In particular, our paper

has three novel features. First, the incentivizing and disincentivizing contractual regime alternate

between booms and busts. Second, saving plays a key role in the mechanism driving cycles in

our paper, with higher savings reducing the incentives of agents to work hard and toppling the

economy into the disincentivized mode, while in the literature, the information frictions a¤ect

the capability to raise external �nance required for investment, which might have implications

for saving, but saving by itself does not play any role in the mechanisms for �uctuations. Third,

we show that economies within a middle range of productivity are prone to the cyclic steady

state.

This last result also sheds new light on the peculiarities of middle-income countries, as dis-

cussed by, for example, Abramovitz (1986), Baumol (1986), Dowrick and Gemmel (1991), and

Ogaki, Ostry and Reinhart (1996). Moreover, we �nd that the saving rate is higher in the disin-

centivized mode when the wage is higher, which is consistent with the claim by Ogaki, Ostry and

Reinhart (1996), that "[T]he hypothesis that the saving rate, and its sensitivity to the interest

rate, are a rising function of income �nds strong empirical support."

The rest of the paper is organized as follows. We set up the model in Section 2. In Section

3 we focus on the case of logarithmic utility, for which clean, explicit results can be obtained.

The case of CRRA functions is considered in Section 4, where we show long-period cycles may

exist. Section 5 concludes. In Appendix A we show that our modelling of insurance captures a

broad extent of realistic insurance contracts, such as those for hedging. All proofs are relegated

to Appendix B.

2 The Model

The economy lasts for an in�nite number of periods, t = 0; 1; :::; and consists of overlapping

generations of agents, each of whom live for two periods. There is one perishable consumption

good, used as numeraire, and one capital good. In each period, there is a continuum of 1 unit

of young and 1 unit of old agents, so that the total population is �xed at 2 units. In period 0;

there is an initial old generation, with capital stock K0. The utility function of young agents is
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U(c1) + �U(c2);

where ci is their consumption in the ith period for i = 1; 2; � 2 (0; 1) is the discount factor, and

U(�) is increasing and strictly concave, with U 0 > 0 and U 00 < 0:

The Production of Consumption Good

In each period t, young agents contribute labour and old agents contribute capital to produce

the consumption good. The aggregate production function is Yt = AK�
t L

1��
t , in which Kt and

Lt denote the aggregate supply of capital and labor, respectively. We assume A is constant over

time to abstract away the external aggregate shocks. Each young agent supplies 1 unit of labor:

Lt = 1 for all t:

There are perfectly competitive markets for hiring labor and for renting capital. Therefore,

the young agents earn wageWt = A(1��)K�
t for their unit labor and the old agents earn rental

rate Rt = A�K��1
t per unit of their capital holding.

The Production of Capital and Moral Hazard

In each period, after earning the wage, each young agent engages in a project that produces

capital from the consumption good. The project could fail, and then returns nothing. If the

project succeeds, it produces I units of capital in the next period from I units of the consumption

good of this period. Thus I measures the scale of the investment. The probability of success

depends on the e¤ort of the agent: it is q if he shirks and p if he works hard, with p > q: If an

agent works hard on a project of scale I; he incurs disutility of �I. Whether an agent shirks or

works hard is his private information and is not observed by others. Hence, the choice of e¤ort

is subject to moral hazard.

The outcomes of investment projects are independent across the young agents and over time.

Capital depreciates completely after one period. Therefore all the capital used in period t comes

from the investment in period t�1 and is owned by the old agents of period t: The capital stock

in period t, Kt; equals the aggregate of successful investments in period t � 1. For example, if

all the projects have scale It�1; then Kt = pIt�1 when the agents all work hard and Kt = qIt�1

when they all shirk.
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Mutual Insurance and Contracting

Since the outcomes of the projects are independent, by the Law of Large Numbers, if a large

number of projects are pooled together, the average outcome is almost certain. This opens up

the possibility of insurance and risk sharing between young agents, who are all risk averse. To

capture in a simple way the essence of pooling for risk sharing, we assume the insurance is

arranged as follows.

Mutual insurance companies (MICs) are established and they o¤er insurance contracts to

young agents against the risks of their projects.3 As the project of any agent has two states

(success or failure), an insurance contract to the agent is thus characterized by two variables:

the amount the agent gets from the company when his project fails, denoted by L; and the amount

he pays the company when his project succeeds, which is a function of L and thus denoted by

H(L): Thus, the contracts o¤ered by the MIC are of a menu f(L;H(L)jL 2 �), with L varying

in a feasible set � and a particular L de�ning a particular contract. The market competition

drives all MICs to earn zero pro�t. Therefore, if the subscriber succeeds with probability s; then

(1� s)L = sH(L):

This equation has two implications.

(1): Function H(L) is linear. H(L) = �L; where

� =
1� s
s
: (1)

We call this � as the insurance price, which characterizes the menu of insurance contracts.

(2): The probability of success s = p if the subscriber works hard, and s = q if he shirks.

Therefore, an MIC could provide at most two menus, characterized respectively by � = (1�p)=p

and � = (1� q)=q; depending on whether it expects the subscriber to work hard or to shirk.

Besides price � ; in another dimension does the two menus di¤er, namely �; the set of L from

which the MIC allows subscribers to choose. The success probability of a project is never below

q: Therefore, when an agent chooses a contract from the menu with � = (1� q)=q; the MIC can

never make loss and thus the agent is allowed to choose any L � 0; namely, � = R+: But when
3The MICs are players in the paper, in the same way as the banks are players in Diamond and Dybvig (1983),

although in essence, the MICs here and the banks in that paper are institutions through which the agents contract

with each other.
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an agent subscribes to the menu with � = (1� p)=p; the MIC, in order not to make a loss, must

ensure that he will work hard on the project. His e¤ort choice, however, is not observed by the

MIC. Therefore, the menu with � = (1�p)=p must provide the subscribers with the incentives to

work hard, which, as will be demonstrated later, implies that the MIC imposes an upper bound

on the permissible L, namely � = [0; L].

Putting the two dimensions together, the MICs o¤er either or both of the following menus:

f(L; 1� q
q

� Lj0 � Lg; f(L; 1� p
p

� Lj0 � L � Lg: (2)

In Appendix A we demonstrate that this modelling of mutual insurance actually captures a

variety of real-life contracting for insurance and hedging.

An Agent�s Life Cycle and Decisions

Given the wage (or wealth) a young agent has obtained from the production of the consump-

tion good, W; and his rational expectation of the return rate of capital in the next period, R, he

determines the scale of his capital-producing project, I; and subscribes to an insurance contract,

(L; �L); and then decides whether to work hard or shirk on his project.4 The consumption in

the young period is then:

C = W � I: (3)

In the old period, if the agent�s project succeeds, then he possesses I units of capital and earns

rent IR; but he has to pay �L to the MIC by the contract he chose. His consumption in this

contingency, denoted by Cg; is therefore

Cg = IR� L�: (4)

If his project fails, then he gets no capital but the MIC gives him L units of the consumption

good by the contract he chose. His consumption in this contingency, denoted by Cb, is therefore

Cb = L: (5)

We assume that an agent can only contract with one MIC and that the MIC observe the

scale of his project, I. This is important, because L; the upper bound associated with price

(1� p)=p; depends on I, as we will see.
4The old agents have no decisions to make; they just rent their capital and consume, then their capital

depreciate completely and they retire.
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Equilibrium De�nition and Contractual Mode Switch

There are two levels of interactions. At the micro level, the MICs o¤er insurance contracts

to the young agents. At the macro level, there are markets for hiring labor and renting capital,

which determines wage, W , and capital rental rate, R. The two levels are interlocked. On the

one hand, the contracting at the micro level depends on the price variables (i.e. W and R)

determined at the macro level. On the other hand, the price variables are determined by the

aggregate contracting and investment decision by individual agents at the micro level. As such,

equilibrium entails (a) at the macro level the markets clear and the law of motion for the capital

stock is derived from the optimal investment and e¤ort decisions by the young agents; and (b)

at the micro level the MICs o¤er the optimal contracts to the young agents and earn zero pro�t.

As for (a), the clearing of the labor market and the capital market implies:

Wt = A(1� �)K�
t ; (6)

Rt+1 = A�K��1
t+1 : (7)

Furthermore, if 
 fraction of the young agents shirk and 1�
 of them work hard and the former

invests I0 and the latter I1; then the capital stock at the next period, by the Law of Large

Numbers, is:

Kt+1 = 
qI
0 + (1� 
)pI1: (8)

As for (b), the zero pro�t condition has been captured by (1) and implies, as we saw, that

each MIC at most o¤ers two menus of insurance contracts, given by (2).

Among these two menus, the optimal contracting means that MICs o¤er the one(s) with

which young agents attain the highest utility, taken as given their wage, W , and the interest

rate at the next period, R. The highest utility with each of the two menus is characterized below.

If an agent subscribes to menu f(L; 1�q
q
�Lj0 � Lg; the MIC does not care if the agent works

hard or shirk. If he shirks, his life cycle utility is U(C) + �qU(Cg) + �(1� q)U(Cb): By (3), (4),

and (5), with � = (1� q)=q; and given W and R, the highest attainable utility is:

V 0(W;R) � max
I;L

U(W � I) + �qU(IR� 1� q
q
L) + �(1� q)U(L): (9)

And let the solution of the problem for I denoted by eI0(W;R):
8



If he works hard, his life cycle utility is U(C) + �pU(Cg) + �(1 � p)U(Cb) � �I; and the

highest utility attainable is:

V S(W;R) � max
I;L

U(W � I) + �pU(IR� 1� q
q
L) + �(1� p)U(L)� �I: (10)

Therefore, if the agent chooses a contract from the menu with � = (1 � q)=q; the highest

attainable utility is maxfV 0(W;R); V S(W;R)g:

If an agent subscribes to the menu with � = (1 � p)=p, the MIC has to ensure he will work

hard. The MIC does not observe his choice of e¤ort and thus has to provide him with the

necessary incentives. If he works hard, his continuation payo¤ is �[pU(Cg)+ (1� p)U(Cb)]� �I;

while if he shirks, his continuation payo¤ is �[qU(Cg) + (1� q)U(Cb)]: The agent has incentives

to work hard, if and only if the former is not smaller than the latter, or equivalently,

U(Cg)� U(Cb) � �

�(p� q)I:

Since Cg = IR � L1�p
p
and Cb = L from (4) and (5), and � = (1� p)=p; we have the following

incentive compatible (IC) constraint:

U(IR� L1� p
p
)� U(L) � �

�(p� q)I: (11)

This IC constraint places an upper bound on L; denoted by L in (2). The upper bound depends

on R and I, both of which the MIC observes. The highest attainable pro�t with the menu is

thus:

V 1(W;R) � max
I;L

U(W � I) + �pU(IR� L1� p
p
) + �(1� p)U(L)� �I, s.t.(11). (12)

And let the solution of the problem for I denoted by eI1(W;R):5
We assume

(1� q)p
(1� p)q � e

1
p�q ;

which ensures V 1(W;R) � V s(W;R) for the case of logarithmic utility,6 and therefore excludes

the case described by equation (10) where the agent subscribes to the menu with � = (1� q)=q;
5The problem is similar to that given in (10), except that the premium here is (1� p)=p instead of (1� q)=q

and the agent here is subject to the IC constraint, (11), instead of any L available.
6This claim is put as Claim A1 in Appendix B and proved therein, where a comparison between V 1(W;R)

and V S(W;R) for a general case is also discussed.
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but works hard. Therefore, if the agent subscribes to that menu, he will shirk. As such the

menu, namely, f(L; 1�q
q
�Lj0 � Lg; is called as the disincentivizing menu and menu f(L; 1�p

p
�LjL

subject to (11)g is called as the incentivizing menu.

By encompassing both features (a) and (b) explicated above, we now formally de�ne our

concept of equilibrium as follows (recalling that Wt denotes the wage in period t, Rt+1 the

interest rate and Kt+1 the capital stock in the next period, 
 the proportion of the young agents

who choose the disincentivizing menu, I0 their investment scale, and I1 the investment scale of

those agents who choose the incentivizing menu).

De�nition 1 In a period with initial capital stock Kt; pro�le fWt; Rt+1; Kt+1; 
; I
0; I1g forms

an equilibrium if and only if:

(i): The labor market and the capital market clear, namely, (6) and (7) hold true;

(ii): The capital stock in the next period results from aggregating the outcomes of the indi-

vidual investments, namely, (8) holds true;

(iii): 
 = 0 if V 1(Wt; Rt+1) > V 0(Wt; Rt+1), 
 = 1 if V 0(Wt; Rt+1) > V 1(Wt; Rt+1); and

V 0(Wt; Rt+1) = V
1(Wt; Rt+1) if 0 < 
 < 1:

(iv): I0 = eI0(Wt; Rt+1) and I1 = eI1(Wt; Rt+1):

Conditions (i) and (ii) are what equilibrium entails at the macro level. Condition (iii) captures

optimal contracting and embeds the choice of the contractual menu in equilibrium. It says

that given Wt and Rt+1; if the incentivizing menu gives the agents a higher payo¤ than the

disincentivizing menu (i.e. V 1(Wt; Rt+1) > V
0(Wt; Rt+1)), then no agents choose the latter (i.e.


 = 0); while they all choose it (i.e. 
 = 1) if it o¤ers a higher payo¤ than the incentivizing

menu (i.e. V 0(Wt; Rt+1) > V
1(Wt; Rt+1)); moreover, they must be indi¤erent between the two

menus if both are chosen in equilibrium (i.e. 0 < 
 < 1). Lastly, condition (iv) says that the

choice of investment scale is part of the optimal decision by the young agents.

For a particular period, if the equilibrium features 
 = 0; we call the period is in the in-

centivized mode (IM), because in the period the incentivizing menu prevails and all the young

agents are incentivized to work hard. If the equilibrium features 
 = 1; we call the period is

in the disincentivized mode (DIM), because in the period the disincentivizing menu prevails and

all the young agents shirk. Similar, the equilibrium with 0 < 
 < 1 is called the mixed mode.
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Henceforth we use superscription "0" to represent the DIM, "1" the IM, "01" the switch from

the former to the latter, and "10" the switch in the reverse direction.

We examine the case of logarithmic utility in the next section, focusing especially on the

switch in contractual mode and the dynamics of capital stock.

3 The Case of Logarithmic Utility

We pick logarithmic utility function for two reasons. One, it makes the exposition direct and

simple. The other, and more importantly, use of logarithmic function, with which the income

e¤ect exactly is exactly o¤set by the substitution e¤ect, clearly di¤erentiates our paper from a

big strand of literature that relies on a strong income e¤ect to generate endogenous cycles.7 As

will be shown below, in our paper it is the switch in contractual mode, not the income e¤ect,

that drives cycles in the steady state; if the economy were always in the IM or the DIM, then the

capital stock would monotonically converge to the unique steady-state level, namely, no cycles

would arise even in the process of convergence.

3.1 The Switches in Contractual Mode

To demonstrate switches in contractual mode, we �rst �gure out the conditions under which

one or the other mode rules, as is described by condition (iii) of the de�nition above. For that

purpose, we determine the properties of V j(Wt; Rt+1) and eIj(Wt; Rt+1) for j = 0; 1; in order

below.

First, for the case of j = 0; namely, that associated with the disincentivizing menu, the

decision problem of young agents is given by (9). The solution for it is characterized below.

Lemma 1 If an agent subscribes to the disincentivizing menu, then he gets full insurance:

Cg = Cb = L = qIR: (13)

And his investment is determined by

U 0(W � I) = �qRU 0(qIR): (14)

7See Guesnerie and Woodford (1992) for a survey and detailed references.
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The full insurance result is standard: risk averse agents, when facing the fair insurance price,

want to be fully insured. Note, however, that the full insurance is feasible with the disincen-

tivizing menu, because the agents are not required to work hard; were they to be incentivized,

the consumption from success would need to be higher than that from failure.

The full insurance result suggests that the agents subscribing to the disincentivizing menu

are actually facing a problem of saving with a return rate of qR: they give up I units of the

consumption good today in exchange of qR�I units of the consumption good tomorrow no matter

what happens to their projects. Moreover, when the agents choose the disincentivizing menu,

the amount they can save, namely the size of I and L, is unrestrained and therefore they can

perfectly smooth consumption across the two periods of their life.

These two features, namely the full insurance and perfect inter-temporal smoothing, com-

mand that choosing the disincentivizing menu leads to the following saving problem:

V 0(W;R) = max
I
U(W � I) + �U(I � qR) (15)

Therefore, the optimal allocation of I is ruled by (14), which says the marginal utility of con-

sumption are equalized across the two periods.

When U(�) = log(�); the optimal investment (or saving) is independent of the interest rate:

eI0(W;R) = �

1 + �
W; (16)

from which it follows:

V 0(W;R) = logfW 1+� ��

(1 + �)1+�
q�R�g: (17)

Second, we turn to the case of the incentivizing menu, of which the decision problem of young

agents is given by (12). Let

� � �

�(p� q) :

Lemma 2 Suppose U(�) = log(�). (i) If an agent subscribes to the incentivizing menu, then his

investment, eI1(W;R); is independent of R and determined by the following equation:
1� p
p

�
qI + �

�

(1� q)I � �
�

= e�I ; (18)

where � � W� 1+�
�
I

W�I is between 0 and 1; and his value is

V 1(W;R) = logf(W � eI1)[ p

1� p((1� q)
eI1 � �

�
)]�e�q�

eI1R�g (19)
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(ii) deI1=dW > 0 and eI1 < �
1+�
W (i.e. eI0):

The independence of eI1(W;R) with R comes from the feature of logarithmic utility, that the
income e¤ect exactly o¤sets the substitution e¤ect. Due to this independence, we write eI1(W;R)
as eI1(W ):
Finally, we come to determine when the contractual mode switches.

Equations (17) and (19) together implies that V 0(W;R) = V 1(W;R) if and only if

W 1+�q�
��

(1 + �)1+�
= (W � eI1(W ))[ p

1� p((1� q)
eI1(W )� �

�
)]�e�q�

eI1(W ); (20)

and V 0(W;R) > V 1(W;R) if and only the left hand side is bigger than the right hand side. The

key feature is that the comparison between V 0(W;R) and V 1(W;R) is independent of R and

depends only on W , which is the greatest convenience conferred by logarithmic utility.

Denote the root of (20) by cW , whose existence will be shown soon. As the wealth (or wage)
of young agents is positively linked to the capital stock through Wt = A(1 � �)K�

t , we have

Wt < cW if and only if the initial capital stock Kt < bK; where
bK = (

cW
A(1� �))

1
� : (21)

Proposition 1 The root of equation (20),cW , exists and is independent of A, and V 0(Wt; Rt+1) <

V 1(Wt; Rt+1) if and only if Wt < cW , namely, if and only if Kt < bK:
That is, in period t all young agents choose the incentivizing menu and work hard, so the IM

rules, if the initial capital stock, Kt; is below bK; if Kt > bK; they all choose the disincentivizing
menu and shirk, so the DIM rules. Thus, in equilibrium the contractual mode switches from

the incentivizing menu to the disincentivizing menu with the wealth of the economy surpassing

a threshold. For an intuition, we compare between the two menus more closely.

As was noted, the disincentivizing menu, f(L; 1�q
q
� Lj0 � Lg; delivers two bene�ts: (1) it

allows the young agents to be fully insured against the risks of their projects; and (2) it also

allows them to perfectly smooth consumption inter-temporally, because it imposes no constraint

upon the amount of insurance permitted to subscribe, or put di¤erently, it allows any amount

of wealth to be transferred into the next period.
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By contrast, both bene�ts are forsaken with the incentivizing menu in exchange for providing

incentives to work hard. First, the agents want to work hard only if they get more when their

projects succeed than when the projects fail (i.e. Cg > Cb); that is, they will not have full

insurance against the risks of their projects. Second, the necessity to honor the IC constraint,

(11), also seriously obstructs the passage of wealth on to the old period, as shown below.

Lemma 3 limW!1 eI1(W ) � I1 <1: And for any W , Cg < R1(qI1 + 1
�
) and Cb < pR1

1�p [(1�

q)I1 � 1
�
], where R1 is a positive and �nite number.

By the lemma, however large the wealth (W ) at the young period is, the amount of wealth

the agents can pass on to the old period in an incentive-compatible way is upper-bounded. This

is because the scale of investment is upper-bounded (I < I1), which is in turn because of the

need to honour the IC constraint, (11). As U(IR) > U(IR� L1�p
p
) and U(L) > �1 under the

agents�optimal decisions, the constraint implies that U(IR) > �I + d for some constant d. The

interest rate R is in the order of K��1; thus of I��1; in equilibrium. Hence IR is in the order of

I�. Therefore, the IC constraint commands that the investment scale, I, must satisfy, for some

constants d and d0;

U(d0I�) > �I + d;

and is hence upper-bounded, considering U is concave.

The trade-o¤ between the disincentivizing menu and the incentivizing menu is therefore as

follows. The former gives full insurance and perfect inter-temporal consumption smoothing, while

the latter entails a high yield rate of producing the capital. When W is very small, the agents

have not much to pass on to the future even under full insurance and perfect inter-temporal

smoothing; and therefore, the incentivizing menu dominates. On the other hand, when W is

very large, the agents prefer to pass a lot on to the future in all contingencies. This is feasible

only with the disincentivizing menu, which, therefore, dominates.

The switch in contractual mode shown in Proposition 1 may drive the economy into �uctu-

ations in the steady state, even though there are no macroeconomic shocks. This is to be shown

in the next section.
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3.2 The Dynamics of Capital Stock

By Proposition 1, the evolution of capital stock is ruled by the dynamics of the DIM if Kt > bK
and by that of the IM if Kt > bK: These dynamics are found out in order below.
The next period capital stock, Kt+1; is the aggregate outcomes of the successful projects. In

the DIM, all young agents invests eI0; which, by (16), equals �
1+�
Wt; and their projects succeed,

independently, with probability q (as they all shirk). By the law of large numbers, therefore,

Kt+1 = qeI0 = q �
1+�
Wt: As Wt = A(1� �)K�

t ; the dynamics of the DIM are then described by

Kt+1 =
q�(1� �)A
1 + �

(Kt)
� �M0(Kt; q): (22)

The (non-zero) steady state of the DIM, denoted by K0; is to be found by substituting Kt+1 =

Kt = K
0 into (22). Thus,

K0 = (
�(1� �)qA
1 + �

)
1

1�� : (23)

In the IM, all young agents invests eI1(Wt); which is determined by (18), and their projects

succeed, independently, with probability p (as they all work hard in the IM). By the law of large

numbers, therefore, Kt+1 = peI1(Wt): As Wt = A(1 � �)K�
t ; the dynamics of the DIM are then

described by

Kt+1 = peI1(A(1� �)K�
t ; �; p) �M1(Kt; �; p): (24)

The (non-zero) steady state of the dynamics, denoted by K1; satis�es the following equation:

K1 = pI1(A(1� �)(K1)�; �; p): (25)

That gives K1 as a function of p and �, denoted by K1(�; p):

Proposition 2 (i) If q � 0:5; both M0(K; q) and M1(K; �; p) are increasing and concave with

K and have a unique steady state (namely K0 and K1) which is globally stable.

(ii) Both K0 and K1 increases with A.

Result (i) says that if there were no switch in contractual mode and the economy were always

in the IM or the DIM, then the capital stock would monotonically converge to the unique steady-

state level, that is, there would be no oscillation even in the process of convergence. Therefore,

15



in our paper it is the switch in contractual mode that drives cycles in the steady state, if there

are any.

To �nd the dynamics of capital stock of the economy, by Proposition 1, we shall consider the

dynamics in the IM, M1(Kt; �; p); if Kt < bK and those in the DIM, M0(Kt; q); if Kt > bK: The
steady state of the former dynamics is K1(�; p) and that of the latter is K0(q). The properties

of the economy�s dynamics are determined by the relative positions between K0; K1; and bK; of
which the following lemma describes one case.

Lemma 4 There exists �; A and A such that if 0 < � < � and A < A < A, then K0 < bK < K1

and M1(Kt; �; p) > M0(Kt; q) for Kt < K0(p) where K0(p) is de�ned by (23) with q replaced

with p.

Intuitively, we obtain the relative position ofM1(Kt; �; p) toM0(Kt; q) and that of K1 to K0

by manipulating �; and have bK sit between K0 and K1 by manipulating A:When � approaches

0, the allocation of the IM converges to that of the DIM except that the probability of success

is p instead of q. Especially M1(Kt; �; p) approaches M0(Kt; p) and sits above M0(Kt; q); and

K1(�; p) approaches K0(p) and sits to the right of K0(q); illustrated as below.

Figure 1: The Dynamics in the IM and that in the DIM

And we obtain the position of bK relative to K0 and K1 by manipulating A: By Proposition

2 (ii), K0 and K1 both continuously increases with A; but bK = (cW=A(1� �)) 1� decreases with
A in the order of A�

1
� since by Proposition 1, cW is independent of A: Therefore, if A is in a

medium range, we have K0 < bK < K1:

16



The dynamics of capital stock are ruled by Kt+1 =M
1(Kt; p; �) for Kt < bK; and by Kt+1 =

M0(Kt; q) for Kt > bK and are therefore illustrated by a �gure that is obtained by inserting the

threshold bK into Figure 1 above, as below. The �gure below also illustrates that in the steady

state of the dynamics the economy oscillates between the two stocks of capital, K and K:

Figure 2: The Dynamics where K0 < bK < K1

Mathematically, K and K are determined by:

K = M1(K; p; �)

K = M0(K)

This steady state of cycle (K;K) is globally stable. That is, whatever the initial capital stock

is, the dynamics of capital stock converge to this cycle, as the following proposition states.

Proposition 3 Assume 0 < � < � and A < A < A, so that by Lemma 4 K0 < bK < K1: For

any initial capital stock K0, there exists T such that the sequence KT ; KT+2; KT+4; :: converges to

K, and the sequence KT+1; KT+3; KT+5; :: converges to K; and KT+2n+1 =M
1(KT+2n) > KT+2n

and KT+2n+2 =M
0(KT+2n+1) < KT+2n+1 for integer n � 0.

That is, the economy is in a boom at t = T +2n+1 (i.e. Kt close to K); when all the young

agents shirk since the economy is rich (Kt > bK). This all-shirking topples the economy into a
bust the next period (i.e. KT+2n+2 close toK); when, since the economy is poor (KT+2n+2 < bK)),
the young agents then all work hard, lifting the economy back into a boom the next period. This

�uctuation is not smoothed out over time and stays there forever: in the steady state the capital

stock permanently oscillates between K and K:
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We compare between what occurs in steady-state booms and busts in the following proposi-

tion, where we use an upper bar to denote the case associated with booms and a lower bar the

case associated with busts.

Proposition 4 (i) I > I; but qI < pI: (ii) I=W > I=W:

Result (i) says that the scale of the investment is higher during booms than it is during

busts, but the yield rate of it is lower (q < p), and furthermore, the weakness in the yield rate

over-o¤sets the strength in the scale, making a boom followed by a bust and a bust by a boom.

Result (ii) says that the higher scale of investment during booms comes not only from a higher

wealth (i.e. W > W ); but also from a higher saving rate.

The steady-state cycle examined above arises only when A < A < A, that is the productivity

level is in a medium range. Note that bK decreases with A (by 21), whereas both K0 and K1

increase with A (by Proposition 2.ii). Therefore, if A > A, then bK < K0 < K1: For this case,

the dynamics is illustrated as follows.

Figure 3: The Dynamics When A Is Large

It is easy to see from Figure 3 that the unique steady state is K0; the steady state in the

DIM, where agents enjoy leisure and full insurance, and no cycles arise.

On the other hand, if A < A, then K0 < K1 < bK and the dynamics is illustrated as follows.
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Figure 4: The Dynamics When A Is Small

It is easy to see from Figure 3 that the unique steady state is K1; the steady state in the IM,

no cycles arising either.

Having focused on the case of logarithmic utility, which gives rise to the clean results, we

move on to the case of general Constant Relative Risk Aversion (CRRA) functions.

4 The Case of CRRA Utility Function

In this section, we accommodate two more features. One, unlike in the case of logarithmic utility,

where the steady-state cycle spans only two periods (one in a boom, the other in a bust), now

it could consist of many periods of booms followed by many periods of busts. The other is that

in some periods there could be the mixed mode where part of agents work hard and the rest

shirks, although ex ante they are identical.

In this section, the period utility of agents is described by a CRRA function, that is,

U(c) =
c1�� � 1
1� � :

We assume

�� < 1 (26)

and that � > 1
2
, which ensures the following important property:

P: U �D is concave, where D(�) is the inverse function of 1
U 0(�) :

For a general CRRA function, the comparison between V 0(Wt; Rt+1) and V 1(Wt; Rt+1) de-

pends on bothWt and Rt+1, and thus a key convenience of logarithmic utility is lost. The wealth,
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Wt, is pinned down by the initial capital stock. The next period interest rate, Rt+1, is pinned

down by the next period capital stock, which depends, in turn, on the e¤ort choice by young

agents, and thus on the equilibrium mode of this period hinging on the comparison between

V 0(Wt; Rt+1) and V 1(Wt; Rt+1): This interdependence commands that to �nd the equilibrium

mode for a given period, we shall �rst suppose a mode (say the DIM), then �gure out the interest

rate in the mode (say R0t+1) , and then check back the mode supposed at the beginning indeed

rules (that is V 0(Wt; R
0
t+1) > V

1(Wt; R
0
t+1): This is the approach taken below.

4.1 The DIM: When It Rules and the Dynamics in It

Suppose a period t is in the DIM. Then all young agents invest eI0(Wt; Rt+1), which, mathe-

matically, is the solution for I of (9), the optimization problem they face if choosing the dis-

incentivizing menu. Their projects succeed independently with probability q: The next period

capital stock is thus Kt+1 = qeI0(Wt; Rt+1):Since the interest rate is pinned down by capital stock

through R = A�K��1; we have

Rt+1 = A�(qeI0(Wt; Rt+1))
��1:

This equation determines the interest rate as a function of Wt; the wealth of the young agents,

in the DIM, which is denoted by R0(Wt). And de�ne

I0(Wt) � eI0(Wt; R
0(Wt));

which, therefore, denotes the scale of investment as a function of Wt in the DIM.

As Wt = A(1� �)K�
t ; the dynamics of capital stock is then:

Kt+1 = qI
0(A(1� �)K�

t )

with its steady state, K0; determined by

K0 = qI0(A(1� �)(K0)�): (27)

For U(c) = c1���1
1�� ; R0(W ) is implicitly determined by

(
R0

A�
)�

1
1�� =

q�
1
� (qR0)

1��
�

1 + �
1
� (qR0)

1��
�

W; (28)

and the following lemma holds.
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Lemma 5 @Kt+1

@Kt
> 0; limKt!0

@Kt+1

@Kt
(Kt; q) = 1; @Kt+1

@q
> 0; and the dynamics have a unique

steady state, K0 and K0 = T (�; �; �)(Aq)
1

1�� < (A(1� �)q)
1

1�� :

By the lemma, the dynamics are increasing and shift upward when q rises, and the steady state

is unique and stable and increases with A and q in the order of (Aq)
1

1�� : These properties help

settle down the relative position betweenM0(Kt) andM1(Kt); as was in the case of logarithmic

utility.

Lastly, we check the consistency of the supposition at the beginning, namely that the period is

ruled by the DIM. That is, indeed givenWt; the agents prefer the disincentivizing menu to the in-

centivizing one, V 0(Wt; Rt+1) � V 1(Wt; Rt+1): In the DIM, the next period�s interest rate Rt+1 =

R0(Wt): Therefore, the DIM indeed rules if and only if V 0(Wt; R
0(Wt)) � V 1(Wt; R

0(Wt)): We

de�ne W 01 as the root of

V 0(W;R0(W )) = V 1(W;R0(W )): (29)

As was in the case of logarithmic utility, the DIM delivers the bene�t of full insurance and that

of perfect inter-temporal consumption smoothing, which the agents prefer when their wealth,

W , is large. Therefore, the DIM rule in a period t if Wt > W
01:

We proceed to the examination of the IM.

4.2 The IM: When It Rules and the Dynamics in It

Suppose a period t is in the IM. Then all young agents invest eI0(Wt; Rt+1), which, mathemati-

cally, is the solution for I of (12), the optimization problem they face if choosing the incentivizing

menu. Their projects succeed independently with probability p; which is higher than q as they

are working hard. The next period capital stock is thus Kt+1 = peI1(Wt; Rt+1):Since the interest

rate is pinned down by capital stock through R = A�K��1; in the IM

Rt+1 = A�(peI1(Wt; Rt+1))
��1: (30)

This equation determines the equilibrium interest rate, Rt+1; as a function of Wt; which is

denoted by R1(Wt): And de�ne

I1(W ) � eI1(W;R1(W )):
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This determines the scale of investment as a function of wealth in the IM. Note that both the

equilibrium interest rate and the equilibrium investment scale are also functions of � and p:

When it is necessary to make this point explicit, we use notations R1(W ; �; p) and I1(W ; �; p):

As Wt = A(1� �)K�
t ; the dynamics of capital stock in the IM is then:

Kt+1 = pI
1(A(1� �)K�

t );

with its steady state, K1; determined by

K1 = pI1(A(1� �)(K1)�):

As was in the case of logarithmic utility, in the IM the agents su¤er the problem of restrained

inter-temporal consumption smoothing: however large W is, the amount of wealth that can be

passed on to the future in the IM is bounded from above:

Lemma 6 With property P, in the IM limW!1 I
1 < 1; limW!1cCg < 1; and limW!1

cCb <
1:

The intuition is the same as was given in the discussion following Lemma 3. The need to

provide incentives imposes the constrains not only upon the extent of insurance the agent can

obtain, but, more importantly, also upon the amount of wealth they can pass on to the future.

Lastly, we check the consistency of the supposition at the beginning, namely that the period

is ruled by the IM. That is, indeed givenWt; the agents prefer the incentivizing menu to the dis-

incentivizing one, V 0(Wt; Rt+1) � V 1(Wt; Rt+1): In the IM, the next period�s interest rate Rt+1 =

R1(Wt): Therefore, the DIM indeed rules if and only if V 0(Wt; R
1(Wt)) � V 1(Wt; R

1(Wt)): De�ne

W 10 as the root of

V 0(W;R1(W )) = V 1(W;R1(W )): (31)

Given the two problems of partial insurance and restrained inter-temporal consumption

smoothing, at a period the IM is indeed the equilibrium mode only if Wt < W
10:

4.3 The Dynamics and Multi-Period Cycles

For the case of logarithmic utility, W 01 = W 10 = cW , because there the comparison between
V 0(W;R) and V 1(W;R) is independent of R. But in general, W 01 6= W 10; because the equilib-

rium interest rate under IM and DIM are di¤erent. For W 01; the equilibrium concerned is the
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DIM where the interest rate in it is R0(W ). By contrast, for W 10; the equilibrium concerned is

the IM where the interest rate is R1(W ). And R0(W ) 6= R1(W ) even for the case of logarithmic.

The corresponding thresholds in capital stock, K01 and K10; are pinned down by the thresh-

olds in wealth, W 01 and W 10; through

K = (
W

A(1� �))
1
� : (32)

Then, the DIM rules at period t if Kt > K
01, and the IM rules at period t if Kt < K

10:

As was in the case for logarithmic utility, the properties of the dynamics of capital stock in

the economy are determined by the relative positions between the steady state in the DIM (K0)

and that in the IM (K1) and K01 and K10. Again, for the relative position between K0 and K1;

we can manipulate �: When � ! 0, the dynamics of the IM and its steady state converge to the

counterparts of the DIM, with the probability of success being p instead of q, that is,

lim
�!0

M1(Kt; �; p) = M0(Kt; p)

lim
�!0

K1(�; p) = K0(p):

By Lemma 5, M0(Kt; p) > M
0(Kt; q) and K0(p) > K0(q). Therefore, when � is close to 0,

M1(Kt) sits above M0(Kt) and K1 sits to the right of K0, as was in the case for logarithmic

utility and illustrated by �gure 1.

To accommodate the two thresholds, K01 and K10, we manipulate A, as we did in the

logarithmic case. By Lemma 5, K0 is in the order of (Aq)
1

1�� : K1 also increases with A. What

we need then is:

Lemma 7 Under Assumption (26), the two thresholds, K01 and K10; decrease with A:

By the lemma and the fact that K0 and K1 both increase with A, when A is in a medium

range, K01 and K10 stand between the two steady states, K0 and K1: That is, K0 < K01; K10 <

K1:

The last thing to resolve is the position of K01 relative to K10: Unlike the case of logarithmic

utility, K01 = K10 no longer holds. We have thus two cases to consider, depending on the relative

position between the two thresholds.

Case 1: K10 > K01 and Multiple-Period Cycles
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For this case, in a period t such that K10 > Kt > K01, both the IM and the DIM are an

equilibrium at the period. In the paper, we use the following way of selecting equilibrium, which

could be called Inertia Standard : when both the IM and the DIM are an equilibrium in a given

period, the mode of equilibrium in this period follows that in the last period, for example, if the

equilibrium in the last period is the DIM, then the equilibrium in this period is the DIM. This

inertia can be justi�ed by an inter-generation interaction which is not explicitly modelled in the

paper. The idea is that if the young agents of the last period live in an atmosphere of shirking

and enjoying life, then they role-model the young agents of this period into the same life style

so long as it is sustainable (i.e. the DIM is an equilibrium); and similarly for the IM.

If this inertial standard of selecting equilibrium is applied, then the steady state of dynamics

features intrinsic cycles. Furthermore, unlike in the case of logarithmic utility, the cycles could

now run up and down for many periods, rather than one period, as is illustrated in the �gure

below.

Figure 5: A Steady State Cycle over Five Periods: K1
1 ; K

1
2 ; K

0
1 ; K

0
2 ; and K

0
3

Formally, the steady state is a pro�le of fK1
j ; K

0
ngj=1;2;::J ;n=1;2;:::;N de�ned by the following

two groups of conditions:

A. The inequality conditions: K1
1 < K

1
2 < ::: < K

1
J < K

10 < K0
1 and K

0
1 > K

0
2 > ::: > K

0
N >

K01 > K1
1 ;
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B. The equality conditions:

K1
1 = M0(K0

N)

K1
j = M1(K1

j�1) for j = 2; :::; J

K0
1 = M1(K1

J)

K0
n = M0(K0

n�1) for n = 2; :::; N

That is, the cycle consists of a J-period rising path in the IM and a N -period declining path

in the DIM, hence overall running over J +N periods.

To state a condition for such a cycle to exist, let TM1 denote T times compound of function

M1; that is, TM1(�) =M1(M1:::M1(�):::)) for T compounds. Similarly is TM0 de�ned. Note that

for any K > K01, there exist a unique positive integer N(K) such that NM0(K) < K01 <N�1

M0(K): since K01 > K0; this K > K0; thus TM0(K) decreases with T and converges to K0

with T ! 1; and therefore, at a unique time N; the sequence fTM0(K)gT=0;1;:: just pass K01:

Similarly, for any K < K10; there exist a unique positive integer J(K) such that JM1(K) >

K10 >J�1 M1(K): Note that N is non-decreasing with K: the further the staring point is away

fromK01; the more steps needed to have the sequence passK01: Similarly, J(K) is non-increasing

with K: Therefore, N(K10) � N(M1((K10)) and J(K01) � J(M0(K01)):

With these notations, the condition is

N(K10) = N(M1((K10)) � N� (33)

J(K01) = J(M0(K01)) � J� (34)

Condition (33) says that if the economy just comes out of the IM and enters the DIM (thus its

capital stock is between K10 and M1((K10)), then always after exactly N� periods its capital

stock falls below K01 and thus it enters the IM again. Similar, Condition (34) says that if the

economy just comes out of the DIM, then always after exactly J� periods it enters the DIM

again.

Proposition 5 If both M0 and M1 are concave with K and conditions (33) and (34) hold,

then the pro�le fK1
j ; K

0
ngj=1;2;::J�;n=1;2;:::;N� de�ned by conditions A and B above exists, that is,

there is a cycle of J� + N� periods. Moreover, it is of multi-period if K10 > M1(K01) or if

K01 < M0(K10):
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The reason for the latter part of the proposition is that if K10 > M1(K01); then by de�nition

of J(K01); we have J� � 2; namely the cycle runs for more than one period in the IM. Similarly,

if K01 < M0(K10), then the cycle runs for more than one period in the DIM.

Case 2: K10 < K01 and the Mixed Mode

For this case, whenKt is betweenK10 andK01, neither the DIM nor the IM is the equilibrium.

The period is thus in the mixed mode where a proportion 
 of young agents shirk and 1� 
 of

them work hard, with 0 < 
 < 1: The dynamics are illustrated by the �gure below.

Figure 6: The Dynamics when K10 < K01

Note that the Kt+1 could decrease with Kt in the mixed equilibrium, because the proportion

of the agents who work hard could decrease with it. There are no cycles in the steady state, but

in the process of convergence the economy oscillates.

5 Conclusion

The market economies feature volatility, cyclical movements, and instability. The paper demon-

strates that these �uctuations may be triggered by the switches in contractual arrangements

through which the agents obtain insurance and handle the incentive problems in connection

with moral hazards. When the economic conditions change, agents have incentives to write a

new mode of contracts for insurance and incentives, which, through its e¤ects on investment and
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its interactions with labour and capital markets, brings about new market conditions. As such,

cycles may endogenously arise from the intrinsic dynamics of the economy.

Furthermore, the paper �nds that a necessary condition for such cycles to arise is that the

productivity level of the economy is in a medium range, which forces the economy to change the

contractual mode before it reaches the steady state with the given mode. By contrast, if the

productivity is high enough, the economy, even though for the initial periods its agents might

have to work hard, will eventually converge to the steady state in which the agents all enjoy

leisure and full insurance.

Appendix A: Interpretation of Mutual Insurance

Here we demonstrate that our modeling of mutual insurance captures both insurance and hedging

in real life, which are the two main ways of obtaining insurance.

First, even though the mutual insurance contracts in the paper demand no ex ante insurance

premium, they are equivalent to real-life insurance policies. Suppose, as in a real-life insurance

contract, an agent in our paper pays to the MIC an insurance premium, Z; ex ante, namely out

of his wage income in the �rst period, and he thus only has I�Z of his own fund for investment;

in exchange, the MIC repays him �Z units of the consumption good when his project fails and

nothing when it succeeds. The MIC will invest their income of premiums in the projects of

young agents because they are the only asset used for transferring wealth over time.8 Thus, in

equilibrium Z will go back to the agent�s project. The investment by the MIC demands the fair

return rate, 1=s; where s is the probability of success. From this agent, the MIC gets 1=s � Z

units of capital, namely 1=s � Z � R units of the consumption good, when his project succeeds,

and pays out to him �Z units of the consumption good when it fails. The zero pro�t condition

thus commands that s� (1=s �Z �R) = (1�s)��Z: Thus � = R=(1�s): Then, the consumption

of the agent is

Cg = (I � 1=s � Z)R; Cb = �Z = R=(1� s) � Z:

If we let L � R=(1�s) �Z; then the agent exactly gets the same consumption pro�le, given by (4)

and (5), as he would get from mutual insurance contract in our paper (L; �L), with � = (1�s)=s.
8Adding a risk free asset will not change anything because its return rate will be equalized to the marginal

return rate of the investment in the projects.
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Second, our modelling of mutual insurance also captures the gist of hedging. In the paper

hedging could be carried out with following "futures" contracts. Out of the I units of investment,

the agent hedges Z units, only allowing the remained I � Z subject to the idiosyncratic risk

of his project, and the future contract is that no matter what happens to his project, he gets

from the MIC Z 0 units of capital. Since the project succeeds with probability s, the zero pro�t

condition commands Z 0 = s �Z: Thus, with such a future contract, the consumption of the agent

is

Cg = (I � Z + Z 0)R = (I � (1� s)Z)R; Cb = Z 0R = sZR:

If we let L � sZR; then this replicates the consumption pro�le with mutual insurance contract

(L; �L) of our paper, given by (4) and (5).

Appendix B: Proofs

Claim A1: When U(�) = log(�); V 1(W;R) > V S(W;R) if (1�q)p
(1�p)q � e

1
p�q :

Proof : It is su¢ cient to show that if (1�q)p
(1�p)q > e

1
p�q ; the solution of problem (10) automatically

satis�es the IC constraint, (11): If so, then both this problem and problem (12) can be uni�ed

as:

V U(W;R; �) � max
I;L

log(W � I) + �p log(IR� L�) + �(1� p) logL� �I, s.t.(11);

V U(W;R; � = 1�p
p
) = V 1(W;R) and V U(W;R; � = 1�q

q
) = V S(W;R); and as V U(W;R; �)

decreases with � by Envelop Theorem, V 1(W;R) > V S(W;R):

The �rst order conditions of problem (10) are:

�pR

IR� L1�q
q

=
1

W � I + � (35)

1

IR� L1�q
q

=
1

L
� (1� p)q
(1� q)p: (36)

The second equation implies that L = (IR � L1�q
q
) � (1�p)q

(1�q)p , L = IR � (1�p)q
(1�q)p � L �

1�p
p
,

L � 1
p
= IR � (1�p)q

(1�q)p , L = (1 � p)IR � q
1�q : Therefore, IR � L

1�q
q
= pIR: Substitute it into the

left hand side of (35) and note that its right hand side is greater than �: We have: �
I
> � ,

1 >
�I

�
: (37)
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On the other hand, in case of logarithmic utility, the IC constraint, (11), is

log
IR� L1�q

q

L
� �I

�(p� q) :

By (36),
IR�L 1�q

q

L
= (1�q)p

(1�p)q , and by (37),
1
p�q >

�I
�(p�q) : Therefore, the above inequality, namely,

the IC constraint, is implied by log (1�q)p
(1�p)q >

1
p�q ,

(1�q)p
(1�p)q > e

1
p�q : Q.E.D.

In general, compare between problem (10) and problem (12), the former concerning the agent

working hard under the disincentivizing menu, f(L; (1� q)==qj0 � Lg; the latter concerning the

agent under the incentivizing menu, f(L; (1 � q)==qjL subject to (11)g: The di¤erence is in

the following two aspects, one to the advantage of the disincentivizing menu, the other to its

disadvantage, but both related to the fact that with the menu the agent is paying the premium

(1 � q)==q: The disadvantage is that this premium is too high and not fair for the agent if he

works hard: It is based on the probability of success being q, but his actual probability of success,

given he works hard, is p > q: On the other hand, the advantage is that exactly because he is

paying this premium, the MIC that he contracts with does not bother to impose an upper bound

upon L, that is, the optimization problem (10) is not subject to the IC constraint, (11), whereas

problem (12) is.

Given that the agent wants to work hard, the incentivizing menu dominates the disincen-

tivizing menu, namely, V 1(W;R) > V S(W;R); if � is small enough or p � q is large enough.

On the one hand, for any q < p; if � = 0, then, by the comparison expounded above, the IC

constraint is never binding, and thus the disincentivizing menu loses its advantage of not being

subject to the constraint, but su¤ers the disadvantage of paying the too high premium. On the

other hand, given �, if p � q is large enough, then the cost of paying the too high premium is

large enough, and in particular if q ! 0, the premium 1�q
q
!1, then the cost goes to in�nity.

Thus in both cases, the disincentivizing menu is dominated.

Proof of Lemma 1:

Proof. We prove the lemma by solving problem (9). The problem is replicated below:

V 0(W;R) � max
I;L

U(W � I) + �qU(IR� 1� q
q
L) + �(1� q)U(L):
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The �rst order conditions (FOCs) of the problem are:

q � 1� q
q

� U 0(IR� 1� q
q
L) = (1� q) � U 0(L) (38)

U 0(W � I) = �qRU 0(IR� 1� q
q
L): (39)

Equation (38) captures the consumption smoothing across the two future contingencies.

Equation (39), on the other hand, captures the inter-temporal consumption smoothing.9

By (38), IR� 1�q
q
L = L; that is, Cg = Cb, as the left hand side (LHS) is Cg; the right hand

side (RHS) Cb. From the equation, L = qIR:

With L = qIR; (39) becomes (14).

Proof of Lemma 2:

To prove the lemma, we �rst �nd the �rst order conditions of problem (12) for a general

utility function as below, which will be used to prove some lemmas later. Then we apply them

to the case of log utility.

Lemma A1: For the solution of problem (12), the IC constraint is binding, that is,

U(IR� L1� p
p
)� U(L) = �I: (40)

Furthermore,

1

U 0(Cg)
= R[

q�(1� �)
U 0(W � I) +

�

�
] (41)

1

U 0(Cb)
=

pR

1� p [
(1� q)�(1� �)
U 0(W � I) � �

�
] (42)

where Cg = IR� L1�p
p
and Cb = L; and

� � 1� r

pR
(43)

r � (
p

�U 0(IR� L1�p
p
)
+

1� p
�U 0(L)

)U 0(W � I): (44)

Moreover,

0 < � < 1: (45)

9Hence, the choice of I, the scale of investment projects, essentially mirrors the decisions on saving.
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Proof: Let � be the multiplier for the IC constraint. Then the �rst order conditions of the

problem for (I; L; �) include:

@L
@I

= �U 0(W � I) + (�p+ �)RU 0(Cg)� (� + ��) = 0
@L
@L

= �(�p+ �)1� p
p
U 0(Cg) + (�(1� p)� �)U 0(L) = 0:

First, from @L
@L
= 0, we �nd

� =
�p(1� p)(U 0(L)� U 0(Cg))
(1� p)U 0(Cg) + pU 0(L) : (46)

Since Cb = L and Cb < Cg as implied by the IC constraint, we have � > 0: Therefore, the IC

constraint is binding, which gives rise to (40). Intuitively, the risk averse agents, when facing

the fair insurance price, want to smooth consumption across the two contingencies as much as

possible, until the IC constraint is binding.

Second, from (46), �p+ � = �pU 0(L)
(1�p)U 0(Cg)+pU 0(L) : And �+ ��j�=��(p�q) =

��
(1�p)U 0(Cg)+pU 0(L)(p(1�

q)U 0(L)� q(1� p)U 0(Cg)): Substitute all these into @L
@I
= 0; rearrange, and we �nd:

U 0(W � I) + ��(p(1� q)U
0(L)� q(1� p)U 0(Cg))

(1� p)U 0(Cg) + pU 0(L) =
�pRU 0(L)U 0(Cg)

(1� p)U 0(Cg) + pU 0(L)

Multiple both sides by (1�p)U 0(Cg)+pU 0(L)
�U 0(L)U 0(Cg) ; rearrange, and remember Cg = IR�L1�p

p
; then we

get:

pR +
q(1� p)�
U 0(L)

=
p(1� q)�

U 0(IR� L1�p
p
)
+ (

p

�U 0(IR� L1�p
p
)
+

1� p
�U 0(L)

)U 0(W � I): (47)

Equation (47) is quite complex. The way to handle it is to split it into two equations by

introducing r as is de�ned by (44), which then reproduces the following Rogerson�s equation (see

Rogerson 1985):
1

U 0(C)
=
1

�r
E

1

U 0(C+)
;

where C+ denotes the random variable of the old period consumption. Expressed with �; Roger-

son�s equation and (47) respectively becomes

�(1� �)pR
U 0(C)

=
p

U 0(Cg)
+
1� p
U 0(Cb)

�pR =
p(1� q)�
U 0(Cg)

� q(1� p)�
U 0(Cb)

(48)

Both equations are linear with 1
U 0(Cg) and

1
U 0(Cb) : Solve them out and we have (41) and (42).
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Finally, by de�nition, r > 0, which implies � < 1:Moreover by (48), �pR = p(1�q)�
U 0(Cg) �

q(1�p)�
U 0(Cb) >

�
U 0(Cg)(p(1� q)� q(1� p)) =

�
U 0(Cg)(p� q) > 0: Therefore, 0 < � < 1: Q.E.D.

Now we come to prove Lemma 2 below.

Proof. (i) When U(�) = log(�), then, U 0(C) = 1
C
: By (44), r = I

�(W�I)pR and by (43), � =
W� 1+�

�
I

W�I : With this �; �(1��)
U 0(W�I) = �(1� �)(W � I) = I: Substituting this into (41) and (42), we

have

Cg = R(qI +
�

�
) (49)

Cb =
pR

1� p [(1� q)I �
�

�
]: (50)

Substitute these two equations into the binding IC constraint, (40), which, with logarithmic

utility, is equivalent to Cg

Cb
= e�I : Then, the agents� optimal choice of I at given R, namelyeI1(W;R); is determined by:

1� p
p

�
qI + �

�

(1� q)I � �
�

= e�I ;

with � =
W� 1+�

�
I

W�I : Since � is independent of R, so is eI1(W;R):
By (50) Cb = pR

1�p [(1�q)I�
�
�
]; by the binding the IC constraint C

g

Cb
= e�I

1
; and �p��� = �q�:

Substitute all these into the formula for V 1(W;R), and we �nd:

V 1(W;R) = logf(W � I1)[ p

1� p((1� q)I
1 � �

�
)]�e�q�I

1

R�g:

(ii): To show eI1(W ) is increasing, let F (I; �) � qI+�
�

(1�q)I��
�

. Then eI1(W ) is implicitly de�ned
by F (I; �(I;W ))� p

1�pe
�I = 0; with �(I;W ) =

W� 1+�
�
I

W�I : By implicit function theorem, eI10(W ) =
�F��W

FI+F��I�
p

1�p �e
�I . Note that F� > 0, FI < 0, �I < 0 (for I < W ); and �W > 0: Therefore, the

nominator �F��W < 0 and the denominator FI + F��I � p
1�p�e

�I < FI + F��I < F��I < 0. It

follows that the fraction for eI10(W ) is positive.
To show eI1(W ) < �

1+�
W; note that we saw � > 0 in (45), and for log utility, � =

W� 1+�
�
I

W�I .

And certainly W > I (i.e the young period consumption C = W � I > 0): Altogether we have

W � 1+�
�
eI1 > 0, eI1 < �

1+�
W .

Proof of Proposition 1:
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Proof. To prove the existence of the root of (20), it su¢ ces to show that (a) when W ! 1,

the left hand side (LHS) of (20) dominates its right hand side (RHS); and (b) when W ! 0, the

RHS dominates the LHS.

(a) is simple. When W ! 1, by Lemma 3 (proved below), I1 goes to some �nite I1.

Therefore, the RHS increases with W in the speed of W; while the LHS increases in the speed

of W 1+� which dominates the RHS.

We show (b) in four steps. Step 1, by Lemma 3, when W ! 0, I1 < �
1+�
W also goes to 0.

Step 2, we prove limW!0
�
I1
= �(p�q): As I1 ! 0; the RHS of (18), which determines I1(W );

converges to 1. By this equation, then, � � �
I1
converges to the root of

1� p
p

�
q + �

�

(1� q)� �
�

= 1;

which is �(p� q):

Step 3, as I1 ! 0 and �
I1
! �(p � q); we have � ! 0: Since � =

W� 1+�
�
I

W�I , it follows that

I1 = �
1+�
W + o(W ):

Step 4, since e�q�I
1 � 1; (1� q)I1� �

�
j �
I1
��(p�q) � (1� p)I1 and I1 �

�
1+�
W; the RHS of (20),

(W � I1)[ p
1�p((1� q)I

1 � �
�
)]�e�q�I

1 � W 1+�p� ��

(1+�)1+�
> W 1+�q� ��

(1+�)1+�
, the LHS term.

Therefore, the root of (20), cW; exists. Moreover, cW is independent of A, because I1(W );

determined by (18) is independent of A and thus so is the whole equation of (20).

The argument above also shows that if W > cW; the LHS of (20) dominates the RHS and
thus V 0(Wt; Rt+1) > V 1(Wt; Rt+1); and if W < cW; the RHS of (20) dominates the LHS and
thus V 0(Wt; Rt+1) < V

1(Wt; Rt+1):

Proof of Lemma 3:

Proof. (a): We showed in Lemma 2 that eI1(W ) is increasing. Thus limW!1 eI1(W ) exists and is
either �nite or in�nity. Suppose eI1 !1. Then, since � is always between 0 and 1, the left hand

side of (18) converges to 1�p
p
� q
1�q < 1, whereas the right hand side goes to +1, a contradiction.

Therefore, limW!1 eI1 < 1: It follows that limW!1 � = limW!1
W� 1+�

�
I

W�I = 1: Then equation

(18) converges to
1� p
p

�
qI + 1

�

(1� q)I � 1
�

= e�I ; (51)

which thus determines I1 � limW!1 I
1.
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(b): Both Cg and Cb increase with W . Thus Cg < limW!1C
g and Cb < limW!1C

b: By

(49) Cg = R(qI + �
�
) and then limW!1C

g = R1(qI1+
1
�
); where R1 is the interest rate in the

next period when all the agents invest I1 and work hard. Thus it is a positive, �nite number.

Similarly, by (50) Cb = pR
1�p [(1� q)I �

�
�
] and then limW!1C

b = pR1
1�p [(1� q)I1 �

1
�
]:

Proof of Proposition 2:

Proof. (i) All the claims concerning M0(K) = q�(1��)A
1+�

K� is self evident: it is increasing and

concave and has a unique �xed point. Only the claims concerning M1(K) needs proof. Note

M1(K) = pI1 � W (K); where W (K) = A(1 � �)K� is increasing and concave and I1(W ) is

determined by (18). Since a compound of increasing functions is increasing and a compound of

concave functions is concave, in order to prove M1(K) is increasing and concave, it su¢ ces to

show I1(W ) is increasing and concave. That it is increasing has been proved in Lemma 2. We

show it is concave here. That is equivalent to that its inverse function W (I); which is found out

explicitly below, is convex. As � = (W � 1+�
�
I)=(W � I); we �nd

W =
(1 + �)=� � �

1� � I � h(�)I;

where � as a function of I is found from (18):

�(I) = �
(1� q)�(I)� q
1 + �(I)

I � �g(�)I; (52)

with

�(I) � p

1� pe
�I :

Claim: f(x)x is convex over x > 0 if f 0 > 0 and f 00 > 0:

Proof : [f(x)x]00 = f 00x+ 2f 0 > 0 if f 0 > 0 and f 00 > 0:

By the claim, to show W (I) is convex, it su¢ ces to show h(�(I)) is increasing and convex,

which, because h(�) � (1+�)=���
1�� is increasing and convex with � over � 2 (0; 1), follows from

�(I) being increasing and convex, which is shown in order below.
�0(I)
�
= g + I � g(�(I))0 > 0 since g(�(I))0 = g0(�)�0(I) = 1

(1+�)2
� �� > 0:

�00(I)
�
= I � [g00(�)(�0(I))2+ g0(�)�00(I)]+2g0(�)�0(I)j�0=��;�00=�2� = I � [g00(�)(��)2+ g0(�)�2�]+

2g0(�)�� > 0j2g0=�(1+�)g00>0 , I � [ �2
1+�
(��)2 + �2�] + 2�� > 0, I � [ �2

1+�
��+ �] + 2 > 0,

�I <
2(�+ 1)

�� 1 : (53)
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To prove this inequality, note that by (52) and � < 1; we have �I < 1+�
(1�q)��q . Therefore, (53)

follows from 1+�
(1�q)��q �

2(�+1)
��1 , �� 1 � 2(1� q)�� 2q , 0 � (1� 2q)(1+�), which holds true

if q � 0:5:

We now prove M1(K) has a unique non-zero �xed point, or equivalently, f(K) � M1(K)�

K has a unique non-zero root. To show its existence, note that limK!1 f(K) < 0 because

limW!1 I
1 < 1: On the other hand, limK!0 f(K) > 0: in the proof of Proposition 1 we show

I1 = �
1+�
W+o(W ) atW � 0; then atK � 0; f(K) = pI1�W (K)�K � p �

1+�
�A(1��)K��K >

0, p �
1+�

� A(1� �)K��1 > 1; which holds true since K��1 !1 if K ! 0. The uniqueness of

non-zero root comes from the fact that any concave function has at most two roots and f(K) is

concave (since M1 is concave) and another root of f is 0.

The global stability of the steady state in the DIM or the IM follows from the uniqueness of

the steady state and concavity of the dynamics.

(ii): It is straightforward that K0 = (�(1��)qA
1+�

)
1

1�� increases with A. By the argument for

the unique existence of K1 above, f(K) > 0 for K < K1 and f(K) < 0 for K > K1; which

implies f 0(K1) < 0:Then, applying the implicit function theorem toM1(K;A)�K = 0, we have

dK1=dA = �@M1

@A
=f 0(K1) > 0, since @M1

@A
= p � dI1=dW � (1� �)K� > 0:

Proof of Lemma 4:

Proof. Let us establish the relative position of between K0 and K1 �rst. When � (namely �)

equals 0, the IC constraint will not be binding and the dynamics of the IM will collapse into

the dynamics of the DIM, except that the probability of success is p instead of q. Therefore,

lim�!0M
1(Kt; �; p) =M

0(Kt; p) and lim�!0K
1(�; p) = K0(p). When U(�) = log(�),M0(Kt; q) is

given by (22) and K0(q) by (23), both increasing with q. And we knowM1(Kt; �; p) and K1(�; p)

are both continuous with �: Thus,

lim
�!0

M1(Kt; �; p) =
�(1� �)pA
1 + �

(Kt)
� > M0(Kt; q); (54)

lim
�!0

K1(�; p) = (
�(1� �)pA
1 + �

)
1

1�� > K0(q): (55)

Furthermore, the higher is Kt, the slower is the convergence in (54), because a higher Kt gives

advantage to the DIM and thus makes M1(Kt; �; p) less likely sit above M0(Kt; q): In mathe-

matical terms, if jM1(K; �; p) � M0(K; p)j < " at a given K when � < �; then for Kt < K;

jM1(Kt; �; p)�M0(Kt; p)j < " when � < �. Therefore, given a bound K, say K0(p), there exists

35



�; such that if � < �; M1(Kt; �; p) > M
0(Kt; q) for any Kt < K and K1(�; p) > K0(q):

Now we show how to have bK sit between K0 and K1. All the three are functions of A.

By (23) K0 = (�(1��)qA
1+�

)
1

1�� ; by (21) bK = (
cW

A(1��))
1
� ; with cW independent of A; and K1 as a

function of A is implicitly de�ned by (25).

Let A be the root of bK = K1; namely,

(
cW

A(1� �))
1
� = K1(A):

And A be the root of bK = K0; namely,

(
cW

A(1� �)
)
1
� = (

�(1� �)qA
1 + �

)
1

1�� :

Then we have two observations:

First, both roots exist uniquely, because by Proposition 1, bK(A) decreases with A in the

order of A�
1
� ; whereas by K0(A) increases with A in the order of A

1
1�� and K1(A) also increases

with A and to in�nity with A!1:

Second, A < A, because K1 > K0:

Therefore, if A < A < A; then due to the decreasing of bK with A, bK(A) > bK(A) > bK(A);
equivalent to K1 > bK > K0 by the de�nition of A and A.

Proof of Proposition 3 :

Proof. The proposition depends on following lemmas, which we prove �rst before proceeding

to the proof of the proposition.

Lemma P1: If Kt+1 > bK > Kt; then Kt+2 < bK:
Lemma P2: If Kt+1 < bK < Kt; then Kt+2 > bK:
Proof: For Lemma P1, note that as bK > Kt, the dynamics applicable toKt are the dynamics

of the IM, M1; and hence Kt+1 = M
1(Kt) and as Kt+1 > bK; the dynamics applicable to Kt+1

are M0 and hence Kt+2 = M0(Kt+1): Therefore, Kt+2 = M0 �M1(Kt), where M0 �M1(�) �

M0(M1(�)) is the compound of the two functions. M0 �M1(�) is increasing, because both M0(�)

and M1(�) are increasing. As Kt < bK; therefore, Kt+2 =M
0 �M1(Kt) < M

0 �M1( bK): Then, to
prove Kt+2 < bK; it su¢ ces to prove that M0 �M1( bK) < bK. For this inequality, just note that
K is the unique and stable steady state of dynamics xt+1 = M0 �M1(xt) and bK > K and sits

on the declining path, which altogether imply M0 �M1( bK) < bK.
36



For Lemma P2, if Kt+1 < bK < Kt; by a parallel argument, Kt+2 = M
1 �M0(Kt); and, as

Kt > bK; we haveKt+2 > M
1�M0( bK): To prove the lemma, it su¢ ces to proveM1�M0( bK) > bK:

This inequality holds true, similarly, because K is the unique steady state of M1 �M0(�) andbK < K and thus sits on the rising path. Q.E.D.

We now come to prove the proposition. We consider only the case where K0 < bK; the case
where K0 � bK can be proved in a parallel way. Given K0 < bK < K1; the capital stock �rst

follows the dynamics of the IM and increasingly converges to the steady stateK1. SinceK1 > bK;
there must exists a time T such that KT+1 > bK > KT , namely, the contractual regime switches

at T . Then, by Lemma P1, KT+2 < bK: We have already shown that bK < KT+1. Therefore,

KT+2 < bK < KT+1: Then, by lemma P2, KT+3 > bK, which together with bK > KT+2 in turn,

by Lemma P1, implies KT+4 < bK: By this line of reasoning, we have fKT ; KT+2; KT+4; :::g

on the left hand side of bK and fKT+1; KT+3; KT+5; :::g on its right hand side. Moreover, the

former sequence, fKT+2ngn=0;1;2;::: follows the dynamics of M0 �M1(�) which has a unique and

stable steady state, K: Therefore, KT+2n ! K with n ! 1: Similar, the latter sequence,

fKT+2n+1gn=0;1;2;::: follows the dynamics of M1 �M0; which has a unique and stable steady state

K. Therefore, KT+2n+1 ! K with n!1:

Proof of Proposition 4 :

Proof. The boom is in the DIM and thus by (16), I = �
1+�
W , while the bust in the IM and

thus by Lemma 2(ii) I < �
1+�
W . Thus, I=W = �

1+�
> I=W; which is (ii). For (i), I > I follows

from W > W; which follows from K > K: Moreover, since the boom is followed by the bust, we

have qI = K; and the bust is followed by the boom, thus pI = K: Therefore qI = K < K = pI:

Proof Lemma 5 :

Proof. For the �rst assertion, just note that dKt+1

dKt
= dKt+1

dI0
� dI0
dW
� dW
dKt

and all the derivatives on

the RHS are positive.

For the second assertion: Note that eI0(Wt; Rt+1) for a general utility function is determined

by (14), which, with Wt = A(1� �)K�
t and Rt+1 = A�(Kt+1)

��1; is equivalent to

U 0(A(1� �)K�
t �

Kt+1

q
) = �qA�(Kt+1)

��1U 0(A�(Kt+1)
�):

Let F (�) be the inverse function of U 0(�). Then, A(1��)K�
t =

Kt+1

q
+F (�qA�(Kt+1)

��1U 0(A�(Kt+1)
�)).
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With U 0(c) = c�� and thus F (y) = y�
1
� ; it follows that

A(1� �)K�
t =

Kt+1

q
+ (�q)

� 1
� (A�)

��1
� (Kt+1)

�+ 1��
� (56)

If Kt ! 0; then Kt+1 ! 0 and the the RHS of (56) is in the order of � = min(1; � + 1��
�
):

Obviously � > �: Therefore, at Kt � 0; Kt+1 � (Kt)
�
� and thus dKt+1

dKt
= (Kt)

�
�
�1 !1:

The third assertion, @Kt+1=@q > 0; is derived by applying the implicit function theorem to

(56).

For the last assertion, substitute Kt+1 = Kt = K
0 into (56) and we �nd the steady state K0

is determined by

A(1� �)(K0)� =
K0

q
+ (�q)

� 1
� (A�)

��1
� (K0)�+

1��
� :

Divided on both sides by (K0)� and with x = (K0)1��

�qA
and proper rearrangement, the equation

is equivalent to
1� �
�

� x = (�)� 1
�x

1
� :

There is a unique solution of x, because the LHS decreases with x while the RHS in-

creases with it. The solution depends on �; �, and �; but is independent of q and A, de-

noted by x(�; �; �): Then, (K0)1�� = x(�; �; �)�qA , K0 = (x(�; �; �)�)
1

1�� (qA)
1

1�� �

T (�; �; �)(qA)
1

1�� : Certainly, x(�; �; �) > 0: For the upper bound, note that by the equation,
1��
�
� x > 0, x < 1��

�
, K0 < (A(1� �)q)

1
1�� :

Proof of Lemma 6:

Proof. As I1(W ) = eI1(W;R1(W )); to prove the lemma, below in (57) of Lemma A9, we give an
upper bound on eI1(W;R); the agents�optimal choice of I when choosing the incentivizing menu
under given W and R.

The inequality (57) cannot hold if limW!1 I
1 =1. In the IM, R1 = A�(pI1)��1: If I1 !1,

then R1 ! 0; and with W ! 1; Cb is lower bounded, and so is 1
U 0(Cb) , which implies that

(U � D)0( 1
U 0(Cb)) is upper-bounded since (U � D)

0 is decreasing as U � D is concave. These

altogether imply that (U � D)0( 1
U 0(Cb)) �

R1

�(1�p) ! 0 and cannot be bigger than �I1 if it goes to

in�nity, a contradiction to (57). Hence, we prove the �rst assertion of the proposition.

As for the rest part, note that by (4) Cg < I1R1 and Cb < Cg < I1R1: Since limW!1 I
1 is

�nite, limW!1R
1 is positive and �nite, and therefore so are limW!1C

g and limW!1C
b:
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Lemma A9:

�eI1(W;R) < (U �D)0( 1

U 0(Cb)
) � R

�(1� p) : (57)

Proof. Let D(�) be the inverse function of 1
U 0(�) : Then, from (41) and (42), we have Cg =

D( q�(1��)R
U 0(W�I) +

R�
�
) and Cb = D( p

1�p(
(1�q)�(1��)R
U 0(W�I) � R�

�
)): Substitute them into the binding IC

constraint, U(Cg)� U(Cb) = �I, and we have

U �D(q�(1� �)R
U 0(W � I) +

R�

�
)� U �D( p

1� p(
(1� q)�(1� �)R
U 0(W � I) � R�

�
)) = �I:

If f is concave and increasing and � > 0, then f(x+�)� f(x) < f 0(x)�: Apply this inequality

to the LHS of the equation above and let Q � �(1��)R
U 0(W�I1) , so Q > 0. Then, �I < (U �D)

0( 1
U 0(Cb)) �

[(q� p(1�q)
1�p )Q+

R�
�
(1+ p

1�p)] = (U �D)
0( 1
U 0(Cb)) � [

q�p
1�pQ+

R�
�(1�p) ]jq<p < (U �D)

0( 1
U 0(Cb)) �

R�
�(1�p) j�<1 <

(U �D)0( 1
U 0(Cb)) �

R
�(1�p) :

Proof of Lemma 7:

Proof. It su¢ ces to prove that both W 01 and W 10 increases with A no faster than A with

power 1. Note that V 1(W;R) = U(W � I1) + �pU(Cg) + �(1 � p)U(Cb) � �I1 < U(W ) +

�U(pCg + (1 � p)Cb) = U(W ) + �U(I1 � pR), as Cg = IR � L1�p
p
and Cb = L. Hence, if

V 0(W;R) > U(W ) + �U(I1 � pR); then V 0(W;R) > V 1(W;R):

Let W (a; b) de�ned by:

max
S
U(W � S) + �U(Sa) = U(W ) + �U(b)

Note that V 0(W;R) = maxS U(W � S) + �U(S � qR): Therefore, W (qR; I1pR) is the threshold

for

V 0(W;R) = U(W ) + �U(I1 � pR):

@W (a;b)
@a

< 0 and @W (a;b)
@b

> 0: the higher is the saving rate, the smaller is the threshold beyond

which the value from the optimal saving dominates; and the greater the old period consumption

without saving, the higher the threshold.

WithW (a; b) so de�ned, we haveW 10 < W (qR1; I1pR1)jR1=Aa(pI1)��1 = W (qR1; Aa(pI1)�) <

W (qR1; Aa(pI1)
�) andW 01 < W (qR0(W ); I1pR0(W )): To prove the lemma, it su¢ ces to show

that both upper bounds increases with A in a speed no faster than A with power 1. For this

purpose, let us �rst �nd the formula for W (a; b):

Claim A10-1: When U(c) = c1���1
1�� ; W (a; b) = ( �(a;�)�1

�
)

1
��1 b; where �(a; �) = (1 + �

1
� a

1��
� )�:
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Proof: For U(c) = c1���1
1�� , the solution ofmaxS U(W�S)+�U(Sa) bearsW�S = 1

1+�
1
� a

1��
�
W

and Sa = �
1
� a

1
�

1+�
1
� a

1��
�
W: ThenW (a; b) is determined by ( 1

1+�
1
� a

1��
�
W )1��+�

�
�
1
� a

1
�

1+�
1
� a

1��
�
W

�1��
=

W 1�� + �b1�� , ( 1

1+�
1
� a

1��
�
)1�� + �

�
�
1
� a

1
�

1+�
1
� a

1��
�

�1��
= 1 + �( b

W
)1�� , W (a; b) = ( �(a)�1

�
)

1
��1 b;

where �(a; �) = ( 1

1+�
1
� a

1��
�
)1�� + �

�
�
1
� a

1
�

1+�
1
� a

1��
�

�1��
= (1 + �

1
� a

1��
� )��1 + �

1
� a

1��
�

(1+�
1
� a

1��
� )1��

= (1 +

�
1
� a

1��
� )��1(1 + �

1
� a

1��
� ) = (1 + �

1
� a

1��
� )�: Q.E.D.

Then, we move on to estimating the speed ofW (qR1; Aa(pI1)�) andW (qR0(W (a; b)); I1pR0(W (a; b)))

increasing with A, the former �rst. We use "x / y" to denote that x is the same order of y, that

is, x
y
converges to some positive �nite number when A!1:

Claim A10-2: If �� < 1, then W (qR1; Aa(pI1)�) increases with A no faster than A with

power 1. That is, W (qR1;Aa(pI1)�)
A

! 0 if A!1:

Proof: By claim A10-1, W (a; b) = ( �(a;�)�1
�

)
1

��1 b; where a = qR1 and b = Aa(pI1)
� =

pI1R1: We �rst estimate the speed of I1 increasing with A. In the IM, by (57), �I1 < U �

D0( 1
U 0(Cb)) �

R1

�(1�p) < BR
1, where B is the upper bound of U � D0( 1

U 0(Cb))
1

�(1�p) , which is shown

to exist and be independent of A and W in the proof of Lemma 6. Substitute R1 = A�(pI1)��1

into the inequality, and we see �I1 < B�Ap��1(I1)��1 , (I1)2�� < B0A , I1 < B00A
1

2�� )

I1 � B00A
1

2�� , that is, I1 increases no faster than A
1

2�� : Then, a = qR1 = qA�(I1)
��1 �

B000A � A�
1��
2�� = B000A

1
2�� ! 1 and b = Aa(pI1)

� increases no faster than A1+
�

2�� = A
2

2�� :

Then, consider two cases.

Case 1 where � < 1: Then a
1��
� ! 1. Hence, �(a; �) = (1 + �

1
� a

1��
� )� � (�

1
� a

1��
� )� =

�a1�� !1: ThenW (a; b) = ( �(a)�1
�
)

1
��1 bj�!1 � ( �(a)� )

1
��1 b � (�a1��

�
)

1
��1 b = a�1bja=q bR1;b=pbI1 bR1 =

p
q
bI1 / A 1

2�� << A, as we need.

Case 2 where � > 1: Then a
1��
� ! 0. Hence, �(a; �) = (1 + �

1
� a

1��
� )� � 1 + �� 1

� a
1��
� : Then

W (a; b) = ( �(a)�1
�
)

1
��1 b � (��

1
�
�1a

1��
� )

1
��1 b = (��

1
�
�1)

1
��1a�

1
� bja=q bR1;b=pbI1 bR1 / bI1( bR1)1� 1

� /bI1(AbI��11 )1�
1
� = A1�

1
� (bI1)1+ (��1)(��1)

� < B00A1�
1
�
+ 1
2�� �

�+(��1)(��1)
� = B00A

2��1
�(2��) : Therefore, if

2��1
�(2��) < 1; or equivalently, if �� < 1; then W (qR1; Aa(pI1)

�) increases with A at a speed no

faster than A. Q.E.D.

We then considerW (qR0(W (a; b)); I1pR0(W (a; b))), where a = qR0(W (a; b)) and b = I1pR0(W (a; b))

both go to in�nity with A, as the a and b in the former case do.

Claim A10-3: If �� < 1, then W (qR0(W (a; b)); I1pR0(W (a; b))) increases with A no faster
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than A with power 1.

Proof: By (28), R0(W ) is determined by

(
R

A�
)�

1
1�� =

q�
1
� (qR)

1��
�

1 + �
1
� (qR)

1��
�

W (58)

With A!1, R0 !1: We consider, as in Claim A10-1, two cases.

Case 1 where � < 1: Then, (qR0)
1��
� ! 1 and the right hand side of (58) � qW and (58)

becomes (R
0

A�
)�

1
1�� � qW , R0 / A �W ��1: On the other hand, as we saw in the examination

of Case 1 of Claim A10-2, for the current case, W � a�1bja=qR0;b=I1pR0 = p
q
I1 / I1 / R0;

with the last / implied by (57) in which R = R0 when it is applied in the DIM. Put together,

W / A �W ��1 , W 2�� / A, W / A
1

2�� << A, as we need.

Case 2 where � > 1: Then, (qR0)
1��
� ! 0 and the right hand side of (58) � q� 1

� (qR0)
1��
� W /

(R0)
1��
� W . The equation thus implies that (R

0

A
)�

1
1�� / (R0) 1��� W , (R0)

��1
�
� 1
1�� / W �A

� 1
1��
:

On the other hand, as we saw in the examination of Case 2 of Claim A10-2, W / I1(R0)1� 1
� /

(R0)2�
1
� , R0 / W

�
2��1 (note that we have assumed � > 1

2
) for the current case. Put together,

W
�

2��1�(
��1
�
� 1
1�� ) / W � A

� 1
1�� , W� 1+����

(2��1)(1��)�1 / A
� 1
1�� , W� �(2��)

(2��1)(1��) / A
� 1
1�� , W /

A
1

1���
(2��1)(1��)

�(2��) , W / A
2��1
�(2��) : Therefore, as was in Case 2 of the last claim, if �� < 1; then

W (qR0(W ); I1pR0(W )) increases with A at a speed no faster than A. Q.E.D.

Hence, W 10 < W (qR1; Aa(pI1)
�) and W 01 < W (qR0(W ); I1pR0(W )) both increase with A

at a speed no faster than A. Actually, the proofs above show that the two W (a; b) are in the

same order of A, which hints that W 10 and W 01 are in the same order of A.

The proof of Proposition 5:

Proof. First note that if the steady state fK1
j ; K

0
ngj=1;2;::J ;n=1;2;:::;N exists, K1

1 , the starting

period in the IM, is the �xed point of map NM0 �J M1: if the capital stock starts with K1
1

and evolves �rst according to the dynamics of the IM for J periods and then according to the

dynamics of the DIM for N periods, then it will come back to the same level (i.e. K1
1): Similarly,

K1
2 is the �xed point of map M

1 �N M0 �J�1 M1; etc. As such we prove the proposition in

two steps. At step 1, we show for any J and N; map NM0 �J M1 has a unique �xed point over

(K0; K1), and so does mapM1�NM0�J�1M1; etc. These �xed points, fK1
j ; K

0
ngj=1;2;::J ;n=1;2;:::;N ;

satisfy the equality conditions. At step 2, we show that for J = J� and N = N�; these �xed

points satisfy the inequality conditions.
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Step 1: We only show that map NM0 �J M1 has a unique �xed point over (K0; K1); the

proof for other maps such as M1 �NM0 �J�1M1 will be similar. The uniqueness comes from the

concavity of NM0 �J M1; which follows from the concavity of M0 and M1 and the fact that a

compound of concave functions is concave. For existence, let

f 11 (x) �N M0 �J M1(x)� x:

Then it su¢ ces to show f 11 has a root over (K
0; K1): First note thatK 0 �J M1(K0) > K0 because

K0 < K1 and JM1(x) > x for x < K1: Therefore, f 11 (K
0) =N M0�JM1(K0)�K0 =N M0(K 0)�

K0 > 0; because K 0 > K0 and M0(x) > K0 for any x > K0: Second, as K1 is the �xed point of

M1, we have JM1(K1) = K1: Therefore, f 11 (K
1) =N M0 �JM1(K1)�K1 =N M0(K1)�K1 < 0

because K1 > K0 and NM0(x) < x for any x > K0: Therefore, f 11 has a root over (K
0; K1):

Step 2: To ensure fK1
j ; K

0
ngj=1;2;::J�;n=1;2;:::;N� satisfy the inequality conditions, we only need

to check

K1
1( = N�

M0(K0
1)) < K

01 <N
��1 M0(K0

1) (59)

K0
1( = J�M1(K1

1)) > K
10 >J

��1 M1(K1
1) (60)

namely, the cycle falls into the DIM exactly on having been running for J periods in the IM

and it leaps into the IM exactly on having been running for N periods in the DIM; the rest of

the inequalities are satis�ed automatically: since all the �xed points are between K0and K1; the

sequence is increasing if it is in the IM and is decreasing if it is in the DIM.

To check (59), �rst we show that K1
1 < K01; which, since K1

1 is the unique root of f
1
1 (x);

with f 11 (K
0) > 0 (shown above), is equivalent to f 11 (K

0
1) < 0 ,N�

M0 �J� M1(K0
1) < K0

1 :

Since J� = J(K01) by condition (34), by the de�nition of J(K01), we have J
�
M1(K01) > K10.

Moreover, by the same de�nition, J
��1M1(K01) < K10; which implies J

�
M1(K01) < M1(K10):

Therefore, J
�
M1(K01) 2 (K10;M1(K10)): Then by condition (33), N

�
M0(J

�
M1(K01) < K01;

namely f 11 (K
01) < 0:

Second, we show K0
1 > K10 (the former part of 60), which, since K0

1 is the unique root of

f 01 (x) �J
�
M1�N�

M0(x)�x; with f 01 (K1) < 0 (which could be shown in a similar way to showing

f 11 (K
1) < 0); is equivalent to f 01 (K

10) > 0,J� M1 �N�
M0(K10) > K10: Since N� = N(K10) by

condition (33), by the de�nition of N(K10); N
�
M0(K10) < K01 and moreover N

��1M0(K10) >
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K01, with the latter implying N
�
M0(K10) > M0(K01): Therefore, N

�
M0(K10) 2 (M0(K01); K01):

Then by condition (34), J
�
M1(N

�
M0(K10)) > K10; namely f 01 (K

10) > 0:

Third, we show K01 <N
��1 M0(K0

1) (the latter part of 59), which, as K
10 < K0

1 (the second

point) and N��1M0(�) is increasing, follows from K01 <N
��1 M0(K10), which in turn comes from

the de�nition of N(K10) = N�.

Fourth, we show K10 >J
��1 M1(K1

1) (the latter part of 60), which, as K
01 > K1

1 (the �rst

point) and J��1M1(�) is increasing, follows from K10 >J
��1 M1(K01), which in turn comes from

the de�nition of J(K01) = J�.

So we �nish step 2 and show the existence of cycle fK1
j ; K

0
ngj=1;2;::J�;n=1;2;:::;N� :

Finally, if K10 > M1(K01); then by de�nition of J(K01); we have J(K01) � 2; that is, J� � 2.

Similarly, if K01 < M0(K10), then N� � 2:
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