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Abstract

This paper examines the role of liquidity in an economy with many banks subject

to runs and systemic liquidation costs. First, the presence of liquidity drives a

wedge between the amount of withdrawals and liquidation. This restores multiple

equilibria even when a global game refinement is used. Second, systemic liquidation

costs imply that one bank’s liquidity holding reduces the liquidation costs of other

banks. The positive implication is the partial substitutability of private liquidity

holdings as banks free-ride on other banks’ liquidity. The normative implication is

that banks hold insufficient liquidity relative to a constrained planner, interpreted as

a macro-prudential authority that internalizes the system-wide effects of liquidity.

Comparative statics analyses with respect to the expected investment return and

the liquidation cost are performed. [124 words]
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1 Introduction

A crucial concept in economics and finance is liquidity. An asset is liquid if it can be

converted into cash quickly and at a low cost.1 Holding enough liquid assets is important

for financial intermediaries, as they may face sudden withdrawals from their investors.

This applies to both the classical case of a run on a commercial bank by retail investors

(Diamond and Dybvig (1983)) and modern-day runs, such as institutional investors who

withdraw from money market mutual funds (e.g. Wermers (WP)). Liquidity also plays a

major role in recent proposals for the regulation of financial intermediaries.2

This paper examines the role of liquidity in an economy with many banks subject

to runs and systemic liquidation costs. Banks invest in a long-term project and hold

some liquidity to prepare for early withdrawals from investors. The risky project has

a higher expected return but is costly to liquidate before maturity. Liquidity drives a

wedge between the amount of withdrawals from investors and the amount of liquidation,

thereby trading off the opportunity cost of the higher expected investment return with

the benefit from reducing costly liquidation. The profitability of a bank’s project depends

on aggregate economic conditions such as business cycle movements.3 Investors have

the option to withdraw before the maturity of the investment project. They receive

noisy private news about the aggregate economic condition before deciding whether to

withdraw. A bad economic condition results in a large number of investors with bad

signals and therefore many withdrawals. This leads to run on a bank that has insufficient

liquidity to serve all withdrawing investors and has to liquidate the project at a cost.

Systemic liquidation costs, whereby one bank’s liquidation cost increases in the other

bank’s liquidation volume, are also explored to analyze the system-wide dimension of

liquidity.

1An example is US sovereign debt, whose market is characterized by a large trading volume. Therefore,

selling a given quantity can be realized fast and with a low price impact.
2This is in contrast to the financial regulation during the last three decades that focused mainly on

capital. The current proposals include the introduction of rules governing the composition of banks’ bal-

ance sheets envisaged under the Basel Committee on Banking Supervision’s proposed Liquidity Coverage

Ratio (LCR) or Net Stable Funding Ratio (The Basel Committee (2010a,b)). Both regulatory tools seek

to impose limits on the degree of liquidity mismatch on a bank’s balance sheet by, for example, imposing

a lower bound on banks’ liquidity ratios.
3Business cycle movements affect the default rates of the loan portfolio of banks. Alternatively, there

is a shock to an asset class in which banks are invested, such as asset-backed securities.
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The first contribution is to show that the presence of liquidity restores multiple equi-

libria – even if a global game refinement is used (Proposition 1). When banks hold some

liquidity to prepare for withdrawals from investors, there exists an equilibrium without

liquidation if the economic condition is good. Some investors receive bad news about the

economic condition, infer that their bank’s profitability is low, and withdraw. But since

the true state of the economy is good, this is a small number of investors and the available

liquidity suffices to serve them. Most investors receive good news and do not withdraw,

as such costly liquidation is avoided. Likewise, an equilibrium with liquidation exists if

the economic condition is weak. Then many investors receive bad news and withdraw. As

a result, liquidity is exhausted and costly liquidation occurs. Taken together, I show that

there exists an interim range of the economic condition that supports both equilibria.

The equilibrium with liquidation corresponds to the unique Bayesian equilibrium

in other global game models of bank runs, such as Goldstein and Pauzner (2005) and

Morris and Shin (2000). Why is the other equilibrium without liquidation absent in these

papers? As investors receive noisy news, some investors will always receive a bad signal

and withdraw – even if the economic condition is good. Without liquidity, there is al-

ways positive liquidation to serve withdrawing investors, ruling out the possibility of an

equilibrium without liquidation. In fact, I show formally that the equilibrium without

liquidation vanishes as the level of liquidity vanishes (Corollary 1). Therefore, liquidity is

crucial for re-establishing multiple equilibria in bank run coordination games. The mul-

tiplicity result does not rely on endogenous information acquisition, which has also been

shown to break uniqueness (e.g. Hellwig and Veldkamp (2009), Ahnert (WP)).

The second contribution is to demonstrate a role for a macro-prudential regulation

of liquidity. To this end, I compare the privately optimal and socially constrained effi-

cient levels of liquidity.4 When liquidation costs are systemic, insufficient liquidity at one

bank means more liquidation for a given amount of withdrawals and therefore a higher

liquidation cost for other banks in the system. The positive implication is the partial

substitutability of private liquidity holdings as banks free-ride on other banks’ liquidity

(Proposition 2). The normative implication is that the private banking system holds

insufficient liquidity relative to a constrained planner (Proposition 3). As a planner in-

4In order to analyze the effects of ex-ante liquidity holdings, I need to select an equilibrium for economic

conditions that support both equilibria. To focus on the macro-prudential implications of liquidity, I select

the equilibrium with liquidation.
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ternalizes the system-wide effects of liquidity, this planner is naturally interpreted as a

macro-prudential authority.

Proposition 4 summarizes comparative static results that illustrate the intuition of

private and social liquidity choices. The level of liquidity held by a bank trades off the

marginal cost in terms of foregone expected investment return with the marginal benefits

in terms of avoiding costly liquidation, which reduces coordination failure among investors.

A higher expected investment return (better economic conditions on average) increases

the opportunity cost of liquidity and therefore reduces a bank’s optimal liquidity level. By

contrast, a higher liquidation cost increases the marginal benefit from avoiding liquidation

and therefore increases a bank’s optimal liquidity level. By extension, the comparative

statics for the constrained efficient liquidity choice yield the same signs as the constrained

planner faces the same trade-off, just with a higher marginal benefit from liquidity.

Systemic liquidation costs, which generate a positive externality from liquidity and

are at the core of my normative result, are micro-founded by a body of literature. Limited

participation in asset markets can lead to cash-in-the-market pricing and therefore under-

pricing of assets (Allen and Gale (1994)). Similarly, liquidation values are depressed after

an industry-specific shock since distress sales take place to unlevered industry outsiders

who value industry-specific assets less (Shleifer and Vishny (1992)). Finally, financial ar-

bitrageurs cannot pick up assets in fire sales since they are constrained by losses and

outflows themselves (Gromb and Vayanos (2002)).

The paper closest in terms of methodology is Morris and Shin (2000), who build on

the seminal work of Carlsson and van Damme (1993), using global games techniques to

analyze a withdrawal game in the spirit of Diamond and Dybvig (1983).5 The Bayesian

equilibrium of Morris and Shin (2000), which features runs on illiquid but solvent banks,

is unique. By contrast, I show in my first contribution how the presence of liquidity breaks

equilibrium uniqueness by allowing for another equilibrium without runs. Furthermore, I

extend the analysis to multiple banks to explore the effect of systemic liquidation costs

on ex-ante incentives to hold liquidity.6 Vives (WP) and Morris and Shin (WP) also

5Multiple equilibria in Diamond and Dybvig (1983) occur because of the self-fulfilling beliefs. If an

investors fears withdrawals by other investors, then this will imply costly liquidation of the bank’s assets

that reduces a non-withdrawing investor’s payoff. Therefore, each investor finds it optimal to withdraw,

constituting a bank-run equilibrium. Likewise for the no-run equilibrium.
6Goldstein and Pauzner (2005) also use global games techniques to generate a unique equilibrium in a
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analyze investor withdrawal games and the effect of liquidity. However, they abstract

from conditions that can induce the no-liquidation equilibrium and are not concerned

with the ex-ante portfolio choice.

Allowing for multiple banks, my second contribution is to examine the consequences

of systemic liquidation costs for ex-ante liquidity choices, both privately and socially.

Other consequences of systemic liquidation costs have already been analyzed. Wagner

(2011) studies the diversification-diversity trade-off in the ex-ante portfolio choice. Since

joint liquidation is costly ex-post, investors have an incentive to hold diverse portfolios.7

In contrast, I examine the consequences for ex-ante liquidity holdings in the presence of

systemic liquidation costs and analyze the consequences for financial intermediaries that

may be subject to runs. Uhlig (2010) analyzes endogenous liquidation costs in a model

with outside investors and a two-tiered banking sector. The arising system-wide exter-

nality generates strategic complementarities in the depositors’ withdrawal decisions also

present in my model. His focus is on a positive analysis of the previous financial crisis and

discusses some ex-post policy interventions. By contrast, my focus is on optimal (liquid-

ity) regulation from an ex-ante perspective. Studying ex-ante policy has the advantage of

precluding the issue of moral hazard arising from an ex-post policy intervention, a theme

also stressed by Farhi and Tirole (2012).

The literature on macro-prudential regulation is growing fast. Korinek (2011) ana-

lyzes risk-taking in an economy in which systemic externalities take the form of pecuniary

fire sales and provides a micro-founded rationale for macro-prudential policy, such as a

Pigouvian tax on risk-taking or capital requirements. Korinek (WP) contrasts ex-ante

macro-prudential regulation with ex-post policy interventions. In line with the present

paper, Farhi and Tirole (2012) highlight the importance of a macro-prudential approach

to contain a crisis ex-ante.

setup closer to the original model of Diamond and Dybvig (1983), for example preserving the sequential

service constraint. The same comments apply.
7Wagner (2009) also stresses the role of endogenous liquidation costs, showing that they give rise to

cross-bank externalities. The implications for optimal bank portfolios are ambiguous, however, as banks

may be ‘too correlated’ (as in the standard case) or ‘too diversified’ under laissez faire, implying that

regulatory treatment should be heterogeneous.
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2 The Model

The economy extends over three dates labelled as initial (t = 0), interim (t = 1), and

final (t = 2), and it is inhabited by a continuum of investors and two banks n ∈ {A,B}.
The notion of financial intermediation provided by banks is not limited to the traditional

case of retail investors and commercial banks but incorporates, for instance, money market

mutual funds and investment banks.8 There is a single physical good used for consumption

and investment.

Investors There is a unit mass of initially identical investors i ∈ [0, 1] with idiosyncratic

uncertainty about their consumption needs (Diamond and Dybvig (1983)). All investors

are uncertain at the initial date and privately learn their consumption preference θi ∈
{0, 1} at the interim date. Each investor is either early (θi = 1) and wishes to consume at

the interim date or late (θi = 0) and wishes to consume at the final date. Investors can

store between the interim and the final date. The ex-ante probability of being an early

investor is λ ≡ Pr{θi = 1} ∈ (0, 1), which is identical across investors and also the share

of early investors by the law of large numbers. A investor’s utility function is:

Ui(c1, c2) = θic1 + (1− θi)c2 (1)

where ct is consumption at date t, and θi represents an idiosyncratic liquidity shock.

Investors are endowed with two units at the initial date and randomly deposit at either

bank; as such each bank receives one unit of deposits.

Investment opportunities Two investment opportunities in the form of constant-

return-to-scale technologies are available at the initial date (Table 1). First, storage is

universally available and yields a unit safe return. Since it matures after one period,

storage is referred to as liquidity. Second, an investment project, such as lending to a

productive sector, is available to banks.9 A project matures at the final date and yields

8Also, the investors and banks of this model can be interpreted as local and global banks in the spirit

of Uhlig (2010). Then a prematurely withdrawing investor represents a run of a local bank on a global

bank, an arguably reasonable feature of the recent financial crises.
9The motive for the existence of banks is different from Diamond and Dybvig (1983). While these

authors demonstrate a role for a bank as provider of liquidity insurance for risk-averse investors, banking

in this model arises from a bank’s enhanced access to investment projects because of an advantage in

monitoring, for example.

6



Asset t = 0 t = 1 t = 2

Storage (0 → 1) −1 1

Project (0 → 2) −1 ln (1− ln)(r − χ(ln, l−n))

Table 1: Investment technologies

a stochastic return with mean r̄ > 1. Premature liquidation of the project at the interim

date is costly. Similar to Morris and Shin (2000), liquidation of an amount ln ∈ [0, 1]

by bank n at par reduces the final-date return by χ(ln, l−n), where χ(·) ≥ 0 is the cost

function of premature liquidation. The reduction to the final-date payoff is implied by a

lender-of-last-resort policy, for instance. Liquidation costs are modelled to be proportional

to the total amount of liquidation:

χ(ln, l−n) ≡ χ[ln + d l−n] (2)

where χ ∈ (0, 1) measures the cost of liquidation, and d ∈ {0, 1} is a dummy that is one

when systemic liquidation costs are present. To avoid strict dominance of the project,

r̄ < 1 + 2χ is assumed throughout.

Bank-specific liquidation costs are the source of strategic complementarity between

late investors of a given bank. According to ?, individual liquidation costs are discussed

in James (1991) and Mullins and Pyle (1994). These costs comprise direct liquidation

expenses and a reduction in the ‘going concern’ value of bank assets under distress. The

empirical literature typically finds these liquidation costs to be large: of the order of 30%

of bank assets on average.10

Systemic liquidation costs or fire-sales, if present, are the source of strategic com-

plementarity between late investors across banks and create an externality in a bank’s

liquidity choice. Liquidation costs are systemic if there is limited liquidity in the market

10Mullins and Pyle (1994) and Brown and Epstein (1992) present estimates of direct liquidation ex-

penses of around 10%, varying between 17% for assets relating to owned real estate to 0% for liquid

securities for assets in receivership at the FDIC. Adding to direct expenses losses associated with forced

liquidation, James (1991) gives an average total cost of 30% of a failed bank’s assets. Similar orders

of magnitude are reported in Bennett and Unal (WP), whose sample runs for much longer, covering

1986-2007.
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(Allen and Gale (1994)), a fire sale to industry outsiders (Shleifer and Vishny (1992)),

or financial constraints of arbitrageurs (Gromb and Vayanos (2002)). As liquidation de-

presses not only a given bank’s asset liquidation value, but also another bank’s liquidation

value, there is a negative externality from liquidation.

Information structure The investment return r, a measure of the economic condition

such as a key macroeconomic variable, is distributed normally with precision α ∈ (0,∞):

r ∼ N
(

r̄,
1

α

)

The investment return is realised at the interim date but not publicly observed. However,

each investor receives a private signal xi about the return:

xi ≡ r + ǫi

ǫi ∼ N
(

0,
1

γ

)

where the idiosyncratic noise ǫi has zero mean, precision γ ∈ (0,∞), and is independently

and identically distributed across investors and independent of the investment return. All

distributions are common knowledge.

Banks At the initial date banks simultaneously choose their liquidity holdings (yA,

yB) and invest the remainder in the project. The liquidity choice is publicly observed.

Investors that withdraw at the interim date receive unity, while investors that wait for

the final date receive a pro-rata payment of a bank’s assets, which includes the proceeds

from investment in the project.11 Abstracting from a misalignment of incentives between

the bank manager and investors, a bank’s objective is to maximize the expected utility of

investors.12

11See, for example, Dasgupta (2004), Goldstein (2005), and Shapiro and Skeie (WP) for a similar

assumption on the interim-date withdrawal payment. Therefore, banks are viable at the interim date as

the promised payment does not exceed the liquidation value. The focus of the present paper is on the

effect of liquidity on equilibrium multiplicity as well as the consequences of a fire-sale externality from

one bank’s liquidation decision on the liquidity choice of banks. My main results hold for alternative

assumptions about the interim payment.
12This objective arises as an equilibrium outcome in a generalized model with competition for deposits.

The competition between banks for investors implies that banks offers the best possible liquidity holding

to investors. In a related paper, Gale (2010) shows that a bank’s optimal behaviour under free entry
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Banks serve any withdrawals by using liquidity first. Let wn ∈ [0, 1− λ] denote the

amount of withdrawals by late investors of bank n. If withdrawals from late investors

are sufficiently high (wn > yn − λ), the bank partially liquidates its investment project,

where the liquidation amount is given by ln ≡ max{0, wn + λ − yn} ∈ [0, 1 − yn]. The

liquidation amount decreases in a bank’s liquidity holding yn and increases in the amount

of withdrawals by late investors wn.

To prevent costly liquidation, the bank may hold excess liquidity (yn > λ) - more

liquidity than required to serve withdrawals from early investors. Holding excess liquidity

drives a wedge between the proportion of prematurely withdrawing late investors wn and

the liquidation volume of the investment project ln. As it is never optimal to face certain

liquidation, the lower bound of a bank’s liquidity level is the share of early investors

(yn ≥ λ).

Payoffs Early investors always withdraw at the interim date. Late investors that with-

draw at the interim date receive the same payoff as early investors since the liquidity

preference of investors is unobserved by banks. To shed more light on a late investor’s

payoff, consider the cases of no liquidation and positive liquidation in turn.

No liquidation (wn ≤ yn−λ) If few late investors withdraw at the interim date,

excess liquidity holdings yn − λ suffice to serve them. There is no liquidation (ln = 0),

and some excess liquidity is carried over to the final date. The payoff to a late investor

at the final date is:

c2n =
[yn − λ− wn] + (1− yn)r

1− λ− wn
(3)

where the asset payments available to investors at the final date consist of remaining liq-

uidity (yn−λ−wn) and proceeds from investment in the project (numerator), all of which

to be shared with the proportion of investors that wait for the final date (denominator).

The realisation of the stochastic investment project r enters this expression, while the

and subject to the investors’ participation constraint can be expressed as the solution to a contracting

problem in which the welfare of investors is maximised subject to the zero-profit constraint of the bank.

If any given bank were not to choose this investment plan, it would fail to attract any deposits. Given the

alignment of interest between a bank and its investors as well as the bank’s enhanced access to projects,

all depositors deposit in full.
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amount of liquidation by the other bank (l−n) has no effect on the payoff of late investors

of bank n in the absence of liquidation (ln = 0).

Positive amount of liquidation (wn > yn−λ) If many late investors withdraw

at the interim date, the excess liquidity holding yn − λ is drawn down, and some amount

of the project is liquidated (ln = wn + λ− yn) to serve withdrawing investors. The payoff

to a late investor at the final date is:

c2n =
(1− yn − ln)[r − χ(ln, l−n)]

1− λ− wn
= r − χ(ln, l−n) (4)

A fire-sale externality, which is a negative liquidation externality, is present if and

only if there are systemic liquidation costs (d = 1) and the other bank liquidates a positive

amount (l−n > 0).

Remark 1. Conditional on a positive liquidation (ln > 0), there is a strategic comple-

mentarity between the withdrawal decisions of late investors of the same bank (∂c2n
∂wn

< 0).

If there is also positive liquidation by the other bank (l−n > 0) and systemic liquidation

costs are present (d = 1), there is also strategic complementarity between the withdrawal

decisions of late investors across banks ( ∂c2n
∂w−n

< 0).

There are two dimensions to the strategic behaviour of a late investor. The first

dimension is the strategic complementarity between the withdrawal decisions of late in-

vestors of a given bank. More withdrawals by other late investors have two effects. First,

the bank draws down its excess liquidity and then liquidates a larger share of the project.

This effect is detrimental to a late investor who keeps his funds for the final date. Second,

there are fewer late investors to share the remaining resources with at the final date. This

effect is beneficial for a late investor who keeps his funds. In the positive-liquidation case,

the first effect unambiguously dominates and the incentives to withdraw increase in the

proportion of withdrawing late investors (∂c2n
∂wn

= −χ < 0). By contrast, the incentives to

withdraw decrease in the proportion of withdrawing late investors if no liquidation takes

place and the project return is sufficiently high (r ≥ 1).

The second dimension is a strategic complementarity between the withdrawal de-

cisions of late investors across banks in the presence of systemic liquidation costs. The

more late investors in the other bank −n withdraw, the more of the investment project

of bank −n is liquidated, the lower the final-date payoff to investors at bank n due to the
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fire-sale externality. This increases the incentive for a late investor of bank n to withdraw

as well, conditional on positive liquidation at bank n ( ∂c2n
∂w−n

= −χ < 0).

Timeline The following timeline summarizes the model:

Initial date t = 0

• Investors receive their endowment and deposit at banks.

• Each bank holds liquidity yn and invests the remainder 1− yn.

Interim date t = 1

• Each investor privately observes his consumption preferences θi (early or late).

• Each investor receives a private signal xi about the investment return and updates

his forecast about the return and the proportion of withdrawing investors.

• Investors may withdraw, and the mass of late investors that withdraw is wn.

• Banks serve withdrawals using liquidity first. If necessary, a bank (partially) liqui-

dates the investment project (liquidation amount ln).

• Early investors consume and withdrawing late investors store their withdrawals.

Final date t = 2

• The investment project matures.

• Remaining late investors receive an equal share of the investment proceeds.

• Late investors consume.

3 Equilibrium

There are two stages: a perfect-information portfolio choice stage between banks at the

initial date and an imperfect-information withdrawal stage between investors at the in-

terim date. As the portfolio choices of banks are observed by investors, the equilibrium is
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best characterised by working backwards, starting with the equilibrium in the withdrawal

subgame.

An investor’s strategy is a plan of action for each private signal xi. A profile of

strategies is a Bayesian Nash equilibrium in the subgame at the interim date if the actions

described by investor i’s strategy maximize his expected utility conditional on xi, taking

as given the strategies followed by all other investors. Threshold strategies are considered

by which a late investor withdraws if and only if his private signal falls short of a bank-

specific threshold (to be determined): xi < x∗

n. These thresholds depend on the liquidity

choices of banks at the initial date: x∗

n = x∗

n(yn, y−n).

Next, consider the game between banks who choose a liquidity level yn. Each bank

takes the effect of its liquidity choice on the bank-specific withdrawal threshold x∗

n(yn, y−n)

into account. I will determine the Nash equilibrium (yA, yB) in the game between banks

at the interim date, where each yn maximizes the bank’s objective function subject to the

effect on the withdrawal threshold, taking as given the level of liquidity held by the other

bank.

Each investor uses his private information xi to update his forecasts about the in-

vestment return and the proportion of withdrawing late investors at either bank. The

posterior distributions are derived in Appendix A.1. Let Ri ≡ r|xi denote the posterior

distribution of the investment return as formed by an investor who receives the private

signal xi. The posterior mean Ri is equivalent to the signal xi because there is a bijective

mapping between them. The equilibrium posterior mean R∗

n, which is computationally

more convenient than the equilibrium signal x∗

n, is used to describe the equilibrium con-

ditions.13 Likewise, W n
i,n ≡ wn|xi and W

n
i,−n ≡ w−n|xi denote the posterior distributions

of the proportions of withdrawing late investors at bank the investor’s bank and the other

bank, respectively. Similarly, the expected amount of liquidation by bank n is given by

L
n
i,n.

Consider the equilibrium withdrawal behaviour of investors at the interim date.

Early investors always withdraw, while late investors may withdraw. The bank-specific

threshold R∗

n is defined as the mean of the posterior return that makes a late investor

indifferent between withdrawing and not withdrawing his funds:

1 = c2n(R
∗

n, R
∗

−n) (5)

13Note that both converge as the private noise vanishes (x∗
n −R∗

n → 0 as γ → ∞).
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where the left-hand side is the payoff from withdrawing and the right-hand side is the

expected payoff from not withdrawing conditional on the threshold signal x∗

n. Equation

(5) implicitly defines the best response function R∗

n(R
∗

−n), where investors take the other

bank’s threshold R∗

−n as given. The withdrawal threshold of investors of one bank depends

on the threshold of investors in the other bank in case of positive liquidation (ln > 0) and

systemic liquidation costs (d = 1).

The subsequent subsections construct a complete description of equilibrium in the

subgame by analysing the role of liquidity for equilibrium multiplicity and the effect of

systemic liquidation costs. In line with the global games literature (e.g. Morris and Shin

(2003)), I shall assume vanishing private noise (γ → ∞) throughout.

3.1 No systemic liquidation costs

First consider the case without systemic liquidation costs (d = 0).

3.1.1 No expected liquidation

Suppose the marginal investor expects no liquidation in equilibrium (Ln(x
∗

n) = 0). Then

the indifference condition yields (1 − yn)(R
∗

n − 1). If there is no intermediation (yn = 1

or "narrow banking"), then the withdrawal decision is irrelevant since the bank’s assets

are always unity and the investor receives unity irrespective of his withdrawal decision.

If there is intermediation (yn < 1), the withdrawal threshold is unity (R∗

n = 1). To be

consistent with zero liquidation as expected by the marginal investor, the bank’s liquidity

level must be sufficiently high. The marginal investor expects half of the late investors of

mass 1− λ to withdraw as private noise vanishes (W n
n → 1−λ

2
). Therefore, liquidity must

be abundant to serve withdrawals from early and late investors:

yn ≥ λ+
1− λ

2
(6)

Zero actual liquidation arises if and only if the number of withdrawals does not

exceed excess liquidity (wn ≤ yn − λ), requiring a sufficiently high realisation of the

investment return (r ≥ r̃0). As the distribution of signals conditional on the economy-

wide return is N
(

r, 1
γ

)

, the lower bound on the realised investment return is:

r̃0 ≡ 1− α

γ
(r̄ − 1)− 1√

γ
Φ−1

(
yn − λ

1− λ

)

→ 1
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where Φ−1(·) is the inverse of the cumulative probability function of the standard normal

distribution and r̃0 < 1. More liquidity ensures that more withdrawals are consistent with

zero actual liquidation. Hence, the lower bound on the investment return decreases in

the liquidity holding ( ∂r̃0
∂yn

< 0). As private noise vanishes, the lower bound converges to

unity (r̃0 → 1). Lemma 1 summarizes:

Lemma 1. Consider the withdrawal subgame without systemic liquidation costs (d = 0),

vanishing private noise (γ → ∞), and abundant liquidity yn ∈ [ (1+λ)
2

, 1]. Then, any

threshold equilibrium has the following features:

• L∗

n = 0: the marginal investor expects no liquidation;

• x∗

n → 1: a late investor withdraws if and only if his signal falls short of unity;

• l∗n = 0 ⇔ r ≥ 1: no actual liquidation occurs if and only if the economic condition

is sufficiently good.

In sum, the level of liquidity determines whether the marginal investor expects posi-

tive liquidation to occur in equilibrium, while the realised economic condition determines

whether liquidation actually occurs.

3.1.2 Positive expected liquidation

For the marginal investor to expect a positive amount of liquidation in equilibrium

(Ln(x
∗

n) > 0), the bank’s liquidity level must be scarce:

yn <
1 + λ

2
(7)

As I show in section 3.3, liquidity is scarce in equilibrium if it has a high opportunity

cost in terms of a high expected investment return (r̄ ≥ r̄L). With positive expected

liquidation the indifference condition of the marginal investor reduces to:

R∗

n = 1 + χ[(1− λ)Φ(
√
δ[R∗

n − r̄] + λ− yn)]

where δ ≡ α2(α+γ)
γ(α+2γ)

collects precision parameters. As in Morris and Shin (2000), uniqueness

requires the slope of the left-hand side to exceed the slope of the right-hand side and

vanishing private noise is sufficient for this requirement.14 A closed-form expression for

14The requirements is 1 > D∗
n ≡ χ(1−λ)

√
δφ
(√

δ[R∗
n − r̄]

)

> 0, where φ(·) is the probability distribu-

tion function of the standard normal distribution. This condition is satisfied as the private noise vanishes

since δ → 0.
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the threshold is obtained for vanishing private noise:

R∗

n → 1 + χ[
1− λ

2
+ λ− yn] (8)

Coordination failure between investors induces the threshold to exceed unity (R∗

n >

1), the efficient liquidation level. If there is no cost of premature liquidation (χ →
0), then the strategic complementarity between investors of the same bank is absent

and the efficient allocation obtains in the withdrawal game. For a positive liquidation

cost (χ > 0), however, there is coordination failure between investors that pushes the

threshold above the efficient level. Fearing that other late investors withdraw prematurely

and thereby cause costly liquidation, another late investor has an incentive to withdraw

prematurely – even if the nominal investment return exceeds the payoff from withdrawing

prematurely. Furthermore, the threshold is below the expected return of the project

(R∗

n < r̄) if the (individual) liquidation cost is sufficiently low relative to the expected

return (r̄ > 1 + χ(1−λ)
2

).

Actual liquidation occurs in equilibrium if the realised investment return is suf-

ficiently low (r < r̃1). Finding the equilibrium proportion of withdrawals for a given

investment return as in the previous case, the upper bound on the investment return is:

r̃1 ≡ R∗

n −
α

γ
(r̄ − R∗

n)−
1√
γ
Φ−1

(
yn − λ

1− λ

)

→ R∗

n

Holding more liquidity has two effects. First, it allows to serve a larger proportion

of withdrawing investors without liquidating the project. As liquidation is costly, this

reduces the amount of coordination failure between late investors for a given investment

return and thus the withdrawal threshold:

∂R∗

n

∂yn
= − χ

1−D∗

n

< 0 (9)

Second, more liquidity reduces the upper bound on the investment return for which the

equilibrium with positive liquidation exists ( ∂r̃1
∂yn

< 0). More liquidity implies more avail-

able resources for withdrawing investors and therefore requires a worse economic condition

to sustain positive liquidation as supposed. Lemma 2 summarizes:

Lemma 2. Consider the withdrawal subgame without systemic liquidation costs (d = 0),

vanishing private noise (γ → ∞), and scarce liquidity yn ∈
(

λ, (1+λ)
2

)

. Then any threshold

equilibrium has the following features:
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• L∗

n > 0: the marginal investor expects liquidation;

• x∗

n → 1 + χ[1+λ
2

− yn] > 1 : a late investor withdraws if and only if his signal falls

short of this threshold;

• l∗n > 0 if and only if r < x∗

n: actual liquidation occurs if the economic condition is

sufficiently bad.

Taking the previous lemmas together, the overall threshold equilibrium in the with-

drawal subgame, which depends on the realised economic condition r and the amount of

liquidity yn held by the bank, is described in proposition 1:

Proposition 1. Consider the withdrawal subgame without systemic liquidation costs (d =

0) and vanishing private noise (γ → ∞).

• If liquidity is abundant (yn ∈ [ (1+λ)
2

, 1]), then there exists a unique threshold equi-

librium in the subgame. The marginal investor expects no liquidation to take place

(Ln(x
∗

n) = 0), and the implied withdrawal threshold is x∗

n = 1. No liquidation oc-

curs if the economic condition is good, while some liquidation occurs if it is bad

(l∗n = 0 ⇔ r ≥ 1).

• If liquidity is scarce (yn ∈
[

λ, (1+λ)
2

)

), however, then there exist multiple equilibria in

the subgame. The marginal investor expects liquidation to take place (Ln(x
∗

n) > 0)

and the implied withdrawal threshold is x∗

n → 1+χ[1+λ
2

−yn] > 1. The no-liquidation

equilibrium occurs for a good economic condition (r ≥ 1), while the equilibrium

with liquidation occurs for a bad economic condition (r < x∗

n). Therefore, multiple

equilibria exist for a range of economic conditions [1, x∗

n].

• The range of economic conditions that support multiple equilibria shrinks as the

bank’s liquidity increases (∂x
∗

n

∂yn
< 0).

How does the multiplicity result relate to bank run models that obtain a unique

equilibrium with positive liquidation (Goldstein and Pauzner (2005), Morris and Shin

(2000))? If there is no excess liquidity (yn → λ), as in these papers, the no-liquidation

equilibrium disappears. In fact, the lower bound on the economic condition consistent with

no liquidation becomes arbitrarily high (r̃0 → ∞) for bounded private noise (γ < γ < ∞).

16



Thus, any equilibrium features a positive amount of liquidation in these papers. By con-

trast, liquidity drives a wedge between the amount of withdrawals and the liquidation

volume in the present paper. If liquidity is scarce and the economic condition good,

this supports an equilibrium without liquidation apart from the usual equilibrium with

liquidation.

Corollary 1. If there is no liquidity to serve late investors (yn → λ), the equilibrium

without liquidation vanishes (r̃0 → ∞). Therefore, models without liquidity and unique

equilibria, such as Morris and Shin (2000), are a special case of my model with vanishing

liquidity for late investors.

Finally, consider the marginal benefits of liquidity on the threshold equilibrium in

the withdrawal subgame. There is no marginal benefit of liquidity in the no-liquidation

equilibrium since the lower bound of the economic condition is unaffected by liquidity. By

contrast, the marginal benefit from liquidity is positive in the equilibrium with liquidation.

On the one hand, liquidity reduces the range for which the equilibrium with liquidation

exists (also for bounded private noise). On the other hand, more liquidity reduces the

amount of withdrawals and therefore costly liquidation for a given investment return. The

marginal cost of liquidity is the reduction in the payoff to a late investors conditional on

no-liquidation.

3.2 Systemic liquidation costs

I now consider the case with systemic liquidation costs (d = 1). Suppose that the marginal

investor expects liquidation (Ln
n(x

∗

n) > 0) and liquidation by the other bank (Ln
−n(x

∗

n) >

0). If the marginal investor expects no liquidation by the other bank, then systemic

liquidation costs have no impact and the equilibrium threshold is determined as in the

previous case. The indifference condition of the marginal investor becomes:

R∗

n(R
∗

−n; yn, y−n) = 1 + χ
[

(1− λ)Φ
(√

δ[R∗

n − r̄]
)

+ λ− yn

]

+ · · · (10)

· · ·+ χ
[

(1− λ)Φ
(√

δ(1 +
γ

δ
)[R∗

−n − r̄]− γ

δ

√
δ[R∗

n − r̄]
)]

As the marginal investor takes the withdrawal threshold of investors in the other bank

R∗

−n as given, equation 10 specifies a best-response function since there exists a unique

solution R∗

n for any given R∗

−n as shown below.
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Following Morris and Shin (2003) and Goldstein (2005), the uniqueness proof is in

two steps. First, a unique solution R∗

n must be obtained for any R∗

−n, requiring that the

slope of the left-hand side of the best response function exceeds the slope of the right-

hand side. Second, there is a unique intersection of best response functions, requiring

that the best response function is bounded and that its slope is strictly within zero and

one. Since the cumulative distribution function lies within zero and one, these condi-

tions are all satisfied if the private noise is sufficiently small, yielding a unique solution

RA(yA, yB), RB(yB, yA).
15

Coordination failure again induces an inefficiently large withdrawal threshold (R∗

n >

1). Coordination failure now takes place not only between investors of a given bank, but

also between investors of different banks. Fearing that late investors of another bank

withdraw, thereby increasing the liquidation volume of the other bank and therefore the

liquidation costs of a given bank, a late investor of the given bank has a higher incentive

to withdraw at the interim date as well.

Furthermore, the threshold is below the expected return of the project (R∗

n < r̄) if

the (total) liquidation cost is sufficiently low relative to the expected return (r̄ > r̄L ≡
1+χ(1−λ)). The behaviour of investors is consistent with a liquidation in equilibrium if

the realised investment return is sufficiently bad (r < r̃1). As the private noise vanishes,

the symmetric thresholds converge to:16 17

R∗

A = R∗

B = R∗ ≡ 1 + χ(1 + λ− yA − yB) ∈ (1, r̄) (11)

The banks’ liquidity choices affects the withdrawal thresholds. More liquidity allows

15The slope of the right-hand side is now:

Dn ≡ χ(1− λ)
√
δ{φ

(√
δ[R∗

n − r̄]
)

− γ

α
φ

(√
δ(
α + γ

γ
)[R∗

−n − r̄]− γ

α

√
δ[R∗

n − r̄]

)

}

16This can be proved by contradiction. Suppose that R∗
A
> R∗

B
. Then WA

B
→ 0 and WB

A
→ (1 − λ).

The implied expressions for the thresholds can never satisfy the supposed inequality R∗
A

> R∗
B

. The

argument applies for R∗
A
< R∗

B
as well. Therefore, R∗

A
= R∗

B
as claimed.

17The symmetry in the liquidation cost function implies an equal weight of liquidity choices in the

withdrawal threshold expression. This can be relaxed, for example by putting a larger weight on the

own liquidation volume or with a convex liquidation specification. Either specification implies a larger

weight of a bank’s withdrawal threshold on its own liquidity. For example, a liquidation cost function

that is linear in both the own and the total liquidation volume x(ln, l−n) = χln(ln + dl−n) yields R∗
n →

1 + χ(1 + λ− yA − yB)(
1+λ

2
− yn) in the case of systemic liquidation costs.
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to serve more withdrawing investors and thus reduces the coordination failure among

investors of a given bank. Thus, more liquidity held by bank n reduces the withdrawal

threshold R∗

n. Because of systemic liquidation costs, there is also coordination failure

among investors of different banks. More liquidity held by a given bank reduces the

degree of this coordination failure and therefore the other bank’s threshold R∗

−n:

∂R∗

n

∂yn
=

∂R∗

n

∂y−n
= −χ < 0

Lemma 3 summarizes the new results in the case of systemic liquidation costs.

Lemma 3. Consider the withdrawal subgame with systemic liquidation costs (d = 1),

vanishing private noise (γ → ∞), and scarce liquidity (yn ∈ (λ, (1+λ)
2

). Then, the marginal

investor expects liquidation to occur (Ln(x
∗

n) > 0), and the withdrawal threshold is x∗

n →
1+χ[1+λ−yA−yB] ∈ (1, r̄) if r̄ > r̄L = 1+χ(1−λ). There is actual liquidation (l∗n > 0)

if and only if the economic condition is bad (r ≤ r̃1 → x∗

n). The equilibrium threshold

highlights the system-wide effects of liquidity because more liquidity held at either bank

reduces the withdrawal threshold of a given bank.

3.3 Optimal portfolio choice

I complete the characterisation of the equilibrium by studying the banks’ privately op-

timal liquidity choice at the initial date. To generate macro-prudential implications, I

consider the setup with systemic liquidation costs and scarce liquidity. A lower bound

on the expected investment return derived below suffices to generate scarce liquidity in

equilibrium. As multiple equilibria occur for scarce liquidity (see proposition 1), some

equilibrium selection is required. Since liquidity has a beneficial effect in the equilibrium

with liquidation, I assume that this equilibrium in the subgame is selected whenever it

exists.18 A bank’s objective function is the expected utility of its investors derived in

Appendix A.2 and given by:

EUn(yn, y−n) = yn + (1− yn)

[

F (R∗) · 1 + (1− F (R∗)) ·
(

r̄ +
f(R∗)

α(1− F (R∗))

)]

(12)

where f(r) = φ(
√
α[r − r̄]) is the probability distribution function of the normally dis-

tributed investment return and F (r) the associated cumulative distribution function. The

expected utility has two terms. The first term is the amount of liquidity, and the second

18This which can be generalized to any fraction p ∈ [0, 1].
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term is the payoff from the investment (1 − yn). If the investment return falls short of

the threshold R∗, which occurs with probability F (R∗), the project is liquidated. Other-

wise, the project is continued, which occurs with probability 1−F (R∗), and the expected

investment return conditional on continuation is E[r|r > R∗] = r̄ + f(R∗)
α(1−F (R∗))

.

A lower withdrawal threshold improves expected utility as it implies a smaller area of

inefficient withdrawals by reducing the extent of coordination failure (∂EUn/∂R
∗ < 0), as

derived in Appendix A.2. This highlights the beneficial role of liquidity in the equilibrium

with liquidation: more liquidity reduces coordination failure and therefore the withdrawal

threshold, thereby indirectly improving the expected utility of an investor:

∂EUn

∂R∗

∂R∗

∂yn
> 0

There is also a detrimental role of liquidity. As the ex-ante opportunity cost of liquidity

is the foregone higher expected investment return, holding more liquidity is costly. This

is further exacerbated by optimal liquidation, shielding the investor from particularly

adverse outcomes of the project. The direct effect of liquidity is:

∂EUn

∂yn
= −(1− F (R∗)) (E[r|r ≥ R∗]− 1) < 0

In case of continuation, which occurs with probability 1 − F (R∗), the expected invest-

ment return conditional on continuation exceeds the unit return to liquidity. In case of

liquidation, which occurs with probability F (R∗), the project and liquidity both yield a

unit return.

The bank balances the beneficial and detrimental effects of liquidity. It takes the

response of investors at the interim date R∗(yn, y−n) into account and the other bank’s

choice of liquidity y−n as given. The optimal liquidity choice of bank n solves the following

problem:

y∗n(y−n) ≡ argmax
yn

EUn(yn, y−n) s.t. R∗ = R∗(yn, y−n) (13)

where the best response function y∗n(y−n) is determined by the first-order condition:

dEUn

dyn
=

∂EUn

∂yn
+

∂EUn

∂R∗

n

∂R∗

n

∂yn
= 0 (14)

χ(1− yn)(R
∗ − 1)f(R∗)

︸ ︷︷ ︸

marginal benefits from liquidity

= [1− F (R∗)]

(
1

α

f(R∗)

1− F (R∗)
+ r̄ − 1

)

︸ ︷︷ ︸

marginal (opportunity) costs of liquidity

I derive conditions on the expected investment return to ensure the existence of a

unique best response function in Appendix A.3. First, an upper bound on the expected
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investment return r̄H ensures that the first-order condition has a solution for any feasible

liquidity choice of the other bank. Second, a lower bound on the investment return r̄L

ensures that liquidity is indeed scarce as supposed, again for any feasible liquidity choice

of the other bank. Finally, I show that the objective function EUn is globally concave

in the level of liquidity yn. Therefore, a unique solution y∗n(y−n) exists for any level of

liquidity held by the other bank.

There is strategic substitutability in liquidity holdings. If the other bank holds more

liquidity, the liquidation cost of a given bank is reduced for any given level of liquidity.

As holding liquidity is costly, the bank optimally reduces its liquidity level, free-riding on

the other bank’s liquidity. The other bank’s liquidity holding is only useful for partially

deterring a run since a potential liquidation cost is reduced, but not for serving investors

when they do withdraw. Thus, the reduction in liquidity is less than one-for-one:

dy∗n
dy−n

= − (R∗ − 1) + χ(1− yn)[1 + α(R∗ − 1)(r̄ −R∗)]

2(R∗ − 1) + χ(1− yn)[1 + α(R∗ − 1)(r̄ − R∗)]
∈ (−1, 0) (15)

Since the slope of the best-response function lies strictly within the unit circle, is bounded

and symmetric, there exists a unique and symmetric level of liquidity held at each bank:

y∗n ≡ y∗. It is implicitly given by dEUn

dyn
(y∗, y∗) = 0. Proposition 2 summarizes.

Proposition 2. Consider the overall game with systemic liquidation costs (d = 1), vanish-

ing private noise (γ → ∞), and an expected investment return within the range (r̄L, r̄H).

Suppose that the equilibrium with liquidation is selected if multiple equilibria exist in the

withdrawal subgame. Then, there exists a unique and symmetric equilibrium in threshold

strategies. It is characterized by a bank’s liquidity choice y∗A = y∗B ≡ y∗ ∈
(
λ, 1+λ

2

)
at the

initial date and withdrawal threshold of investors in the subgame that are implicitly given

by:

R∗ = 1 + χ(1 + λ− 2y∗) ∈ (1, r̄) (16)

χ(1− y∗)(R∗ − 1) =
1

α
+ (r̄ − 1)

1− F (R∗)

f(R∗)
(17)

The boundaries on the expected investment return are r̄L ≡ 1 + χ(1 − λ) and r̄H ≡
1 + f(1+0.5χ(1−λ))

1−F (1+0.5χ(1−λ))
[0.5χ2(1− λ)2 − 1/α].

The equilibrium is characterised by partial free-riding on the respective other bank’s

liquidity.
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4 Welfare

This section derives the liquidity choice of a social planner and compares it to the bank’s

optimal portfolio choice. As in Lorenzoni (2008), I adopt the notion of constrained effi-

ciency: the social planner chooses the levels of liquidity but takes the optimal withdrawal

decision of investors at the interim date as given. A direct choice of the threshold would

achieve the first-best allocation (R∗

n = 1). In contrast to a bank, the planner internal-

izes the beneficial effects of liquidity for another bank’s investors (system-wide effects of

liquidity). Therefore, the constrained planner can be thought of as a macro-prudential

authority.

The constrained socially efficient levels of liquidity (ySPA , ySPB ) solve the planner’s

portfolio choice problem at the initial date, taking investors’ responses at the interim date

R∗

n(yA, yB) into account:

(ySPA , ySPB ) ≡ arg max
yA,yB

SWF ≡ EUA + EUB s.t. R∗

A(yA, yB) = R∗

B(yA, yB) (18)

The first-order condition for the social planner’s problem is:

0 =
dSWF

dyn
=

∂EUn

∂yn
+

∂EUn

∂R∗

n

∂R∗

n

∂yn
+

∂EU−n

∂R∗

−n

∂R∗

−n

∂yn
(19)

χ(1− yA + 1− yB)(R
∗ − 1)f(R∗)

︸ ︷︷ ︸

social marginal benefits from liquidity

= [1− F (R∗

n)]

(
1

α

f(R∗

n)

1− F (R∗)
+ r̄ − 1

)

︸ ︷︷ ︸

social marginal costs of liquidity

The planner balances the social marginal cost of liquidity in terms of foregone in-

vestment return conditional on continuation (∂EUn/∂yn < 0) with the social marginal

benefits from liquidity in terms of lower withdrawal thresholds. The private and social

marginal costs of liquidity coincide, while the social marginal benefits from liquidity ex-

ceed the private marginal benefit. Apart from the beneficial effect of liquidity on the

investors of one bank (∂R∗

n/∂yn < 0), which is identical to the private benefit from liq-

uidity, the planner also considers the beneficial effect of liquidity on the other bank’s

investors (∂R∗

−n/∂yn < 0). Recall that more liquidity allows to serve more withdraw-

ing investors and therefore avoids costly liquidation for a given number of withdrawals,

thereby mitigating the coordination failure between investors.

The optimization problem is fully symmetric. There is full substitutability between

liquidity held at one bank and that held at another to reduce the withdrawal threshold

RSP
n = RSP = 1+χ[1+λ−ySPA −ySPB ]. Furthermore, both first-order conditions yield the
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same condition (equation 19). Therefore, only the total amount of liquidity is determined

ySPtotal ≡ ySPA + ySPB .

I derive conditions on the expected investment return to ensure the existence of

a unique constraint efficient liquidity level. First, the upper bound on the expected

investment return changes relative to the bank’s portfolio choice, and the following upper

bound on the investment return is now required:

r̄ < r̄SPH ≡ 1 +

(

2χ2(1− λ)2 − 1

α

)
f(1 + χ(1− λ))

1− F (1 + χ(1− λ))
(20)

which is strictly below the upper bound of 1 + 2χ implied by no-dominance. Second,

the upper bound ytotal → 2ȳ is never optimal. Finally, the global concavity of the social

welfare function in the total amount of liquidity is established in Appendix (A.4) for which

the no-dominance bound on the expected investment return suffices. Taking these points

together, there exists a unique level of total liquidity ySPtotal that maximizes social welfare

and is implicitly given by dSWF
dyn

(ySPtotal) = 0.

Proposition 3 summarizes and compares the total amount of liquidity held by a

planner with the total amount of liquidity held by banks:

Proposition 3. Consider the overall game with systemic liquidation costs (d = 1),

vanishing private noise (γ → ∞), and an expected investment return r̄H < r̄SPH ≡
1 +

(
2χ2(1− λ)2 − 1

α

) f(1+χ(1−λ))
1−F (1+χ(1−λ))

. A macro-prudential authority, the constrained so-

cial planner, chooses the liquidity level and investors respond optimally as before. Then,

there exists a unique level of total liquidity ySPtotal that maximizes social welfare and is

implicitly given by:

χ(2− ySPtotal)(R
SP − 1) =

(
1

α
+ [r̄ − 1]

1− F (RSP )

f(RSP )

)

(21)

where RSP = 1 + χ[1 + λ− ySPtotal] is the withdrawal threshold of investors at either bank.

A macro-prudential authority holds more liquidity than the private banking system:

ySPtotal > y∗A + y∗B (22)

Proof. The higher level of liquidity held by a macro-prudential authority remains to be

proven. Relative to the bank’s first-order condition, the right-hand side of the social

planner’s first-order condition (19) has an additional positive term, the positive externality

of liquidity in terms of reducing the other bank’s withdrawal threshold. Thus, the social
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benefits from liquidity exceed the social cost of liquidity when evaluated at the optimal

level y∗A = y∗b = y∗:
dSWF

dyn

∣
∣
∣
∣
yn=y−n=y∗

> 0 (23)

Given the strict global concavity of the objective function in the total amount of liquidity

ytotal, the planner’s total amount of liquidity must be higher (ySPtotal > y∗A + y∗B), thereby

internalising the positive system-wide externality of liquidity.

The difference between the constraint efficient and the optimal level of liquidity

is interpreted as a macro-prudential liquidity buffer. A constrained planner, such as a

macro-prudential authority, takes all economy-wide effects into account by holding more

liquidity, internalising the social costs of liquidation that arise in the presence of systemic

liquidation cost.

5 Comparative Statics

This sections studies how the equilibrium allocation y∗ and the planner’s allocation ySPtotal

vary with the exogenous parameters of the model. Parameters of interest are the liqui-

dation cost parameter χ, the expected investment return r̄, and the proportion of early

investors λ. Proposition 4 summarizes the results.

Proposition 4. The private and social levels of liquidity vary according to

(a) ∂y∗

∂χ
> 0 and

∂ySP

total

∂χ
> 0 such that a higher liquidation cost raises the liquidity

held privately and socially;

(b) ∂y∗

∂r̄
< 0 and

∂ySP

total

∂r̄
< 0 such that a higher investment return lowers the private

and social levels of liquidity;

(a) ∂y∗

∂λ
> 0 and

∂ySP

total

∂λ
> 0 such that a larger proportion of early investors induces

higher liquidity holdings.

See Appendix A.5 for a proof. The intuition underlying these results is as follows.

First, a larger proportion of early investors increases the liquidity held privately and

socially. Since early investors wish to consume at the interim date and always withdraw,

more liquidity is held to serve them.

Second, the strength of the liquidation cost is captured by the liquidation cost

parameter χ. It affects the benefits from holding liquidity in terms of avoiding costly
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liquidation in case of elevated withdrawals, thereby reducing the withdrawal threshold.

Thus, if liquidation is more costly, such as in times of financial distress, then liquidity is

particularly valuable and more liquidity is held both privately and socially.

Third, a higher expected investment return r̄ affects the ex-ante opportunity cost

of holding liquidity. Therefore, both banks and the planner hold more liquidity when

the project pays a better return on average. Note that there is no effect of the expected

investment return on the withdrawal threshold R∗

n as private noise vanishes. However, if

the private noise is bounded (γ < γ < ∞), a higher investment return also reduces the

run threshold. This second effect would further reduce the level of liquidity held.

6 Conclusion

This paper examined the role of liquidity in an economy with many banks subject to

runs and systemic liquidation costs. I showed that the presence of liquidity, which drives

a wedge between the amount of withdrawals and the liquidation volume, restores mul-

tiple equilibria – even if a global game refinement is used. Apart from the usual equi-

librium with liquidation (Morris and Shin (2000); Goldstein and Pauzner (2005)), a no-

liquidation equilibrium exists for a range of economic conditions. Furthermore, systemic

liquidation costs imply that one bank’s liquidity holding reduces the liquidation costs of

other banks. The positive implication is the partial substitutability of private liquidity

holdings as banks free-ride on the liquidity holdings of other banks. The normative im-

plication is that banks hold insufficient liquidity relative to the average liquidity holding

of a constrained planner. Since a planner internalizes the system-wide effects of liquidity,

I interpret the planner as a macro-prudential authority.

This framework provides a natural laboratory for studying macro-prudential policies

in a micro-founded setting more generally. I abstracted from capital requirements, diversi-

fication, and taxes on withdrawals in this paper, but analyze some of these in other work.

There are other elements relevant to the conduct of macro-prudential regulation omitted

in this framework, such as limited liability, ’too big to fail’, and perverse incentives arising

from incentive schemes. These are all exciting avenues for subsequent research.
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A Appendix

A.1 Posterior distributions

Investment return The posterior mean of the investment project return is a weighted

average of the mean of the prior distribution and the private signal, in which the relative

weights are given by the respective precisions. The precision of the posterior distribution

is the sum of the precisions of the prior and the signal. Normality is preserved:

R
n
i ∼ N

(
αr̄ + γxi

α + γ
,

1

α + γ

)

(24)

The ratio of the precision of the prior (public signal) relative to the private signal, α
γ
,

determines the extent to which the posterior mean depends on the private signal. The

more precise the private signal relatively to the prior, the more the posterior is determined

by the private signal. In the limit of vanishing private noise (α
γ
→ 0 as γ → ∞), the

posterior mean converges to the private signal.

Proportion of prematurely withdrawing late investors at bank n Using the

definition of the proportion of withdrawing investors, the posterior distribution of the

mean, and a law of large numbers, the posterior proportion of withdrawing late investors

at a given investor’s bank W n
i,n can be written as:

W n
i,n = (1− λ)Φ

(
√
δ [R∗

n − r̄] +

√

γ(α + γ)

α + 2γ
[R∗

n − Rn
i ]

)

(25)

δ ≡ α2(α + γ)

γ(α+ 2γ)
(26)

where Φ(·) is the cumulative distribution function of the standard normal distribution

and δ summarizes precision parameters. A late investor that receives the threshold signal

xi = x∗

n thus forms the following posterior mean of the proportion of withdrawing late

investors at his bank:

(W n
n )

∗ ≡ W n
i,n

∣
∣
xi=x∗

n

= (1− λ)Φ(z1n) (27)

z1n ≡
√
δ [R∗

n − r̄] (28)

If the private noise vanishes (γ → ∞), then δ → 0 and (W n
n )

∗ → 1−λ
2

.
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Proportion of prematurely withdrawing late investors at bank −n Withdrawal

thresholds may differ across banks. Depending on the other bank’s threshold R∗

−n, an

investors at bank n expects the following proportion of withdrawing late investors at

bank −n:

W n
i,−n = (1− λ)Φ

(
√
δ
[
R∗

−n − r̄
]
+

√

γ(α + γ)

α + 2γ

[
R∗

−n − Rn
i

]

)

(29)

(
W n

−n

)
∗ ≡ W n

i,−n

∣
∣
xi=x∗

n

= (1− λ)Φ(z2n) (30)

z2n ≡
√
δ
[
R∗

−n − r̄
]
+
√
δ
γ

α

[
R∗

−n − R∗

n

]
(31)

A.2 Derivation of expected utility EUn

When private noise vanishes (γ → ∞), equilibrium withdrawals by late investors at the

interim date are:

w∗

n(r) = (1− λ)Φ

(
α√
γ
[R∗

n − r̄] +
√
γ[R∗

n − r]

)

→







0 r > R∗

n

1−λ
2

if r = R∗

n

1− λ r < R∗

n

(32)

Therefore, there is no liquidation if the project return is above the threshold R∗

n, while

the investment project is completely liquidated if the investment return is below the

threshold. Late investors receive the continuation payoff c2n in the former case and unity

in the latter. Early investors always receive unity as promised. Adding these components

up, the expected utility is:

EUn(yn, y−n) =

∫ R∗

n

−∞

1 · 1dF (r) +

∫
∞

R∗

n

λ · 1 + (1− λ) · yn − λ+ (1− yn)r

1− λ
dF (r)(33)

= yn + (1− yn)

[

F (R∗

n) · 1 + (1− F (R∗

n)) ·
(

r̄ +
f(R∗

n)

α(1− F (R∗

n))

)]

(34)

The partial derivatives are:

∂EUn

∂yn
= −(1 − F (R∗

n)) (E[r|r ≥ R∗

n]− 1) < 0 (35)

∂EUn

∂R∗

n

= −(1 − yn)(R
∗

n − 1)f(R∗

n) < 0 (36)

∂2EUn

∂y2n
=

∂EUn

∂y−n
= 0 (37)

∂2EUn

∂yn∂R∗

n

= (R∗

n − 1)f(R∗

n) > 0 (38)

∂2EUn

∂(R∗

n)
2

= −(1 − yn)f(R
∗

n)[1 + α(R∗

n − 1)(r̄ −R∗

n)] < 0 (39)

where the signs are implied by the ordering 1 < R∗

n < r̄ (Lemma 3).
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A.3 Unique best response y∗n(y−n)

Let Λ(R∗) ≡ 1−F (R∗)
f(R∗)

> 0 and therefore Λ′(R∗) = −√
α − α(r̄ − R∗)Λ(R∗) < 0. The

first-order condition becomes:

χ2(1− y∗n)(1 + λ− y∗n − y−n) =
1

α
+ (r̄ − 1)Λ(R∗

n) (40)

where R∗

n = 1+χ(1 + λ− y∗n − y−n). Note that the left-hand side (LHS) of equation (40)

is decreasing in the liquidity level y∗n, while the right-hand side (RHS) is increasing in it.

First, existence of equilibrium requires that the LHS exceeds the RHS when evalu-

ated at the lower bound y∗n → λ for any liquidity level y−n. This inequality is hardest to

satisfy for y−n → ȳ ≡ 1+λ
2

. Rewriting yields an upper bound on the expected investment

return:

r̄ < r̄H ≡ 1 +
χ2(1−λ)2

2
− 1

α

Λ(1 + 0.5χ(1− λ))
(41)

This upper bound is strictly below the level of 1 + 2χ as implied by no dominance and

replaces this upper bound.

Second, the supposed scarcity of liquidity requires that the marginal cost of liquid-

ity just exceeds its marginal benefit as the liquidity level converges its upper bound ȳ.

Therefore: LHS(y∗n → ȳ) < RHS(y∗n → ȳ) for any liquidity level y−n. This inequal-

ity is hardest to satisfy for y−n → λ. Rewriting yields a lower bound on the expected

investment return:

r̄ > r̄′L ≡ 1 +
χ2(1−λ)2

4
− 1

α

Λ(1 + 0.5χ(1− λ))
< r̄H (42)

This lower bound is strictly below the level of r̄L = 1+χ(1−λ) as implied by no constraint

that ensures R∗

n < r̄. Therefore, the lower bound of r̄L is maintained. Note that y∗n 6= ȳ

implies y∗n < ȳ by the global concavity of the objective function, which can be seen by the

sign of the second-order derivative of the objective function:

d2EUn

dy2n
=

∂R∗

n

∂yn

[

2
∂2EUn

∂yn∂R∗

n

+
∂2EUn

∂(R∗

n)
2

∂R∗

n

∂yn

]

+
∂EUn

∂R∗

n

∂2R∗

n

∂y2n
< 0

where ∂2R∗

n

∂y2n
= 0 and the sign follows directly from the previously established signs on the

partial derivatives of the withdrawal threshold R∗

n and the expected utility EUn.

A.4 Global concavity of SWF

Consider the second derivative of the social welfare function:

d2SWF

d(ySP )2
= −χf(R∗)[

√
α(r̄−1)+χ(3+λ−ytotal)−(r̄−R∗)(1−αχ2(1+λ−ytotal(2−ytotal)))] < 0
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The highest possible values is reached when α → 0 and ytotal → 2ȳ. Then, the second-order

derivative is still negative as 1 + 2χ > r̄ by no-dominance. Therefore, the second-order

derivative is always negative, establishing global concavity of the social welfare function.

A.5 Comparative statics

A.5.1 Privately optimal liquidity level y∗

Parameters of interest are χ, r̄, λ. The effect of parameters on the withdrawal threshold

R∗ = 1 + χ(1 + λ− 2y∗) is:

∂R∗

∂χ
= (1 + λ− 2y∗) > 0 (43)

∂R∗

∂r̄
= 0 (44)

∂R∗

∂λ
= χ > 0 (45)

The first-order condition for the private level of liquidity y∗ can be written as G(a, R∗, y∗) =

0, where a ∈ {χ, r̄, λ} is a parameter:

G(a, R∗, y∗) = (r − 1)
1− F (R∗)

f(R∗)
+

1

α
− χ2(1− y∗)(1 + λ− 2y∗) (46)

Then, the effect of a parameter on the equilibrium liquidity level is given by dy∗

da
= −∂G/∂a

∂G/∂y
.

Note that:

∂G

∂y∗
= −2χ(r̄ − 1)Λ′(R∗) + χ2(3 + λ− 4y∗) > 0 (47)

∂G

∂r̄
= (r̄ − 1)[

√
α + (r̄ − R∗)Λ(R∗)] + Λ(R∗) > 0 (48)

∂G

∂χ
= (r̄ − 1)(1 + λ− 2y∗)Λ′(R∗)− 2χ(1− y∗)(1 + λ− 2y∗) < 0 (49)

∂G

∂λ
= −χ2(1− y∗) + χ(r̄ − 1)Λ′(R∗) < 0 (50)

Therefore, the partial derivatives of the privately held liquidity levels have the signs as

claimed.
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A.5.2 Socially efficient liquidity level ySPtotal

The effect of parameters on the withdrawal threshold RSP = 1 + χ(1 + λ− ySPtotal) is:

∂RSP

∂χ
= (1 + λ− ySPtotal) > 0 (51)

∂RSP

∂r̄
= 0 (52)

∂RSP

∂λ
= χ > 0 (53)

The first-order condition for the social level of liquidity ySPtotal can be written as G̃(a, RSP , ySP ) =

0, where a ∈ {χ, r̄, λ} is a parameter:

G̃(a, RSP , ySPtotal) = (r − 1)
1− F (R∗)

f(R∗)
+

1

α
− χ2(2− ySPtotal)(1 + λ− ySPtotal) (54)

Then, the effect of a parameter on the equilibrium liquidity level is given by
dySP

total

da
=

−∂G̃/∂a

∂G̃/∂y
. As above, partial differentiation of G̃ proves the signs on the comparative statics

of the total level of liquidity held by the planner as claimed.
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