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Abstract:
While the public debt has an interior maximum in the Diamond OLG model, due to an
inherent nonlinearity [Rankin and Roffia (2003)], this feature also extends to a linear, AK
model when it is conjoined with a backward-looking adjustment process for public debt
[Braeuninger (2005)]. We show that if the debt dynamics are forward-looking, the
maximum will instead be at a degeneracy – another possibility considered by Rankin and
Roffia. However, the main point of the present paper is to show that any debt maximum
in a finite-horizon model will be of an implausibly low order of magnitude, unless
households save over at least two periods. This is because it is the debt flow that crowds-
out investment flows, while this is synonymous with the debt stock in a model with only
two, non-altruistic, overlapping generations, thus leading to a low maximum stock by
default. Removing this restriction produces plausible results, and causes a low rate of
economic growth to be a cause as well as a consequence of a high public debt.
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1. Introduction

Fiscal sustainability has traditionally focussed on the deficit rather than on the debt with

an emphasis on the stability rather the existence of an equilibrium with public debt. See,

for example, papers by Nielsen (1992), Bohn (1995) and Chalk (2000). A main question

has been the convergence of public deficits or surpluses and thence of the stock of debt.

From a forward-looking, Ricardian perspective, stability would require that budget

surpluses in present value terms decline asymptotically, so that expenditures are under

control, that taxes are forthcoming and that net flows are discounted by a larger factor

than the one at which they grow. In an infinite-horizon model or from the perspective of

an altruistic and dynastically-minded individual, who is indifferent to the time-profile of

taxation, the size of any convergent stock of debt does not matter [Barro (1974)], if it

causes no distortions, and thus the notion of a maximum debt is meaningless.

More recently, Rankin and Roffia (2003) analysed public debt in the very different

setting of the Diamond (1965) overlapping generations model where non-altruistic

households live finite lives. In this model, where debt clearly does matter, even as one

that was originally formulated to analyse this very issue, they found that it has a

maximum value because of the nonlinearity of the model, namely, that the capital stock is

an increasing and concave function of its own past value through the wage-saving

relationship. They designate this as a bifurcation, because, from a reverse perspective,

there are two steady states that would join up at an interior point where the debt is at a

maximum. These authors also point out the alternative possibility of a corner or

degenerate maximum, where the maximum debt eradicates the economy, which arises as

a result in Rankin’s (2012) application of the analysis to the Blanchard-Yaari model of

perpetual youth [Yaari (1965) and Blanchard (1985)].

There have been a number of offshoots from the original paper. Braeuninger (2005)

applies the analysis to a model of growth. Farmer and Zotti (2010) also obtain similar

results in an open-economy extension. Roberts (2013) returns to the earlier closed-
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economy form to look at flexible-price government debt to investigate the effect of

different fiscal policy rules.1

However, the paper most relevant to our present concern is Braeuninger (2005).

Bifurcation maxima naturally depend on the nonlinearity model and would, prima facie,

be precluded from appearing in the linear class of AK, endogenous growth models, as

expounded by Romer (1986) and exemplified by Lucas (1988). Braeuninger, however,

shows that the combination of a standard AK model with a familiar, backward-looking

dynamic process for the public debt generates two steady state solutions on either side of

another bifurcation point at which there is a maximum sustainable debt-GDP ratio and a

corresponding minimum sustainable rate of economic growth.

We extend Braeuninger’s analysis in two directions by first considering an alternative

form of debt dynamics and then by generalising the underlying OLG model. The

dynamic stability condition for a backward-looking debt is for the rate of economic

growth to exceed the rate of interest. While this condition has merit and also some

empirical relevance, we also consider debt from an alternative, Ricardian, forward-

looking perspective, as the present value of future budget surpluses. This entails a

reversal of the dynamic stability condition, as the present becomes a function of the

expected future instead of the actual past.

After initially confirming the bifurcation result of Braeuninger (2005) for a backward-

looking debt, we find that if the debt is forward-looking, the maximum is instead at a

point of degeneracy. The reason is that the new forward-stability condition implies a

positive rather than a negative steady state relationship between debt and growth.

Numerical values are applied to flesh-out the model to give an idea of possible

magnitudes. It makes little sense to make a comparison of the two cases predicated on

the different parameter assumptions that are needed for the separate stability conditions.

1 These are found to be important both for the nature and for the size of the maximum debt. A bifurcation
maximum also occurs where tax revenue instead of the level of the debt is treated as exogenous, but at higher level
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However, a clear and strong result is that the computed maximum values for each of the

two dynamic cases are inordinately low – even after the OLG measures of the debt-GDP

ratio have been converted into more familiar and, necessarily, larger annual figures.

This prompts the second generalisation of the model to three overlapping generations,

which allows each household to save in more than a single period. We then obtain

plausibly high values for the debt-GDP ratio from this quite minor generalisation of the

Diamond OLG model. The standard form of the model imposes by default stock-flow

synonymity, a simplifying assumption which is generally innocuous but which is of

critical importance to the present analysis. The problem is that the crowding-out of

investment flows is caused by compatible flows of public debt, which restricts the feasible

size of the stock of public debt when the two are effectively the same. A corollary is that

when economic growth is absent, so that stock changes net out to zero, asset crowding-

out is precluded altogether, and the size of the maximum debt depends only on the

contractionary effect of debt-servicing taxes, which are unavoidably present where debt

reflects future budget surpluses, but may be hypothetically absent if debt constitutes the

accumulation of past deficits. In this event, the size of a backward-looking debt may be

extremely high indeed – at least in the steady state.

The paper is organised as follows. In Section 2, we present the standard form of the

model with two overlapping generations. This is used for the analysis of backward- and

forward-looking debt in the next two Sections, 3 and 4. Section 5 then generalises the

model to one of three overlapping generations, allowing saving in two periods. Then,

Sections 6 and 7 can revisit and redraw the analysis of Sections 3 and 4. The concluding

Section 8 provides a brief summary.

of what is now an endogenous debt. By contrast, with exogenous income tax rates, rendering both tax revenue and
the debt endogenous, the maximum is at point of degeneracy, provided that the first Inada condition holds.



5

2. The basic 2-OLG model

2.1 Production

There is a Cobb-Douglas production function with internal constant returns to scale in

capital and labour, as well in in the capital stock, both internal and external to the firm.

Thus, it may thus be presented in per capita terms,

 )()( 1 ikAkiy ttt
 (1)

The wage and interest factor facing the firm are )(iwt and tKR . . Marginal cost pricing

implies
 )()1()( 1 ikAkiw ttt

 and
11

, )(   ikAkR tttK , and symmetric

equilibrium, tt kik )( , i , give

tt Aky  , tt Akw )1(  , AR tK , . (2)

There is a lag between saving and investment, and the assumptions of full depreciation

within the period and of no population growth give

K
tt sk 1 (3)

Households may save by also holding public debt, td ,

t
K
tt dss  (4)

2.2 Households

They also have two period utility functions of the form,

O
t

Y
tt ccU 1lnln   , (5.1)

where  is a time-preference factor. Households supply a fixed unit of labour when

young for which they receive a wage, tw , which is taxed at the rate  . The amount they

save accumulates by the gross interest factor of return R , KRrR 1 , where r is

the net-of-tax interest rate. Only the interest rate is taxed and there is no inflationary loss

to the principal, so that the net real interest return is r)1(1  . The household budget
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constraints when young and old are tt
Y
t

swc  )1(  and   t
O
t

src )1(1
1




.

The logarithmic nature of the utility function, whereby the income and substitution

effects of the interest rate exactly cancel, plus the absence of a second period earned

income to be discounted imply that saving depends only on the take-home wage,

  tt ws )1()1(   (6)

Equations (3), (4) and (6) give rise to a further one for capital accumulation,

  ttt dAkk  )1)(1()1(1  (7)

Defining the growth factor and the debt-GDP ratio as

ttt kkgG 11 1   , ttttt Akdyd  , (8)

enables equation (7) to be presented as

tt AGG  
*

1 )1( where   AG )1()1(*   (9.1)

The parameter
*G , 1* G , is defined as benchmark level of the growth factor in the

absence of both debt and taxes. A steady state of positive output naturally requires that

the levels of debt and taxes are never so high that 1G ( 0g ). Thus, a degenerate

maximum is defined precisely where 1G ( 0g ).

3. Backward-looking public debt in the 2-OLG model

The government financing requirement is given by

  1)1(1  tttt drTEd  , (10.B)

where the size of the debt depends on primary public expenditure, tE , less the revenue

raised from taxing the factors of production, tT , plus the amount of net-of-tax servicing

required to service its previous level, 1td . This public debt in this sense is “backward-

looking” as the accumulation of past primary deficits,

  )()1(1
0

itit
i

i
t TErd 





    (11.B)

Using additional terms to denote the share of government expenditure and the tax take,
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ttt YE , ttt YT , (12)

allows us to present equation (10.B) in a scale-free, ratio form,

1
)1(1








 
 t

t
ttt

G

r



 . (13.B)

A necessary condition for stability is that rG )1(1  , which then ensures

convergence to a debt ratio of

 
)(

)1(1



 




rG

G
(14.B)

This necessary backward-stability condition, rG )1(1  and the condition of a

positive debt, 0 , requires a steady state of primary deficits (   ).

It is possible to question the general empirical validity of this stability condition outside a

financial repression case of low interest rates.2 Defining financial market efficiency as a

case where savers receive the full return on capital, KRR  , implies that the necessary

stability condition, according to equations (2) and (9.1), is     )1()1( .

Taking the capital share to have a stylised value of one-third, 31 , means that 1

is required, which is to say that the household is so patient as to value future consumption

more than current consumption. Thus, the case of financial repression where savers fail

to obtain the marginal product of capital, ARR K  , supports the present case. This

need not be a pathological case, but merely one where financial market concentration

generates monopsonistic rates of interest3 to which the return on public debt is arbitraged

accordingly.4 Another possibly more ubiquitous reason is interest rate unceartinty

uncertainty. While it is not a present concern to model this factor, evidence shows that

2 The dynamic efficiency condition for an economy with exogenous growth is the reverse of this condition.
3 There is an explicit consideration of this in Roberts (2014).

4 With binomial uncertainty both for capital and public debt, so that )0(  KRprob ,

)(1 KK RRprob   , )0(  DRprob and )(1 DD RRprob  , risk-
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on average relatively safe bond interest rates fall well below the rate of economic growth,

which, in turn, may be significantly lower than risky returns on equity.5

Another possibility is of stabilization in the form of fiscal policy of positive (negative)

feedback from the debt to the primary surplus (deficit), )( 1 ttt f  ,

0)( 1  tf  . This relationship was found by Bohn (1998) for the US economy and

confirmed by Greiner, Koeller and Semmler (2007) for selected Eurozone countries,

which reflects the obvious fact that actual economies are away from their steady states.

Linearizing around a steady-state, the feedback rule,

    11 )()()( tt fff , then gives

  1)(
)1(1

)( 










 t

t
t f

G

r
f 




While this to some extent begs the stability question in assume that primary deficits may

be reined back sufficiently in all eventualities, in terms of the present model it may

largely be regarded as a redefinition of the terms in equation (13B).

The critical issue to the analysis, however, is the endogeneity of economic growth, which

according to equation (9.1), requires that equation (13.B) rather be amended to

1
1

*)1(

)1(1




















 t

t
ttt

AG

r





 ,

 

 
0

)1(

)1()1(1
2

1
*

*

1














t
t

t

AG

Gr








,

 

 
0

)1(

)1()1(12
3

1
*

*

2
1

2











 tt

t

AG

AGr








(15.B1)

The debt-ratio is now characterised as a non-linear, first-order difference equation, as its

dual for economic growth,

neutral arbitrage would imply that
KD RR 1)1)(1(   , so that

KD RR  if there is a lower

probability of default on debt,   .
5 Averaging across the five economies, the USA, the UK, France and Germany and Japan, for the period 1900-
1989 in Dutta, Kapur and Orszag (2000), we find average bond returns, growth rates and equity returns are,
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   

t
t

G

Gr
ArGG

*
*

1
)1()1(1

)()1(1)1(






6

 
0

)1()1(1
2

*
1 






 

tt

t

G

Gr

G

G 
,

 
0

)1()1(12
3

*

2
1

2







 

tt

t

G

Gr

G

G 
(16.B1)

If an equilibrium exists, the generalised condition for local

stability,   2*)1()1(1 GGr   , is most likely to hold where the debt is

negligible, 0 , where   , in which case
*)1()1(1 Gr   . An even more

favourable case is 0 , leading to
*GR  – or

*gr  under the parameter

assumptions above, which may be regarded as a necessary but not sufficient condition

for a backwardly stable debt.

Lemma One: There are dual equilibria for growth and for public debt, if the debt

dynamics are backward-looking.

Substituting (15b) into (9) gives the implicit function,

 
0)(

)1(1
)1( * 


 




rG

AG
GGF , where

    
  rGGA

rrGA

G )1(1

)()1(1)1(11)( 2













. (17.B1)

The derivative implies a non-monotonic relationship between growth and the

deficit,   , if the latter is positive, 0 , which translates into a non-monotonic

relationship between growth and the debt ratio, because of the positive relationship

between the debt and the deficit,

 
 

  
0

)1(1

)1(1()(
1

)1(1)(

1

2




























rG

rA

rG

G









respectively, are 0.06%, 2.45% and 5.97% per annum, while bond returns were even negative for three of the five
countries.
6 A backward-looking debt is clearly a source of a monotonic, adjustment process for economic growth.



10

Thus, there is the possibility of two quadratic steady state solutions for growth,

      *2
*

21 )1()1(1..
2

)()1(1)1(
, Gr

ArG
GG 







(18.B1)

as well as for the debt-GDP ratio,

   
A

G

A

ArG )()1(
..

2

)()1(1)1(
,

*
2

*

21








 (19.B1)

We consider three possibilities in the following Proposition.

Proposition One: In the 2-OLG model with backward-looking public debt, there is a

critical maximum public expenditure ratio  ~ given by

     0)1()1(12)1()1(1~ **1   GrGrA  ,

which according to the backward-stability condition,
*)1()1(1 Gr   , is strictly

positive in value.

(1) If   , there is a unique solution for economic growth,

  *
21 )1()1(1

~
GrGGG   , and for the debt ratio,

  **1
21 )1()1(1)1(

~
GrGA   

.7

This single steady state is borderline stable as 1~1   Gtt GG and 1~1   
 tt .

(2) If  ~ , there are two steady states, 21
~

  and 21
~

GGG  . The

monotonicity and convexity of the debt adjustment process implies that the lower valued

debt steady state is locally stable: 1
111 

 


tttt and

1
211 

 


tttt , while, correspondingly, the higher valued growth outcome is

7 The bifurcation value of ~ can be solved from either the debt or the growth equation, because the latter is a

linear function of the former through equation (9).
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too, 1
111 

 GtGtGtt GG and 1
211 

 GtGtGtt GG . A correspondence

principle applies, since only the stable equilibrium has the regular comparative static

properties, 0)(1   and 0)(1  G , while the comparative static

properties of the unstable steady state are perverse in having reversed signs.

(3) If  ~ , no steady state exists, and the adjustment properties of the model point to

exploding debt and to imploding growth.

3.2 The solution for the maximum debt

The first case  ~ implies the maximum steady state for the debt ratio,

  **1 )1()1(1)1( GrGA   
and a corresponding, minimum for the

steady state growth factor,   rGG )1(1)1( *   . The debt is clearly highest

where taxes are at their lowest, because this raises the values both of the primary deficit,

and of economic growth. If 0 , the respective values are  **1 RGGA   and

RGG * . The bifurcation occurs where the growth factor is an unweighted,

geometric average of the debt/tax-free growth factor and the interest factor.8 We note

that the requirement 1G , places limits on the extent of any financial repression to the

extent that
*1 GR  is required.

3.3 A valuation of the steady state maximum when debt is backward-looking

We now consider some possible parameter values. Throughout the analysis we assume

that the debt/tax-free annual growth rate is 2.5%, but that 0 is set in order to obtain

the largest maximum value for this backward-looking case. For this two period version

of the model, the OLG periods are assumed to last 36 years, which means that

4325.2* G . We then consider three possibilities for the annualised interest rate at

8 Note that the requirement 1G limits the extent of possible in financial repression to
*1 GR  .
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which households save, 0.25%, 1.25% and 2.25%. These choices suffice to imply the

bifurcation values of G . Then after setting 1 and 31 , the value for A , which

is consistent, is pinned down, which then leads to the generation of further values for the

maximum debt ratio,  , and for the resulting public expenditure ratio,  .

3.4 An annualised measure of the debt-GDP ratio

It is also of some interest to obtain more familiar annualised measures of the debt-GDP

ratio rather than those based on an income stream spanning the half-life of a drawn-out

OLG period. We propose the following procedure for converting the OLG debt ratio

into an annualised measure. By definition, )()( ykGGkdyd  . On the basis

of equations (3) and (4), the term Gkd constitutes the amount of saving that goes into

debt relative to capital/deposits. This in principle should not depend on the length of the

period, thus as an analytical device, we can set this portfolio ratio at an arbitrary  ,

Gkd . The Cobb-Douglas constant factor income shares property also implies

that ykRK  , where  is another constant. Thus, the debt-ratio is KRG  ,

whether in terms of an OLG period ,
OLG
K

OLGOLG RG  or of single years,

pa
K

papa RG  . It follows that   OLGpaOLGpaOLGpa GGRR  )()( .

This may be evaluated by using the compound relationships,
LpaOLG RR  and

LpaOLG GG  , where L is the length of the period in terms of years to obtain

    OLGLpapaOLGLOLGOLGpa GRRG 
111 

 (20)

This equation along with the choices of values generate the following Table.

Table One: Values at the bifurcation of the maximum for backward-looking debt

with two overlapping generations: %5.2* pag

%25.0par %25.1par %25.2par

pag 1.36% 1.87% 2.37%
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 6.04% 2.36% 0.1206%

OLG2 10.98% 6.61% 1.43%

pa 26.06% 15.68% 3.40%

We can only conclude that the model, as it now stands, is unable to deliver plausible

values for the maximum debt-GDP ratio, even when the rather heroic assumption of zero

taxes is made in order to boost them. The best case is where interest rates are at their

lowest, giving 26% for the annualised measure, a figure which would suggest a very

small public debt in practice, but one which presages a catastrophic loss of steady state

equilibrium in the present model.

4. Forward-looking public debt in the 2-OLG model

4.1 Solution with forward-looking debt dynamics

The analysis so far has in essence been a reworking of Braeuninger (2005). We now how

it changes qualitatively, when public debt is forward-looking according to,

  1
1)1(1)( 

 tttt drTEd  (10.F)

The forward solution for debt is solved as the expected present value of future surpluses,

 







0
)())1(1(

i
itit

i
t TErd  (11.F)

This consideration is straightforward for models of infinitely-lived households or

dynasties, but less so for the basic form of the OLG model.

We suggest that it might also be applied here, if the debt instrument is specified in a way

to compensate for the finiteness of households’ planning horizons. This requires that,

first, it is constituted by perpetuity bonds with a flexible market price which reflects the

present value of future of coupon payments, Secondly, but more hypothetically, these

coupon payments, instead of being fixed cash amounts, consist of shares of the primary
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surplus.9 Thus the relevant debt instrument mimics the essential characteristics of

financial equity with reference to a dynamic model. To this extent, it is difficult to

escape the notion that evaluating the maximum size of the public debt connotes a policy

to maximise gains to bond-holders at the expense of both other tax-payers and

beneficiaries of primary government expenditure.10

Re-using the definitions in (8), gives a debt-GDP ratio of

  





















 







 ..)(
)1(1

)(
)1(1

)(
)1(1

332
32

22
2

11
1

tt
tt

tt
t

tt
t

t
r

GG

r

G

r

G











The size of the debt now depends on expectations of the trajectories of fiscal policy along

with the anticipated effects of economic growth. A solution exists if the infinite sum of

present value primary surpluses is bounded, which requires that primary surpluses are

ultimately discounted by a greater factor than the one by which they grow. Thus there is

a reversal of the previous stability condition, since the condition rG )1(1  or

rg )1(  is now required for adding up over an infinite future. Financial efficiency

is most favourable to this case, defined as the situation where households receive the

highest possible return on the saving. In a steady state, the debt ratio given by

)(
)1(1




 



Gr

G
, (14.F)

which is noteworthy in being the same as equation (14.B) for a backward-looking debt,

but with sign reversals for both the numerator and denominator.11

Lemma Two: There is a unique equilibrium for growth and for public debt, if the debt

dynamics are forward-looking.

9 Should these happen to fall beneath their notional value, then bond-holders are effectively receiving what is
available from the public finances rather than what they are due. This case might be described as one of
“haircuts”, if a short-run occurrence; but it more difficult to imagine this possibility in a steady state.
10 Ferguson (2002) shows that something not necessarily intentional although de facto similar occurred in
nineteenth century Britain, where a politically well-represented 1-2% of the population held the national debt,
which was very large and being serviced through quite regressive taxation.
11 The dynamics are notably different because the size of the debt is determined instantaneously by beliefs of the
future well before the capital stock has been given time to adjust. The model outside the steady state will thus
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Substituting (14.F1) into (9) gives the implicit function,

0)(
)1(1

)1( * 


 



Gr

AG
GGF ,

   
 

0
)1(1

)()1(1)1(11)( 2











GrGA

rGrA

G 


. (17.F1)

The derivative indicates that growth is decreasing in the primary surplus, as

Gr  )1(1  and   . Growth is also negatively related to the debt ratio, as

 
 
 

0
)1(1

)()1(1
1

)1(1)(

1
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
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

Proposition Two: In the 2-OLG model with forward-looking public debt, there is a

degenerate steady state maximum ( 1G ) at r)1()( maxmaxmax   , where

  
















 1

1
1

4

1
1

2

1
1

*

2

2**
max

r

A

Gr

A

Gr

A

G

The monotonically negative relationship between the debt ratio and economic growth

implies that in the steady state the former is highest where the latter is at its steady state

minimum of 1G . This implies r)1()( maxmaxmax   according to

equation (14.F) and  AG  *)1(1 , according to equation (9.1). These are solved

simultaneously to give the maximum tax rate as above.

The key result, so far, is that while there is a bifurcation maximum for the backward-

looking debt, there is a degenerate maximum for the forward-looking one. This is

because the two distinct dynamic cases have different stability conditions, which imply

opposing signs for the partial response of public debt to economic growth, G . The

crowding-out effect of debt on growth, 0 G , in being common to both cases,

demonstrate saddle-path properties with jumps in debt followed by responses in growth that are distributed over
time.
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thus causes a non-monotonic relationship as the source of a bifurcation in the first case,

but a monotonically decreasing response, determining the degeneracy, in the second case.

3.2 A valuation of the steady state maximum when debt is forward-looking

Equations (2) and (9.1) give    *)1()1( GRK   . If we fix the debt/tax-

free growth factor at is previous level, we may consider various possibilities of the

interest rate in this financial efficiency by varying the value of  . We now consider

higher annualised returns on capital,
pa

Kr of 3%, 4% and 5%, and find that setting

8.0 allows a more set of plausible vales for capital income share of 34621.0 ,

42851.0 and 51414.0 . The debt is increasing in the primary surpluses, so will be

highest where public expenditure is minimized at 0 . The results are presented as

follows.

Table Two: Values at the degeneracy of the maximum for forward-looking debt

with two overlapping generations: %5.2* pag

%3par %4par %5par

g 0 0 0

 18.30% 22.36% 25.61%

OLG2 11.80% 9.28% 7.19%

pa 33.19% 36.61% 39.09%

We cannot sensibly make a quantitative comparison of the two cases, since they are

predicated on the different parameter values underlying the separate stability conditions.

In qualitative terms, if the dynamics are forward-looking case, the debt is potentially

larger, because the responsive fall in growth is potentially further to a corner point of

degeneracy rather than to an interior point of bifurcation, but this effect is countered by

the fact that the forward-looking maximum is supported by high and contractionary taxes.

However, an unambiguous conclusion is that these two qualitatively separate cases each

deliver debt maxima that are far below what might be imagined empirically.
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5. A 3-OLG model

5.1 Modifications

This prompts a substantive generalisation of the model by dispensing with the assumption

that each household saves only in a single period of life. This requires that the utility

function in equation (5.1) is extended to three periods,

O
t

M
t

Y
tt cccU 1

2
1 lnlnln    , (5.2)

for consumption when young (Y), middle-aged (M) and old (O), and with geometric

discounting. The household works only in the first two of the three periods, receives a

pre-tax wage in each, Y
t

w and M
tw , and faces the post-tax budget constraint,

O
t

N

M
tN

Y
t

M
tN

Y
t c

R
c

R
cw

R
w 221

11
)1(

1
)1(    , where rRN )1(1  .

5.2 The asset flow equations

The households’ asset accumulation for capital and public debt are given by

)()0(

)()0()1(

1,,,1

1,,,1

Y
tB

M
tB

Y
tBtt

Y
tK

M
tK

Y
tKtt

AAAbb

AAAkk







 
(21)

The left-hand-sides represent the flow supplies, respectively, of capital issued by firms –

as equities, loans, etc – and of public debt issued by the government – as bonds and

treasury bills. To delineate flows, we temporarily make explicit the term  , denoting

the rate of capital depreciation. The right-hand-sides represent the corresponding flow

demands from young and middle-aged households. The flow demands of the young are

synonymous with their stock demands,
Y

tKA , and
Y

tBA , , since we assume that they arrive

at the start of the period without having acquired or inherited stocks of assets. Those of

the middle-aged consist of their current stocks less the those they acquired at the end of

the previous period when they were young,
Y

tK
M

tK AA 1,,  and
Y

tB
M

tB AA 1,,  . The old,

as before, are assumed merely to disburse their entire asset holdings for a final period of
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consumption without leaving a bequest to their children or, as the model now permits,

directly to their grand-children.

Aggregating equations (21), where
Y

tB
Y

tK
Y
t AAA ,,  and

M
tB

M
tK

M
t AAA ,,  , gives

)()1( 111   tt
Y
t

M
t

Y
ttt ddAAAkk  (22)

This shows that it is public debt flows, 1 tt dd , that crowd-out investment flows,

tt kk )1(1  . Maintaining the earlier assumption of 100% depreciation, 1 , for

these shorter but still long time-periods implies

)( 111   tt
Y
t

M
t

Y
tt ddAAAk . (23)

This is to be compared with t
Y
tt dAk 1 in the earlier equation (3), where t

Y
t

sA  ,

but, moreover, where implicitly 01 td , effectively making td both a stock and flow.

Certain sign restrictions are necessary for a tenable aggregation. The asset stocks of

public debt are strictly positive, 0, Y
tBA , 0, M

tBA , because the government is

deemed only to borrow from households. Likewise, net flows of capital are also positive,

because firms are assumed not to borrow from the government. For present purposes,

public debt and private capital are being regarded as perfect substitutes, so that portfolio

composition is not an issue.12

However, the expectation the young might have of receiving a sufficiently high income

subsequently when middle-aged might, depending on their preferences, cause them to

want to borrow. If so, it is assumed they will borrow on the same terms as firms and so at

a common interest rate, ARR KL  : that is, there is no price discrimination – nor

differential uncertainty in this extended model.

12 This is considered in Roberts (2013), where public debt may be higher because it then enters the mathematical
structure of the model multiplicatively rather than additively.
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Financial frictions would lead to lower saving rate so interest,
LS RR  , as well as to the

possibility that young households would choose neither to save nor to borrow. In this

event, little is gained analytically, because the model simple reverts to the earlier form

where each generation saves only in a single period. The model might then be

generalized by progressively increasing the number of generations until the periods are

sufficiently short to facilitate saving over two periods, but for an analytical rather than

empirical purposes it surely makes more sense to impose the parameter conditions under

which the young as well as the middle-aged choose to save.

The details are given in an Appendix, while the solution is as follows. First, the condition

for the young to save is

12  NGR (24)

Then the solution for economic growth is

 1
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(9.2)

The special case without either debt or taxes is
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, (9.2*)

which gives a unique (positively valued) steady-state

*
1

2*
0

*
0

* )2(2 BBBG  if 04 *
1

2*
0  BB

6. Backward-looking public debt in the 3-OLG model

6.1 The condition for two generations to save

First, a backward-looking debt is less favourable to the case of two generations saving,

because the necessary backward-stability condition, rG )1(1  , may conflict with

the condition that households save also in the first period of their lives,

Gr  ))1(1)(( 2  . Thus, a judicious choice of parameter values is required in

order to incorporate both these features, which may be regarded as plausible, if not

standard.13

6.2 Steady state

Lemma Three: There are two steady states for growth and for public debt, if the debt

dynamics are backward-looking with two generations saving, if 0)1(  r .

Substituting (14.B) into (9.2) gives the implicit function,
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(17.B2)

13 In the absence of price discrimination, where young households could borrow at the same unsubsidised

factor as firms, KR , the condition for wanting so to do is GRK  )( 2 ; and thus the

condition KRGr )())1(1)(( 22   implies a desire to neither save nor borrow.
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Note that the numerator changes sign only if 0)1(  r . Also note that
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Proposition Three: In the 3-OLG model with backward-looking public debt, (i)

if 0r , there is a maximum public debt at a bifurcation; (ii) if 0r , there is a

degeneracy, where there is no maximum for the public debt.

Part (i) is merely an extension of Proposition One. The difference is that the bifurcation

will occur at a lower value of the growth rate. Part (ii), however, states that there will be

a degeneracy also in the backward-looking case if 0r , but, the question arises whether

this could be regarded as a steady state? If, hypothetically, there is a degeneracy

at 1G , if 0 , the debt-ratio would be unbounded in the steady state. However, this

limiting case indicates the importance of low interest rates for the size of the debt-GDP

ratio. This point is demonstrated with various real interest rate values in the next Table.

6.3 Numerical values

We keep the same values for the annual rates of the debt/tax-free growth rate and the

return on saving as in Section 3 where there also a backward-looking debt but with two

overlapping generations.

Table Three: Values at the bifurcation of the maximum for a backward-looking

debt in the 3-OLG model where two generations save %5.2* pag

%25.0par %25.1par %25.2par

pag 0.82% 1.78% 2.37%

 27.21% 5.35% 0.17%

OLG3 212.15% 45.12% 5.97%

pa 374.36% 79.62% 10.53%
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There is extreme variation the size of the maximum in response to changes in the

exogenous interest rate. If the difference between the interest rate and the growth rate is

small, there is virtually no change from the previous specification with two overlapping

generations. However, if there is severe financial repression leading to very low

household interest rates, the debt-GDP ratio in the steady state may potentially be very

high. This is for two reasons. First, a large backward-looking debt, as the accumulation

of past primary deficits, is consistent with very low taxes and, hence, a minimal degree of

crowding-out through the factor of debt-servicing. Second, in the limit where the

interest rate converges to zero, the bifurcation converges to the degeneracy of a zero rate

of economic growth, which implies negligible steady state changes in the stock of debt –

and thus infinitesimal debt flows – and, hence, an imperceptible degree of crowding-out.

Thus, a low rate of economic growth becomes a cause as well as a consequence of a large

public debt by minimising its asset crowding-out effect.

7. Forward-looking public debt in the 3-OLG model

7.1 The steady state

Lemma Four: There is a unique steady state for growth and for public debt, if the debt

dynamics are forward-looking with two generations saving.

Substituting (14.F) into (9.2) gives the implicit function,
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Proposition Four: In the 3-OLG model, if public debt is forward-looking, its maximum

level is at a degeneracy ( 1G ) where r)1()(max   and it is clearly

highest for this previous case where 0 and
max  , and where

max  satisfies
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01 10  BB from equation (9.2). This replicates the previous case with a

degeneracy at a zero rate of economic growth, except the asset crowding-out effect is

now precluded because of zero stock changes, leading to potentially higher values.

7.2 Numerical values

We choose the same values for the interest rate as for the three OLG version of the model

in Section 4, except 6.0 is chosen to obtain reasonable values for  , which is

solved as residual.

Table Four: Values at the degeneracy for the maximum forward-looking public

debt ratio in a 3-OLG model where two generations save

%3par %4par %5par

pag 0% 0% 0%

 30.71% 32.98% 32.88%

OLG3 42.92% 31.47% 22.02%

pa 84.71% 77.76% 67.63%

We see that the values, in comparison with those of Table Two, are of a higher and more

plausible order of magnitude. The similarity of relative modest responses to changes in

the interest rate value, however, remains. The associated average tax rates appear to be

quite low, but these could be increased significantly by raising the assumed value for the

debt/tax-free growth rate.

8. Summary and conclusions

The question how large can the public debt get? is not only of theoretical interest but also

of some practical concern. The Diamond OLG model has proved to be remarkably

versatile for addressing a whole range of issues in the areas of public finance and of

finite-horizon macroeconomics. We have also found that it is also useful for analysing
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economies with very large public debts, provided its households are allowed to save over

more than a single period of their lives in order to throw out the default feature of stock-

flow synonymity. This results in much larger and empirically sensible values for the

maximum public debt, because very large stocks may coexist with small flows to

minimise the asset crowding-out effect. A minor generalisation to three overlapping

generations thus equips the Diamond model to deal with extreme cases of the

phenomenon that it was originally formulated to address.
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Appendix: Solution for economic growth for in the 3-OLG model

Defining rRN )1(1  , the planned (and actual) consumption demands are
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This implies that the young household’s asset holding is
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The condition that the young save, 0Y
t

A , is
12  NGR . Clearly, the forward-

looking dynamic case where 11 
NGR is more conducive to this possibility, while if

11 
NGR in the backward-looking case, the condition G 2 will never hold

unless 14121 1   NGR , for which it is necessary that NRG 2 .

The asset position of the middle-aged is
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which is strictly positive as there is no earned income when old. Subtracting (A2) from

(A3) gives the asset flow demand of the future middle-aged as
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or for the current middle-aged as
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Where there are no seniority or productivity effects, t
M
t

Y
t

www  , adding (A2) and

(A4) gives
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Equation (20) then implies
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which with (2), after rearranging gives
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and, using the definitions in (8)
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