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Abstract

The paper investigates whether forecast performance is enhanced by real-time datasets

incorporating past data vintages and survey expectations. It proposes a modelling frame-

work and evaluation procedure which allows a real-time and a ¯nal assessment of the use

of the data in forecasting judged by various statistical and economic criteria. Analysing

US output data over 1968q4-2015q1, we ¯nd both elements of the real-time data are useful

with their contributions varying over time. Revisions data are particularly valuable for

point and density forecasts of growth but survey expectations are important in forecasting

rare recessionary events.
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1 Introduction

Real-time datasets are now widely available covering macroeconomic variables for many

countries. The datasets contain the available history of data vintages, showing the pre-

liminary estimates of variables published at the earliest opportunity alongside their sub-

sequent revision as more complete information becomes available. The datasets also often

include direct measures of expectations as expressed in surveys published at the time,

describing agents' beliefs on expected future values of the macroeconomic variables and

the expected contemporaneous values when the ¯rst-release data are published with a

delay. A substantial literature has now grown developing the methods required for the

analysis of real-time datasets and their use in prescribing and evaluating policy; see, for

example, the October 2009 issue of this journal and the review in Croushore (2011).

One area in which real-time data are potentially important is in forecasting since the

data provide a comprehensive description of the context in which forecasts and subsequent

decisions are made. However, while real-time data are often employed in forecasting,

there remains some scepticism about their usefulness and they do not ¯gure in forecasting

exercises as systematically as might be expected. For example, of the ¯fty-one papers

concerned with forecasting output published over the last three years in this journal, the

Review of Economics and Statistics, Journal of Forecasting or International Journal of

Forecasting, only ¯ve took account of the availability of both successive data vintages and

survey data, and twenty papers made no use of real time data at all.

The purpose of this paper then is to judge the usefulness of real-time datasets in

forecasting through an evaluation exercise that uses revisions data and survey data to

forecast quarterly output growth and the occurrence of recessions in the US. The paper

contributes to the discussion on the use of real-time data in at least three ways. First, it

suggests a simple canonical modelling framework that can readily accommodate revisions

and survey data alongside the most recent data measures to characterise the underlying

data generating process of the variables of interest as well as the expectation formation and

measurement processes. Secondly, it investigates the usefulness of revisions and survey

data by comparing the forecasting performances of models that make full use of the
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data with those of models that make only partial use of the information contained in

real-time datasets. And thirdly, the paper considers various evaluation criteria to judge

the usefulness of real-time data in forecasting, drawing a distinction between `real-time

forecast evaluation' and a `¯nal assessment' of forecast performance. The usefulness of

real time data is judged according to statistical criteria, based on models' point forecasts

and density forecasts, and according to economic criteria. In the latter case, we focus

on forecasting the likely occurrence of a set of recessionary events and introduce a novel

means of evaluating these probability forecasts, based on a fair bet, to investigate the role

of real-time data in forecast-based decisions involving relatively rare events.

The three aspects of our modelling exercise are motivated by di®erent strands of

the literature. The early paper by Mankiw, Runkle and Shapiro (1984) was in°uential

in generating scepticism over the use of revisions data, concluding that revisions are

mainly `news' (i.e. have no predictable content),1 while Croushore (2010) notes that

the ine±ciencies and biases in expectational errors in surveys, as found in early studies,

generated a long-lasting scepticism of the value of survey data too.2 The ¯rst challenge

for the paper then is to set out a modelling framework that can accommodate revisions

data and survey data coherently alongside the ¯rst-release data. This can be used to build

a picture of the information available to individuals at each time, and how it is used, to

establish whether the scepticism found in some parts of the literature is warranted.

The second aspect of the paper focuses on the usefulness of revisions and survey data in

forecasting and relates to the use of information when there are many potential predictor

variables, as discussed in Clements and Hendry (2005) and Stock and Watson (2006) for

example. This literature recognises that, with the samples of data typically available,

1Scepticism is found in Croushore and Stark (2003), Croushore (2006) and Koenig et al (2003). On the

other hand, Patterson (2002), Kishor and Koenig (2005), Arouba (2008), Garratt et al. (2008), Clements

and Galvao (2010) and Jacobs and van Norden (2011) all argue that revisions contain useful information.
2Croushore's own results, and those of Ang et al. (2007) and Aretz and Peel (2010) for example,

show that survey expectations are often hard to beat in real time forecasting exercises. Similarly, Frale

et al. (2010) and Banbura and Runstler (2011) show that survey data are useful in nowcasts from mixed-

frequency models and Matheson et al (2010) show that survey data are useful in predicting actual series

and their revisions.
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parameter estimation error can dominate model's forecast performance. This means, for

example, that adding a variable to a forecasting model can undermine its forecasting

performance even if the variable is part of the true data generating process. One way to

mitigate against this problem is to average across forecasts from di®erent models (see, for

example, Harvey and Newbold (2005) and Timmermann (2006) for discussion). This is

the approach taken here, producing forecasts using various `meta' models each constructed

using model averaging techniques. The meta models are distinguished according to their

use of the real time data (making use of vintage data only, survey data only or both). The

averaging allows for time-varying weights and ensures that each meta model makes best

use of the information available to it in forecasting. Comparison of the forecasts across

the meta models then provides an assessment of the contributions of the di®erent types

of real-time data.

The third aspect of the paper relates to the ambiguity on the criteria to be used in

forecast evaluation. This partly arises from an increasing awareness of the importance of

properly characterising forecast uncertainties which has shifted attention from point fore-

casts to density forecasts, and evaluation criteria from models' root mean squared errors

(RMSEs) to their probability integral transforms (PITs) and logarithmic scores; see, for

example, the June 2010 Special Issue of Journal of Applied Econometrics for an overview.

But there is also increasing interest in judging the economic value of a model's forecast,

concentrating on the usefulness of the models in a speci¯c decision-making context rather

than on its statistical performance, as discussed in Granger and Machina (2006) for exam-

ple. Certainly economic and statistical evaluation criteria highlight di®erent features of

the models and their forecast performance and so, in this paper, we judge the usefulness

of real time data not just in terms of their use in generating point and density forecasts of

output growth but also their role in forecasting the probability of relatively rare/extreme

recessionary events.

The layout of the remainder of the paper is as follows. Section 2 outlines the methods

employed in the paper, introducing our modelling framework and de¯ning and explain-

ing the construction of the meta models. Section 3 sets out the statistical and economic

criteria used in our forecast evaluation exercise, including a description of the evaluation
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based on a fair bet. Section 4 applies the methods to US data over 19684 ¡ 20151,

including all the data vintages available for actual output and the expected output data

from surveys over the period. As it turns out, we ¯nd that both elements of the real-time

data, from data vintages and from surveys, are useful in forecasting, judged by statistical

and economic criteria, with the contribution of the di®erent elements varying over time.

Revisions data are particularly valuable in producing point and density forecasts for out-

put growth but the direct measures of expectations taken from surveys play an important

role in forecasting rare recessionary events. Section 5 concludes.

2 A Modelling Framework to Accommodate Real-Time Information

2.1 The Basic VAR Model

Our interest in real time datasets revolves around the distinction between the actual and

expected value of a variable measured at di®erent times and so it is important to be clear

about notation and terminology from the outset.3 In what follows, ¡ is the measure of

the (logarithm of the) variable  at time ¡  as released at time  , while 

+ is a direct

measure of the expected value of the variable at + , with the expectation formed on the

basis of information available at the time the measure is released, . Throughout, we shall

assume that data is published with a one period delay, and the time- vintage of data

is denoted  = f1, 2, ..., ¡2, ¡1, 

 , 


+1,..., 


+g which includes the time-

measures of the actual variables at  = 1   ¡ 1 and the time- measures of expected

contemporaneous and future values of the variables published for up to  periods ahead.

In our real-time forecast evaluation exercise, we denote the period in which decisions are

made by  for  ·  and  is termed `the most recent data vintage' while  is the `¯nal

data vintage'. The information arriving between  and  +  is denoted, Y+ = f ,

 +g

For the modelling exercise, we assume that the variable  is di®erence stationary,

that revisions are stationary and that expectational errors are stationary.4 In this case,

3The modelling framework can be readily extended to accommodate data on revisions and surveys on

more than one variable.
4For output, the assumption of di®erence stationarity is reasonably uncontentious. Stationarity in
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if revisions continue for no longer than  periods after the ¯rst-release and if the surveys

provide measures of the expected values of  for up to  periods ahead, then in making a

decision at time  we will require a model that explains the following  = 1 ++  + 1

series over the period  = 1   :

 = ¡1 ¡ ¡2 : growth in  as described by the most-recent data vintage;

 = ¡1¡ ¡ ¡1¡1¡ : 
 revision of  updating previous measures,  = 1 ;

 = 

+ ¡ 


+¡1 : expected contemporaneous and future growth of ,  = 0 

A simple -order vector autoregressive model that explains these series for  = 1   can

be written:

 = 10 +
X

=1

2

411 ¡ +
X

=1

12 ¡ +
X

=1

13 ¡

3

5+ " (2.1)

 = 20 +
X

=1

2

421 ¡ +
X

=1

22 ¡ +
X

=1

23 ¡

3

5+ " ,  = 1  (2.2)

 = 30 +
X

=1

2

431 ¡ +
X

=1

32 ¡ +
X

=1

33 ¡

3

5+ " ,  = 0  (2.3)

where the 's are coe±cients and "'s are vectors of mean-zero shocks. We denote this

model by  in what follows, with the subscript `  ' highlighting that the es-

timated model will di®er depending on the maximum number of revisions, the forecast

horizon in the survey and on the estimation period involved.

Noting that the variables in , , and  involve the  variables measured at

 and earlier, the equations in (2.1)-(2.3) can be stacked and transformed to obtain the

(+ 1)-order autoregressive model

z = A0 +
+1X

=1

A1 z¡1 + "  = 1   (2.4)

where z = (¡1, ¡2  ¡+1, 

  , 


+ )

0 is the £ 1 vector of data published in

time ,A0 is a £1 vector of parameters derived from the 's and theA1 are £matrices

revisions is reasonable if the data re°ects measurement error and abstracts from the e®ects of de¯nitional

or `benchmark' changes. Stationary expectational errors are consistent with a wide range of hypotheses

on expectation formation including, for example, the Rational Expectations Hypothesis.
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similarly derived. Alternatively, the model in (2.1)-(2.3) can be rewritten in the form of

a cointegrating VAR explaining ¢z in which the parameters are restricted to re°ect the

assumptions that revisions and expectational errors are stationary.5 These parameter

restrictions, whether transferred to the cointegrating VAR form or to the stacked form in

(2.4), ensure that the various measures of the variables in  converge to the same values

in the long run. While the form in (2.1)-(2.3) is the most natural one for estimation

purposes, (2.4) is more convenient for describing simulation and forecasting exercises.

It is worth noting that the above transformation incorporates the assumption that the

data is revised no more than  times. Taken literally, this means that the most recent

vintage of data  describes the post-revision series for observations dated at  ¡  and

earlier (i.e. ¡ = ¡,  = 1    =  + 1 ).6 The model at (2.4) therefore

encompasses the `conventional model' that would be estimated in real time based only

on the most recent vintage of data. This latter model can be denoted 0¡1 since it

does not use either past vintages of data or the expectations of even the contemporaneous

value of  as provided in surveys.

2.2 Meta Models and Forecast Combinations

The VAR model of (2.1)-(2.4) provides a simple framework within which all the real-time

data available can be accommodated in a coherent way. But such a model could be very

highly parameterised, depending on the number of revisions available, the length of the

survey horizon and the chosen order of the VAR, and this could undermine its value as a

forecasting tool. Similarly, it is possible that di®erent parts of the real-time data become

more or less useful for forecasting at di®erent times. For example, statistical agencies'

procedures could mean that measurement errors contained in the ¯rst-release of data are

more pronounced in times of very high or very low growth, making revisions data more

5This means that there are  cointegrating relations between ¡1 and each of the ¡1¡, and  +1

cointegrating relations between ¡1 and each of the 

+ , all of the form (1, ¡1). See Garratt et al.

(2008) for details.
6The assumption that there are no more than  revisions means the (+1) diagonal in a standard

`data triangle' is equal to (and can be overwritten by) the observations in the most-recent vintage. The

model in (2.4) then explains the observations on the lowest (+1) diagonals (plus the survey measures).
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useful. Or forecasters may watch incoming news more carefully at times of crisis so that

survey data becomes more informative at these times.7

To mitigate against these problems, we estimate a set of models of the form in (2.1)-

(2.4) and combine these using model averaging techniques into a `meta' model. The

weights used to combine the models, and their associated forecasts, can be chosen so

that forecast performance is maximised (avoiding the problems of over-parameterisation)

and can change over time so that di®erent parts of the real-time data can be used when

they are helpful. Of course, the approach exploits the fact that forecast performance is

typically improved through forecast combinations, as established by Harvey and Newbold

(2005).

The meta model is obtained noting that forecasts at  can be based on model 

or indeed any model  for  = 0   and  = ¡1   , or a weighted average of

these models. We choose weights that re°ect the relative forecasting performance over

the recent past, where performance is judged according to the question of interest. So

here, the weights could be based on the models' ( + 1)-period-ahead forecasts of the

(post-revision) measure of output ++1  if the `true' output level is the variable of

interest, or the weights could be based on the models' one-period-ahead forecast of the

¯rst-release measure +1 if forecasts of this variable inform decisions. In the latter case,

with interest focused on the one-step-ahead forecasts, the meta model that makes full use

of the real-time data is obtained as follows:

² Split the currently available sample into two sub-samples: an estimation period

 = 1   ¡¤; and a `training period'  =  ¡¤+ 1   . Estimate model ¡¤

de¯ned in (2.1)-(2.3) over  = 1   ¡ ¤ and for  = 0   and  = ¡1   ,

providing (+ 1)£ ( + 2) alternative models;

² Evaluate the forecast performance of these individual models with a chosen statisti-

cal criterion. For example, if interest is primarily on the performance of the model in

terms of point forecasts of the one-step-ahead forecast, then the squared forecast er-

7See, Loungani et al. (2013), for example, for discussion on the changing impact of information

rigidities on survey data at di®erent points of the business cycle.
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ror might be used: ¡¤ = (¡¤+1¡¤ ¡ [¡¤+1¡¤ j  ])
2. Or, if the whole

density forecast is of interest, the log score can be used: ¡¤ = ln((¡¤+1¡¤ j

 ) where (¡¤+1¡¤ j  ) is the nowcast density for model ¡¤.

² Repeat this exercise for samples over the whole of the training period and calculate

weights for the models,  on the basis of the relative forecast performance of

the individual models over the training period.8 For example, forecast performance

might be judged by the mean of the squared forecast error  =
1
¤

P
 


¡

if point forecasts are of interest, obtaining weights as follows:

 =
(
q
 )

¡1

X



X


(
q
 )¡1

 (2.5)

Alternatively, if density forecasts are of interest, performance might be judged by

the average of the log scores,  =
1
¤

P
 


¡, with weights given by

 = exp( )
X



X



exp( ) (2.6)

The `meta model' that makes full use of the real-time data over the period  = 1  

consists of the individual estimated models and their weights and it is denoted by

 = f ,  for  = 0   and  = ¡1  g (2.7)

The meta model can be used to obtain point forecasts and density forecasts using the

weighted average of the models' individual point forecasts and aggregating over the mod-

els' individual densities.

3 Assessing Models' Forecasting Performance and Usefulness in Decision-

Making

3.1 Real-Time and Final Forecast Assessment

A judgement of the usefulness of real-time data in forecasting and decision-making can

be based on two complementary elements: a real-time assessment and a ¯nal assessment.

8A variety of weighting schemes have been proposed in the model averaging literature. Elliott et al.

(2013) reviews some of these, noting that the appropriateness of a weighting scheme depends on various

trade-o®s including that between omitted variable bias and parameter estimation error.
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The ¯rst of these elements is based on the weights found in the `meta model' described

above since these provide a straightforward summary of the usefulness of the revisions

and survey data as it would be judged in real time. Speci¯cally, the nature of the meta

model  obtained at time  can be summarised by the statistics

 =
X

=0

 £  and  =
X

=¡1

 £   (3.8)

showing the weighted average of the models' revision length and forecast horizon. The 

and  statistics captures the relative importance of the revision data and the survey data

in de¯ning the meta model at time  . If they deviate from 0 and ¡1 respectively, they

show that the revisions data and the survey data would have made a contribution to an

out-of-sample forecasting exercise if it had been conducted in real time. This provides a

real-time assessment of the usefulness of the revisions and survey data in  therefore.

Di®erent values for the weights could be obtained for di®erent  , allowing the possibility

that the usefulness of the revision and survey data changes over time.

The meta model can be used to provide forecasts for any decision-date  . If this

exercise is repeated over the whole evaluation period ( =     , say), then the forecast

criterion (squared error or log score, for example) can be calculated at each observation

to obtain a measure of the overall performance of the models which, at least in principle

make full use of  revisions and  survey forecasts. A ¯nal assessment of the usefulness of

the revisions and survey data can be based on the performance of the meta model 

over  =     compared to that of alternative meta models in which

² no use is made of the survey data throughout (i.e. based on the meta model ¡1

for  =     );

² no use is made of the revisions data throughout (i.e. based on the meta model

0 for  =     ); and

² no use is made of either the revisions or survey data throughout (i.e. based on the

conventional real time model 0¡1 for  =     ).

These three models are nested within  and, in principle, could be chosen if zero

weights are placed on the models involving revisions or surveys at all times when deriving
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 . In practice, zero weights might be unlikely and so comparison of the forecast

criteria obtained from the four models provides an overall assessment of the usefulness of

the revisions and survey data taking into account that they might be more or less useful

at di®erent times.

3.2 Event probability forecasts and economic evaluation criteria

The discussion above focuses on statistical criteria for judging models' point and density

forecasts. However, recent years have seen a growing interest in a decision-based approach

to the evaluation of forecasts with performance judged according to the economic value of

forecasts in an explicit decision-making context.9 The preponderance of studies employing

this decision-based approach are in the area of applied ¯nance where investment strategies

and their outcomes are relatively straightforward to describe.10 The decision-making

context in macroeconomics is not so straightforward and there is no generally accepted

decision-based criterion with which to judge models' forecasts of output °uctuations.

However, we believe that a judgement on the usefulness of real time data in output

forecasts should include an element that re°ects the economic worth of the forecast and,

to this end, we also consider models' abilities to forecast the likely occurrence of a recession

(suitably de¯ned). Given the interest shown by the media in whether the economy is or

is not in recession, it appears that this dichotomous event is important in real-world

decisions. The probability of a recession occurring at  can be forecast using the meta

models  , 0 , ¡1 and 0¡1 and comparison of the probability forecasts

again provides an indication of the usefulness of real-time data.

A straightforward statistical evaluation of a model's event probability forecast,  , is

obtained through a contingency table analysis. Here, the forecast probability is converted

to a prediction on whether the event will happen or not ( = 1 or 0 respectively) depending

on whether the probability is greater or less than 0.5. A two-by-two contingency table

9This recognises that the statistical criteria used to evaluate models, typically measured using mean

squared forecasting error (MSE), provide information on the economic value of their forecasts only under

certain conditions. See Granger and Pesaran (2000) for an overview of this discussion.
10See, for example, Leitch and Tanner (1991), Barberis (2000), Abhyanker et al. (2005) and Garratt

and Lee (2010).
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then shows the number of occasions a recession is correctly forecast to occur (YY, hits)

over the  ¡  + 1 observations of the evaluation period, when it is incorrectly forecast

to occur (YN, false alarms), when it is incorrectly predicted that recession will not occur

(misses, NY) and when it is correctly predicted that a recession will not occur (NN). The

performance of the model can be described by the proportion of forecasts that are correct

( +
¡+1

) or the Kuipers score [KS] (a statistic that takes values between -1 and 1 and

summarises the degree of correspondence between predictions and outcomes similar to a

correlation coe±cient).11 Formal tests can also be applied against the null that there is

no relationship between the outcome and the predictions.12

A more `economic' evaluation might be based on an explicit investment scenario in

which an investor bets on whether an event occurs or not and the model is judged according

to the returns obtained using it. (See Johnstone et. al., 2013, for a related approach). We

can de¯ne a `symmetric bet' to be where an investor pays a ¯xed charge each period to

make a bet on whether the event will occur or not and receives a payment if the prediction

turns out to be true. Alternatively, the bet could be de¯ned as `asymmetric' if the bet is

made only when the investor believes the event will occur. In either scenario, the pro¯ts

obtained from decision-making directly measure the economic value of the model over the

evaluation period.

To formalise the ideas, and using  to denote the logarithm of output from now on,

we note that any recessionary event de¯ned at  as a set of outcomes involving outputs up

to  periods ahead can be written as (Y+1+). The probability that the event occurs

is

probability of recession=
Z


Pr(Y+1+j Y1   ) Y+1+ (3.9)

In a simulation exercise, the forecast probability is obtained simply as the proportion of

the simulations in which the event is observed to occur. In a decision-making context,

where an individual's objective function ( , (Y+1+)) depends on the outcome of

11The KS focuses attention on the successful prediction of recession while also penalising false alarms

(=  
 + ¡ 

+ ; i.e. the hit rate - false alarm rate)
12For example, Pesaran and Timmermann [PT] (2009) describe tests of the null that the model's

predictions are no better than those achieved based only on the unconditional probability.
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a choice variable  and the occurrence of the recessionary event, the decision-maker's

problem can be written as

max


½ Z

(  (Y+1+)) Pr
³
Y+1+ j Y1  

´
Y+1+

¾



(3.10)

In terms of the simulations, the decision involves simply choosing the value of  that

maximises the value of the objective function when averaging across the simulations. We

can denote the optimal value of the choice variable chosen using model  by  .

Pesaran and Skouras (2000) then suggest measuring the model's performance with the

statistic

ª =
1

 ¡  + 1

X

=

(  (Y+1+)) (3.11)

calculated over the out-of-sample evaluation period     and based around the values

of  chosen using model  in each period. Similar statistics can be calculated

for any other model, with associated optimal choice variable, and these provide the basis

of a comparison of the forecast performance of the models on economic grounds.

The payout contingencies relating to the symmetric and asymmetric bets described

above are summarised as:

Payout contingencies for outcomes

of a symmetric fair bet

Payout contingencies for outcomes

of an asymmetric fair bet

Recession Occurs Recession Occurs

Recession

Forecast
  

Recession

Forecast
  

   ¡ 1 ¡1    ¡ 1 ¡1

 ¡1  ¡ 1  0 0

The bet can be described as `fair' if the payout, , is chosen so that the investor would

break even if her bet is based on the unconditional probability, , that the event occurs.

For the symmetric bet, this is where  = 1
22¡2+1

and it is where  = 1

in the asymmetric

case.13 If the model's forecast probability is  and if the investor bets on recession when 

13The payout for a correct prediction is largest in a symmetric bet when  = 05 and increases monoton-

ically as  ! 0 in the asymmentric case.
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exceeds some critical value , then the decision to bet on recession or not is equivalent to

choosing the critical value. In the symmetric case, the investor's expected end-of-forecast-

period wealth corresponding to (  (Y+1+)) in (3.10) is given by

[+] =

8
><

>:

( ¡ 1) ¡ (1¡ ) = 
22¡2+1

¡ 1 if    ,  = 1

( ¡ 1)(1¡ )¡  = 1¡
22¡2+1

¡ 1 if    ,  = 0

and maximum expected wealth is achieved by choosing a critical value of  = 05 since


22¡2+1

 1¡
22¡2+1

if   05 and vice versa if   05. In the asymmetric case, wealth

is given by

[+] =

8
><

>:

( ¡ 1) ¡ (1¡ ) = 


¡ 1 if    ,  = 1

0 if    ,  = 0

and maximum expected wealth is achieved by choosing a critical value of  =  since




¡ 1  0 if   . In both cases, model  can be used to predict the occurrence of

a recession or not in each observation through the evaluation period and, depending on

the actual outcome, this will generate a sequence of ¯nancial returns that can again be

used to judge the model as in (3.11). Carrying out the same exercise for models¡1 ,

0 and 0¡1 provides a $ value for each model which are comparable across models

and which conveys directly the economic usefulness of each of these models (and of the

di®erent elements of the real-time data). Moreover, if the $ value is expressed as a ratio

to the return that would be achieved if a perfect forecaster was betting on the event

(under the same conditions and with the same pay-out), this provides a measure that

ranges across the interval [0 1] from entirely uninformed to perfect forecasters and which

is comparable across events also.14

14Woodcock (1981) shows that the KS can have a similar economic interpretation in some circumstances.

Speci¯cally, the KS shows the ratio of the economic gain achieved by the forecaster relative to that of

a perfect forecaster in the special case where the cost of acting on the assumption that recession will

occur relative to the cost of failing to act when recession occurs has adjusted to re°ect the unconditional

probability of recession.
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4 Forecasting Output and Recessions using US Real-Time Data

The empirical work of the paper considers nowcasts of output outcomes and recession-

ary events based on the ¯rst-release and revised measures of output and on the direct

measures of output expectations. These are obtained from the real-time datasets of the

Federal Reserve Bank of Philadelphia available at www.phil.frb.org/econ/forecast/. The

o±cially-released `backward-looking' data consist of 172 quarterly vintages of data; the

¯rst was released in 19654 and the ¯nal vintage used in this paper is dated 20151. All

vintages include observations dated back to 1947q1.15 The `forward-looking' data are the

experts' forecasts on output provided in the Survey of Professional Forecasters (SPF) from

19684 ¡ 20151. The forecasts in the SPF are made around the mid-point of quarter 

and include nowcasts of the current quarter and forecasts of upto four quarters ahead.

In fact, the data on US macroeconomic aggregates in quarter  ¡ 1 are released for the

¯rst time at the end of the ¯rst month of quarter  so the ¯rst-release information on

the previous quarter's output is available to the professional forecasters at the time they

make their forecasts. Nevertheless, it is reasonable to assume ¡1 and 

+ ,  = 0  4

are determined simultaneously when working at the quarterly frequency.

Figure 1 illustrates the nature of the output series under investigation. Assuming for

the moment that data is revised for three quarters, then actual quarter-on-quarter output

growth at time , can be measured by the post-revision series +4¡ +4¡1. This series

has an average annualised rate of 0.61% (with standard deviation of 0.83%) and is plotted

in Figure 1a alongside the ¯rst-release and ¯rst-revision series. The size of revisions is

small on average but the ¯rst and second revisions have a range of [-1.58%, 1.63%] and

[-1.23%, 1.55%], and standard deviation of 0.41% and 0.34%, respectively and so are often

of a similar order of magnitude to the actual growth ¯gures themselves. Figure 1b plots

15The analysis distinguishes between standard `revisions' and once-and-for-all 'benchmark adjustments'

arising out of the re-de¯nition or reclassi¯cation of a series. The latter are announced in advance and we

assume these are entirely taken into account in forecasting and decision-making. To do this, we adjust

the data by splicing the pre- and post-benchmark-adjustment series to eliminate the e®ects prior to the

analysis. Benchmark adjustments took place in 1976q1, 1981q1, 1986q1, 1992q1, 1996q1, 1999q4, 2004q1

and 2009q3.
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the revisions directly showing that there are occasionally some very large revisions, with

a relatively large number in excess of 0.5% occurring during the late seventies and mid-

eighties and a large number less than -0.5% in the early eighties and after 2007. The fact

that these episodes coincide with periods of unusually strong or weak growth suggests

that the measurement errors are (understandably) related to business cycle conditions

and suggests that revisions may be more or less useful in forecasting growth outcomes at

di®erent times.

The expectations series obtained from the SPF are shown in Figure 1c, again set

against actual post-revision growth. This ¯gure shows that the expectations series also

display some volatility but they move more conservatively than the actual growth series

itself. The conservatism becomes more pronounced as the forecast horizon grows so that

four-period-ahead survey expectations rarely move outside the [0.5%, 1.0%] range, espe-

cially over the latter half of the sample. De¯ning expectational errors observed in the SPF

series by +4¡ ¡

 for  = 0  4, i.e. comparing the post-revision series to the survey

forecasts for upto 4 quarters earlier,16 Figure 1d plots the expectational errors directly,

showing some very large errors in the four-period-ahead forecasts.

4.1 `Real-time' evaluation of point and density forecasts

The purpose of the empirical work is to ¯nd whether the information contained in the

revision and survey data is useful in forecasting. All of the models that we estimate

can be accommodated by the meta model 33 de¯ned in (2.7), with  = 0 1 2 3 and

 = ¡1 0 1 2 3, and in (2.1)-(2.3). Hence, twenty versions of the model in (2.1)-(2.3)

are estimated with the most general including three revisions and survey forecasts upto

three quarters ahead in addition to the ¯rst release data, while the most simple version

of the model is the `conventional model' which uses the ¯rst-release data only.

The empirical exercise begins by estimating the meta model 3319912 based on the

real time data available for 19684¡19912, using the 80-quarter period 19684¡19883

in estimation and holding back the 12 quarters' data for 19883¡ 19912 for the training

16This is the appropriate measure of `expectational error' only if the survey participants report predic-

tions of actual, post-revision output in their returns, not the predictions of the ¯rst-release measure.
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period. Each of the twenty underlying models are used to produce forecasts of the various

measures of output, including, for example, the one-period-ahead forecast of the ¯rst-

release measure of contemporaneous output, 1988419883, say, and the four-period-ahead

forecast of the post-revision measure of contemporaneous output, 1989319883. For the

purpose of obtaining the model weights, we focus here on the forecast of the ¯rst-release

measure, comparing this to the ¯rst-release outcome observed during the training period.17

The twenty models are then estimated over the 81-quarter period 19684¡19884, and the

forecast of the ¯rst-release measure 1989119884 obtained and compared to the observed

outcome. This is repeated twelve times, moving through the training period and judging

the relative performance of the twenty models each time to obtain the set of weights

19912 de¯ned in (2.5) for the MSE (or (2.6) for the log scores) for  = 0  3 and

 = ¡1  3. Moving on one period, this entire exercise can then be repeated over the

sample 19691¡ 19913 using 19884¡ 19913 as the training period, to derive the set

of weights 19913 and so on to the ¯nal vintage date 20133.

Figure 2a shows the weighted average of the revision length of the models included in

the meta model 33 for  = 19911  20144 based on the models' forecasts judged

according to their RMSE and according to their log score; that is  de¯ned in (3.8) and

using alternative weights as in (2.5) and (2.6). The plot based on RMSE shows a high

degree of stability: the average revision horizon is around 1.5 and lies in the range [1.00,

2.00] for nearly all the sample. The statistics re°ect the ¯nding that, when using RMSE

as the criterion, many models appear to perform equally well so that the average of their

revision lengths is mid-way between zero and three, the minimum and maximum values.

In contrast, the plot based on log score weights is much more discerning, showing a very

low average revision length -i.e. with few revisions used - during the ¯rst part of the

evaluation period but rising to a value of 1.5 during the early 2000's and to close to 3.0 -

making full use of revisions - over the evaluation period after 2007. As noted above, there

were a number of large revisions in the output data released in the early 2000's and again

17If just one set of weights is discussed, the ¯rst-release series is the natural choice on which to base

the weights since this series relates to actual output, as opposed to survey outcome, and forecast errors

are likely to be relatively small and stable over time compared to longer horizon forecasts.

[17]



in the years following the ¯nancial crisis and it appears that the meta model adjusts to

exploit the extra information contained in the revisions at this time, placing more weight

on models that include the long revisions.

Figures 3a and 3b provide some further insight on this shift in the weights over time,

showing the observed ¯rst-release output series alongside the point forecasts and 5th/95th

percentile of the forecast densities for the most general model 33 and for the simplest

model 0¡1 during two illustrative episodes. Figure 3a, which relates to the period

1996q1-1997q4 at the beginning of the evaluation period, shows that the point forecasts of

the two models are broadly the same. However, the forecasts density is rather narrower for

the33 model - especially in the ¯rst quarters of the Figure - so that it is outperformed

by the simpler 0¡1 model in terms of log score. In contrast, over the period 2009q1-

2010q4 when there were some large revisions in the data, the point forecasts of the 33

model are closer to the actual than those from model 0¡1 and the densities are also

wider so that the observed outcome lies in the body of the forecast density much more

often. This illustrates the idea that, by placing more weight on the models including

long revisions, the meta model adjusts to incorporate the information contained in the

revisions during the periods when revisions become signi¯cant.

Figure 2b shows the equivalent plots to those in Figure 2a focusing now on the expec-

tations horizon included in the meta model 33 for  = 19912  20151 based on the

models' forecasts judged according to their RMSE and according to their log score; that

is,  de¯ned in (3.8). The weights based on RMSE are again relatively uninformative:

the average is broadly stable at around 1, mid-way between the minimum and maximum

values of -1 and 3, once more re°ecting the di±culty in discriminating between models ac-

cording to their point forecasts. However, the weights based on log scores are again more

informative, lying between 0.5 and 1.5 for much of the period 1994-2004 but taking values

closer to -1 at the start of the evaluation periods and through 2004-2012. This pattern

is less easy to interpret, although given the timing, we might speculate that the surveys

could become less reliable in density forecasting during recession or that the relative con-

servatism in survey data may force a spurious precision in the density forecasts during

periods of volatility. In any case, the real time evaluation exercise indicates that survey
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data showing expected outputs one or two periods ahead can be useful for forecasting but

that their usefulness changes over time.

Following the suggestion of Pesaran and Timmermann (2007), the empirical exercise

described above can also be extended to include additional models de¯ned using di®erent

sample periods as well as using more or less of the real-time data. This allows the meta

model to trade o® the advantage of extra precision on parameter estimates gained from

longer samples of data against the danger of using samples that include structural breaks.

As reported in Aristidou (2015), it turns out that very little weight is given to models

based on short samples when the extended exercise is carried out so that the meta models

obtained allowing for the additional models based on short sample are very similar to those

described above based on the longest possible sample in each period. This suggests the

time-varying weights found in Table 2 arise because of changes in the trade-o®s between

parameter estimation uncertainties and the e®ects of omitting variables and are not the

result of structural breaks.

4.2 `Final' evaluation of point and density forecasts

The shifting weights over time provide insights on the usefulness of revisions and survey

data in forecasting as would be judged at the time. The `¯nal assessment' statistics of

Table 1 judge their usefulness over the whole evaluation period by comparing the forecast

performance of four alternative meta models which are more or less constrained in their

use of the revisions and survey data. Speci¯cally here, we compare the performance of: (i)

the general meta model discussed above,33 for  = 19912  20133 , which uses the

revisions and survey data as the estimated weights indicate; (ii) the meta model 3¡1 ,

obtained choosing models of di®ering sample lengths with desired use of revisions but

making no use of the survey data at all; (iii) 03 making no use of revisions; and (iv)

the `conventional' meta model, 0¡1 , making no use of revisions data or survey data.

In principle, we could conduct a separate forecast evaluation at every forecast horizon and

for each of our output measures (i.e. the ¯rst-release measure and various revisions and

survey expectation measures at di®erent future dates). In what follows, we focus on the

four-period-ahead forecast of the post-revision measure of contemporaneous output which
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is a natural way of thinking of the `nowcast of current actual output'.18

The results of the table show the `conventional' meta model, 0¡1 has a RMSE

of 1.16% when judged over the whole evaluation period 1991q2-2013q3. The three meta

models 3¡1 , 03 and 33 all outperform the conventional model, with smaller

RMSEs reported in each case and all three show a statistically signi¯cant improvement

according to the Giacomini-White (GW) test of equal forecasting performance (where

the GW tests are performed using Newey-West robust standard errors with automatic

selection for bandwidth). When weights are chosen according to the log scores, models

3¡1 and 33 , both of which make use of the revisions data, show a statistically

signi¯cant improvement in the log-score over that of the conventional meta model while

model 03 , which uses surveys but not revision data, actually has a statistically-

signi¯cant deterioration in forecast performance compared to the conventional model.

Hence, the `¯nal evaluation' results suggest it is a good idea to include real-time data

when forecasting output although the argument for the use of revisions is more compelling

than for the use of surveys. In every case, it is a good idea to take into account the fact

that the real-time data might be more or less useful at di®erent times.

4.3 Evaluation of event probabilities and fair bet outcomes

We have argued that models' forecast performance might also be judged by their ability

to predict recession and to enhance decision-making. We also consider the models against

this criterion then, with predictions again based on density forecasts of the post-revision

output measures and outcomes measured by the realised post-revision series. In what

follows, we use four de¯nitions of recession that capture di®erent recessionary features of

the business cycle at time  ; namely:

² 1 : f ( +1+¡ +¡1  0) g; i.e. a nowcast of negative growth based on

18In principle, the criterion used to construct the weights employed in the meta model could be changed

to match the criterion used in the ¯nal evaluation. In what follows, we report results using the weights

based on ¯rst-release forecasts discussed above even though the ¯nal evaluation is concerned with the

post-revision nowcast. Results were qualitatively unchanged when weights were based on the post-revision

nowcasts.
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post-revision observation;

² 2 : f ( +1+¡ +¡1  0)\ ( +¡1¡ +¡1¡2  0) g; i.e. a nowcast

of two consecutive periods of negative growth at  ;

²  : f +1+  max( +¡1, +¡1¡2, +¡2¡3,...) g; i.e. period 

output lies below its previous peak level;

²  : f +1+  e gwhere e =
1
5
( +¡1¡2+ +¡1+ +1++

+2++1+ +3++2); i.e. output lies below trend, de¯ned as the centred ¯ve-

period moving-average of output.

Generally, and in the absence of speci¯ed pay-out contingencies, a forecasted proba-

bility of recession that exceeds 0.5 is interpreted as predicting that recession will occur.

Figures 4a and 4b illustrate the type of results obtained, showing the forecast probabilities

of 1 (recession de¯ned by a one-period fall in output) according to each model as

well as showing when the event actually occurred. As is clear, this event occurs rela-

tively infrequently (just six times during our evaluation period) with a run of consecutive

events during the ¯nancial crisis. The events 2 and  are similarly rare

but have di®erent pro¯les in terms of the run of consecutive events while  is,

by de¯nition, likely to occur more or less half of the time.

Tables 2 and 3 provide measures of the extent to which the models meet the challenges

of forecasting recessions de¯ned in the various ways. For Table 2, the 90 predictions and

outcomes observed over 1991q2-2013q3 are arranged into a two-by-two contingency table.

Table 2a shows the proportion of forecasts that are correct ( +
90

) for each model and

Table 2b reports the Kuipers scores. Table 2b also reports, in parentheses, the results

of two tests described in Pesaran and Timmermann (2009): a static 2 test of whether

a model's forecast performance is any better than would have been achieved guessing

randomly based only on the unconditional probability of the event ; and a dynamic

version in which the random guess also takes account of the possibility that the event is

known to occur in runs.

The events DROP1, DROP2 and BPEAK occur relatively infrequently and so the

accuracy rates (proportion correct) of Table 2a - which treat correct predictions of no-
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recession in the same way as correct predictions of recession - are high across all models

as would be expected. Nevertheless, it appears that the meta models 03 and 33

perform best: model03 shows the largest accuracy rates when RMSE weights are used

while model 33 dominates when log score weights are used. This matches the plots

of Figures 4a and 4b which show these models generate low event probabilities during

most of the evaluation period but indicate a high probability of recession during the

relevant quarters of the ¯nancial crisis. The dominance of the models 03 and 33

is con¯rmed, and exaggerated, in the Kuipers scores of Table 2b which focus more on the

models' ability to correctly predict the rare recession events. The 2 tests also con¯rm

that the performance of 03 and 33 is signi¯cantly better than would be achieved

by chance, unlike the `conventional' meta model, 0¡1 and in many cases unlike model

3¡1 The over-riding conclusion then is that the models provide a valuable tool for

forecasting rare recessionary events and that the models which include the survey data

typically perform best in predicting these rare events.19

Table 3 provides the results of evaluating forecasting performance in the more sophis-

ticated `fair bet' decision-making context, reporting the maximum possible return that

would be achieved by a perfect forecaster and the returns achieved by a forecaster using

each of the models expressed relative to this maximum. Table 3a relates to the symmetric

fair bet in which the investor bets every period, gains the same payout for   as 

and compares the forecast recession probability against the same 0.5 threshold used in

Table 2. Given that the set up is similar to that underlying the Kuipers score, it is not

surprisingly that the results are very similar to those in Table 2b: the rank ordering of

the models obtained for each event is the same; and the performance measures are high

and broadly similar for , 1 and 2 and lower for . in

both tables. The results are a little di®erent in Table 3b, where the asymmetric setup

delivers a higher payout on events that are more rare so that the performance measures

19The results show that none of the models perform well in predicting  recessions. This is

perhaps unsurprising given the complexity of the event - involving a non-linear function of post-revision

output levels over ¯ve quarters. Nevertheless, this illustrates the important point that there are events

that are di±cult for any model to predict and that forecasters should consider when models are ¯t for

purpose and when they are not.
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are reordered (now 2 followed by 1,  and ) and 33

is the dominant model even using RMSE weights. Again though the over-riding conclu-

sion is that models which include survey data perform best in predicting rare recessionary

events.

5 Concluding Comments

The empirical exercise provides clear-cut evidence that forecasts of output growth and

recession are enhanced through the use of real-time data. The `real-time' and `¯nal' eval-

uations of the forecasts from the VAR models considered in the paper show that point

forecasts and density forecasts are improved by using survey data on expected future

output movements and by using ¯rst-release and revisions data. The exercise shows that

this is especially true if, as here, the modelling takes into account that the data can be

more or less helpful at di®erent times, with the revisions data appearing to be particularly

important during downturns when larger (but predictable) measurement errors appear in

the ¯rst-release data. On the other hand, it is the survey data which seems particularly

important when forecasting the likelihood of recessionary events. These are relatively rare

and extreme events which conventional linear forecasting models might struggle to accom-

modate but which are incorporated into professional forecasters' predictions reasonably

quickly. Survey data therefore provides the means to quickly include this information in

a time series model so that, again, forecast performance is improved by allowing the data

to be used more or less intensively at di®erent times.
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Table 1: RMSE and Average Log Scores for Output Growth Nowcasts,

First Release Data (1991q2-2013q3)

RMSE Log Score

0¡1 (no revisions, no survey data) 0.0116 -2.616

3¡1 (no surveys, revisions only) -0.0011¤¤ 0.8492¤¤

03 (no revisions, surveys only) -0.0015¤¤ -0.8133¤

33 (full revisions and survey data) -0.0018¤¤ 0.8384¤

Notes: The meta models  are as de¯ned in (2.7). Actual RMSE and average log scores

are reported for model 0¡1 , and scaled di®erence from model 0¡1 are reported for other

models. A `¤' denotes signi¯cance at the 10% level, `¤¤' denotes signi¯cance at 5% level

and `¤ ¤ ¤' signi¯cance at the 1% level in the Giocomini-White (2006) test of equal forecast.

performance testing whether the RMSE and the log predictive score are signi¯cantly smaller or

larger, respectively, than the corresponding statistics from model 0¡1 .
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Table 2a: Hit Rate, Post Revision Outcomes (1991q2-2013q3)

 RMSE Weights Log Score Weights

0¡1 3¡1 03 33 0¡1 3¡1 03 33

Event

DROP1 7% 0.900 0.922 0.956 0.956 0.933 0.922 0.944 0.956

DROP2 4% 0.956 0.956 0.978 0.967 0.956 0.956 0.967 0.967

BPEAK 22% 0.878 0.889 0.922 0.900 0.911 0.889 0.911 0.922

BTREND 53% 0.478 0.589 0.556 0.544 0.522 0.578 0.511 0.544

Table 2b: Kuipers Score, Post Revision Outcomes (1991q2-2013q3)

 RMSE Weights Log Score Weights

0¡1 3¡1 03 33 0¡1 3¡1 03 33

Event

DROP1 7% ¡0036
(¡¡)

0143
(¡¡)

0488
(¤¤¤¤¤¤)

0488
(¤¤¤¤¤¤)

0000
(¡¡)

0143
(¡¡)

0321
(¤¤¤¤¤¤)

0488
(¡¡)

DROP2 4% 0000
(¡¡)

0238
(¤¤¡)

0738
(¤¤¤¤¤¤)

0488
(¤¤¤¤¤¤)

0000
(¡¡)

0238
(¡¤¤¤)

0488
(¤¤¤¤¤¤)

0488
(¤¤¤¤¤¤)

BPEAK 22% 0557
(¤¤¤¡)

0643
(¤¤¤¤)

0686
(¤¤¤¤¤¤)

0621
(¤¤¤¡)

0636
(¤¤¤¤¤)

0643
(¤¤¤¤¤)

0671
(¤¤¤¤¤¤)

0721
(¤¤¤¡)

BTREND 53% ¡0039
(¡¡)

0173
(¡¡)

0098
(¡¡)

0089
(¡¡)

0048
(¡¡)

0149
(¡¡)

0030
(¤¤¤)

0086
(¤¤)

Note: The meta models  are as de¯ned in (2.7). Event DROP1 is one-period negative

output growth; DROP2 is two successive periods of negative output growth; BPEAK is output

level below previous peak; BTREND is output level below 5-period moving average.  is the

unconditional probability of the event 1991q2-2013q3. Emboldened ¯gures show the largest hit

rate and Kuipers scores (KS). The ¯gures in parentheses (a,b) below the KS show the outcome

of the static and dynamic versions of the Pesaran and Timmermann (2009) tests of no additional

predictive power beyond that of the unconditional probability; a `***' indicates signi¯cance at

1% level, `**' indicates signi¯cance at 5% level, `*' indicates signi¯cance at 10% level, and `-'

indicates no signi¯cance at 10% level.
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Table 3a: Returns to Fair Bet with Symmetric Payo®s,

Post Revision Outcomes (1991q2-2013q3)

RMSE Weights Log Score Weights

0¡1 3¡1 03 33 0¡1 3¡1 03 33

Event Max

DROP1 12.79 0.20 0.37 0.64 0.64 0.46 0.38 0.55 0.64

DROP2 8.35 0.48 0.48 0.74 0.61 0.48 0.48 0.61 0.61

BPEAK 47.55 0.65 0.68 0.77 0.71 0.74 0.68 0.74 0.77

BTREND 89.20 -0.05 0.17 0.11 0.08 0.04 0.15 0.02 0.08

Table 3b: Returns to Fair Bet with Asymmetric Payo®s,

Post Revision Outcomes (1991q2-2013q3)

RMSE Weights Log Score Weights

0¡1 3¡1 03 33 0¡1 3¡1 03 33

Event Max

DROP1 84.00 -0.14 0.08 0.20 0.23 -0.12 0.06 0.10 0.16

DROP2 86.00 0.72 0.81 0.70 0.86 0.70 0.78 0.70 0.83

BPEAK 70.00 0.32 0.54 0.64 0.51 0.29 0.34 0.41 0.53

BTREND 42.00 0.11 -0.03 -0.05 0.04 -0.02 0.16 0.05 0.14

Note: The events are described in notes to Table 2. The maximum possible return, achieved by

a perfect forecaster, is reported in italics and the returns achieved by a forecaster using model

 are expressed relative to this maximum. Emboldened ¯gures show the largest return.
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Figure 1a: Post-Revision, First-Release and First-Revised Output Growth

Note: Post-Revision Output Growth defined as t+4yt t+4yt-1; First-Release Output Growth defined as t+1yt tyt-1; First-Revised Output

Growth defined as t+2yt t+1yt-1.
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Figure 1b: First and Second Revision of the Output Series
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Figure 1c: Expected Contemporaneous Output Growth, Four-Period Ahead Expected Output Growth

and Post-Revision Output Growth

Note: Expected Contemporaneous Output Growth defined as tyt tyt-1; Four-Period Ahead Expected Output Growth defined as t-4yt

t-4yt-1; Post- Revision Output Growth defined t+4yt t+4yt-1.
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Figure 1d: Contemporaneous and Four-Period Ahead Expectational Errors
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Figure 2a: Real Time Assessment of the Use of Revisions Data in Post Revision
Output Forecasts
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Figure 2b: Real Time Assessment of the Use of Survey Data in Post Revision
Output Forecasts
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Figure 3a: Mean, 5th percentile and 95th percentile of forecast density of models 3,3, and 0,-1,

under the log score weight scheme over the period 1996:01- 1997:04, Post Revision Outcomes
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Figure 3b: Mean, 5th percentile and 95th percentile of forecast density of models 3,3, and 0,-1,

under the log score weight scheme over the period 2009:01- 2010:04, Post Revision Outcomes
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Figure 4a: Mean, 5th percentile and 95th percentile of forecast density of models 3,3, and 0,-1,

under the log score weight scheme over the period 1996:01- 1997:04, First Release Outcomes
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Figure 4b: Mean, 5th percentile and 95th percentile of forecast density of models 3,3, and 0,-1,

under the log score weight scheme over the period 2009:01- 2010:04, First Release Outcomes
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Figure 5a: Forecast probability of one period of negative output growth from average models

constructed using RMSE weights
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Figure 5b: Forecast probability of one period of negative output growth from average models

constructed using log-score weights

Note: Vertical lines denote when the event has taken place (2001:03, 2007:04 and 2008:03-2009:02)
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