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1 Introduction

Avoiding dangerous anthropogenic interference in the climate system has been an impor-

tant international policy goal at least since the United Nations Framework Convention

on Climate Change in 1992. Economic studies of optimal climate policy typically use

integrated assessment models (IAMs) to determine an optimal path of emission abate-

ment by means of a cost-benefit analysis (Stern 2007, Nordhaus 2008, Golosov et al.

2014). Different studies arrive at remarkably different estimates for the optimal tax rate

on carbon emissions into the atmosphere, i.e. the social cost of carbon (Table 1). The

main reason for these differences are different assumptions about how well-being – i.e. an

indicator for the situation under which humans live within a generation (Asheim 2010) –

should be intertemporally distributed. These assumptions are typically embodied in an

intertemporal social welfare function (SWF) used for the evaluation of climate policies

(Botzen and van den Bergh 2014). Specifically, these differences are largely attributable

to the specific parametrization of the SWF in terms of the so called ethical parameters,

namely the time preference rate and the intertemporal elasticity of substitution.

Table 1: Selected estimates of the optimal carbon tax, quoted after Golosov et al. (2014), and the

resulting gross external cost of carbon.

Study Optimal tax Gross external cost of carbon1

Nordhaus (2010) 30 US$/tC 275 billion US$

Golosov et al. (2014) 60 US$/tC 550 billion US$

Stern (2007) 250 US$/tC 2,300 billion US$

Starting with Ramsey (1928), the long lasting economic and philosophical discussion

on which type of intertemporal SWF should be applied (Buchholz and Schymura 2011,

1Global marginal external costs as in Muller et al. (2011) resulting from enhanced climate change

due to emissions of 9,167 gigatons of carbon in 2010 (Boden et al. 2013)
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Botzen and van den Bergh 2014) mostly focuses on the “correct” parametrization of

the SWF within the standard discounted utilitarian framework. However, there is a

growing literature considering and developing alternative social welfare criteria (Asheim

2010, Zuber and Asheim 2012, Fleurbaey and Zuber 2014). Llavador et al. (2010,

2011) study the implications of alternative social welfare criteria on intergenerational

well-being in a dynamic framework with exogenous emissions development. They find

that both intergenerational maximin and a sustainable growth path are feasible and

yield higher utility levels for the first generation than their reference value in 2000.

Moreover, they find that in case of the sustainable growth path, the trade-off for the

first generation in terms of consumption sacrifice is small compared to the prospect of

sustained future growth in well-being. Yet, applications of alternative social welfare

criteria in well-known IAMs are still relatively rare (Botzen and van den Bergh 2014).

In this paper we shift the focus and directly assume a parametric form for the

intertemporal distribution of well-being rather than studying the parametrization of a

particular SWF. Specifically, we assume that the growth rate of per capita well-being

linearly decreases to zero in some given time horizon τ , with zero growth thereafter.

Among the so-defined set of development paths, we determine the one that maximizes

the initial growth rate, subject to feasibility constraints imposed by the IAM. The

IAM we use is the deterministic modeling structure of Nordhaus’ latest version of DICE

(Nordhaus and Sztorc 2013). The maximization of the initial growth rate requires a full-

fledged dynamic optimization, as an increase in the initial growth rates affects patters

of investment in man-made capital, as well as carbon emissions into the atmosphere,

both of which have long-term consequences that fully have to be taken into account.

By varying the time horizon until which the global economy is growing, we study

how the desire for growth affects the social cost of carbon. This approach allows us to

directly assess the effect of concerns for intergenerational distribution on the social cost

of carbon.

Our approach to directly define intertemporal distributions of well-being is useful

for three reasons. First, for society and policy-makers it might be more transparent

to agree on a certain intertemporal distribution of well-being over time than to argue
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about specific parameter values for a particular SWF. In a recent survey, Drupp et al.

(2015) elicit expert opinion on the value of the long-term social discount rate. One of

the responses to their open-ended question for comments was the following:

”Instead of imposing a SWF and calculate the corresponding optimum, it is ‘bet-

ter’ to depict a set of feasible paths of consumption, production, temperature, income

distribution, etc. and let the policy maker make a choice” (Drupp et al. 2015, p.17).

Thereby, in a sense, different intertemporal distributions of well-being could be un-

derstood as being part of a “map” that could be used by policy-makers to “navigate”

among different policy options, a metaphor that has recently been proposed by Eden-

hofer and Minx (2014).

Second, our approach makes the effects of different objectives with respect to inter-

generational justice on efficient climate policy much more obvious. Last but not least,

this alternative approach gives additional insights into the functioning of popular IAMs

such as the DICE model.

We find that the social cost of carbon in 2015 is a convex function of the time horizon

until positive growth in well-being is sustained. While for 150 years of positive – but

linearly decreasing – growth gates of well-being the social cost of carbon in 2015 is

US$ 10.63, it is US$ 140.44 for a time-horizon of 300 years (all in 2005 prices). The

convex relationship between the distribution of growth in well-being and the social cost

of carbon implies that continued growth for about 180 years (until 2194) results in social

cost of carbon of US$ 19 in 2015, which is equivalent to Nordhaus and Sztorc (2013)

specification of the standard social welfare function. Sustaining growth for about 290

years (until 2303) results in social cost of carbon of US$ 93 in 2015, equivalent to the

discounting implied by the specification of Stern (2007).

We conclude that normative conceptions of intergenerational distributive justice cru-

cially determine the social cost of carbon. The more society finds it just to make an

ongoing development in well-being possible also for distant future generations, the higher

the resulting social cost of carbon will be today. Therefore specifying the societal goal

with respect to the intertemporal distribution of well-being should be the starting point

of any climate change related cost-benefit analysis.
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The paper is organized as follows: Section 2 formally introduces the efficient develop-

ment of the climate-economy system applied in the paper, section 3 presents the results

of the dynamic optimization, before section 4 discusses the results and concludes.

2 Efficient development of the climate-economy sys-

tem

In the following we sketch the generic framework of the integrated climate-economy

model according to the discrete-time DICE structure (Nordhaus and Sztorc 2013). Func-

tional forms and parameter specifications can be found in the Appendix.

We use Kt to denote the economy’s capital stock in period t, and Y (Lt, Kt, Et, T
AT
t , t)

to denote the production function. Output depends positively on labor Lt, which

changes over time due to population growth, the capital stock Kt, and carbon emis-

sions Et. Output decreases with the global mean atmospheric temperature, TATt , which

determines climate damages. Productivity increases over time due to exogenous tech-

nical progress. Aggregate consumption in period t is Ct = Lt ct, where Lt is population

size and ct is per capita consumption. Using δK to denote the proportional rate of

capital depreciation, the national accounting equation reads

Kt+1 = (1− δK)Kt + Y (Lt, Kt, Et, T
AT
t , t)− Lt ct accounting (1a)

Emissions are generated by using up the stock of carbon resources, governed by the

cake-eating equation

St+1 = St − Et carbon resources (1b)

The atmospheric temperature develops according to

TATt+1 = TATt + χ1
[
Ft+1 − χ2TATt − χ3

(
TATt − TLOt

)]
atmospheric temperature (1c)

where

Ft+1 = κ

[
log
(
MAT

t+1/M
AT
EQ

)
log 2

]
+ FEX

t+1 (1d)
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is radiative forcing, which depends on the atmospheric stock of Carbon, MAT
t . Atmo-

spheric temperature also reacts to the lower ocean temperature, which, in turn, develops

according to

TLOt+1 = TLOt + χ4
(
TATt − TLOt

)
lower ocean temperature (1e)

The carbon cycle is modeled by the following three-box model which stocks of carbon

in the atmosphere, MAT
t , the upper ocean, MUP

t , and the lower ocean, MLO
t . Carbon

emissions enter into the atmosphere. The entire carbon cycle is described by

MAT
t+1 = Et+1 +φ11MAT

t +φ21MUP
t atmospheric carbon stock (1f)

MUP
t+1 = φ12MAT

t +φ22MUP
t +φ32MLO

t upper ocean carbon stock (1g)

MLO
t+1 = φ23MUP

t +φ33MLO
t lower ocean carbon stock (1h)

Given the initial states of capital, K0, resource, S0, carbon stocks, MAT
0 , MUP

0 , MLO
0 ,

and temperatures, TAT0 and TLO0 , and given population and technology developments,

the set of equations (1) define all feasible consumption/emission paths. The question is

which among all feasible paths should be chosen. The answer to this question determines

the social cost of carbon, i.e. the shadow price of carbon emissions into the atmosphere.

One natural restriction would be to choose only among the dynamically efficient

consumption/emissions paths. Assuming that well-being depends only on consump-

tion, a feasible path ct = (c0, c1, . . .) is dynamically efficient if no other feasible path

c′t = (c′0, c
′
1, . . . ) exists with c′t ≥ ct for all t and c′t > ct for at least one period t. The

dynamically efficient investment/emission path is found by maximizing per capita con-

sumption ctm at one period in time tm, keeping consumption at all other points in time

at some pre-specified feasible minimum levels, ct ≥ c̄t for all t 6= tm. Defining πtm = 1
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and c̄tm = 0, the Lagrangian for this optimization problem can be compactly written as

L =
∞∑
j=0

πj Lj (cj − c̄j)

+ λKj
(
(1− δK)Kj + Y (Lj, Kj, Ej, T

AT
j , j)− Lj cj −Kj+1

)
+ λSj (Sj − Ej − Sj+1)

+λTATj

(
TATj + χ1

[
κ

[
log
(
MAT

j+1/M
AT
EQ

)
log 2

]
+ FEX

j+1 − χ2TATj − χ3
(
TATj − TLOj

)]
− TATj+1

)
+ λTLOj

(
TLOj + χ4

(
TATj − TLOj

)
− TLOj+1

)
+ λMAT

j

(
Ej+1 + φ11MAT

j + φ21MUP
j −MAT

j+1

)
+ λMUP

j

(
φ12MAT

j + φ22MUP
j + φ32MLO

j −MUP
j+1

)
+ λMLO

j

(
φ23MUP

j + φ33MLO
j −MLO

j+1

)
, (2)

where πj is the Lagrangian multiplier for the constraint ct ≥ c̄t; λ
K
j for the capital

accumulation constraint (1a); λSj for the carbon resource constraint (1b); λTATj for at-

mospheric temperature (1c); λTLOj for the temperature of the lower ocean (1e); and

λMAT
j , λMUP

j , and λMLO
j for the carbon stocks in the atmosphere, upper and lower

ocean, respectively.

The first-order conditions describing an efficient development of the climate-economy

system can be written as follows. The conditions for the dynamically efficient consump-

tion and emission levels are

∂L

∂Ct
= 0 ⇔ πt = λKt (3a)

∂L

∂Et
= 0 ⇔ λKt YEt + λMAT

t−1 = λSt (3b)

and the conditions for the efficient intertemporal allocation of capital and the resource

are

∂L

∂Kt

= 0 ⇔ λKt
(
1− δK + YKt

)
= λKt−1 (3c)

∂L

∂St
= 0 ⇔ λSt = λSt−1 (3d)
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The conditions for the efficient temperature dynamics capture the coupled dynamics of

the two temperature boxes, as well as damage caused by the atmospheric temperature

on production output,

∂L

∂TATt
= 0 ⇔ λTATt−1 = λTATt (1− χ1 (χ2 + χ3)) + λTLOt χ4 + λKt YTAT

t

(3e)

∂L

∂TLOt
= 0 ⇔ λTLOt−1 = λTATt χ1 χ3 + λTLOt (1− χ4). (3f)

Finally, the efficient dynamics of the carbon cycle are characterized by

∂L

∂MAT
t

= 0 ⇔ λMAT
t−1 = λMAT

t φ11+ λMUP
t φ12 + λTATt−1

χ1 κ

log 2

1

MAT
t

(3g)

∂L

∂MUP
t

= 0 ⇔ λMUP
t−1 = λMAT

t φ21+ λMUP
t φ22+ λMLO

t φ23 (3h)

∂L

∂MLO
t

= 0 ⇔ λMLO
t−1 = λMUP

t φ32+ λMLO
t φ33, (3i)

capturing the dynamics of carbon flows between the three boxes and the effect of atmo-

spheric carbon on the atmospheric temperature.

Using (3b) and (3c) in (3d), and rearranging, we obtain the following modified

Hotelling rule

YEt − YEt−1

YEt−1

−
λMAT
t−1 − λMAT

t−2

λKt YEt−1

= YKt − δK . (4)

This condition prescribes how to use the carbon resource efficiently. In the absence of

climate damages, we would have λMAT
t = 0 for all t. In this case, condition (4) is the

simple Hotelling rule familiar from the Dasgupta and Heal (1979) model. The non-

renewable resource should be used such that the growth rate of the marginal product

of the resource equals the net capital interest rate. The second term on the left-hand

side of (4) corrects this efficiency condition taking the future climate damages of current

emissions into account.
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3 Intertemporal Distributional Objectives and the

Social Cost of Carbon

Conditions (3) together with (1) characterize any Pareto-efficient dynamic path. The

initial social cost of carbon, measured in units of consumption, along the Pareto-efficient

path are given by the ratio of the Lagrangian multiplier of atmospheric carbon, λMAT
0 ,

and of consumption at t = 0, λK0 . Clearly, the pre-specified consumption levels c̄j will

have a major influence on the social cost of carbon. Thus, a central question is how to

distribute per-capita consumption over time, i.e. which among the many Pareto-efficient

paths to choose.

In the following we first briefly review the literature that uses a social welfare function

to capture social preferences with respect to intertemporal distribution, before we turn

to our approach of directly considering a specific functional form for the intertemporal

distribution of well-being.

3.1 Distributional objectives embodied in a social welfare func-

tion

Nordhaus and Sztorc (2013), like most integrated assessment models, ranks paths of per

capita consumption by means of the social welfare function (SWF)

W0(c0, c1, c2, . . . ) =
60∑
t=0

1

(1 + ρ)t
Lt

c1−ηt

1− η
, (5a)

which they interpret as the utility function of a representative, infinitely-lived agent

(ILA), weighted by population size Lt. The parameters of the welfare function are the

time preference rate, ρ, and the preference for consumption smoothing over time, η,

with 1/η being the constant intertemporal elasticity of substitution of consumption.

Maximizing (5a) subject to (1) leads to conditions (3), but with (3a) replaced by

(1 + ρ)−t c−ηt = λKt
(3c)⇔ (1 + ρ)

(
1 +

ct − ct−1
ct−1

)η
= 1 + YKt − δK , (5b)

which is the discrete-time version of the well-known Ramsey rule (Dasgupta 2008). This

condition characterizes the intertemporal distribution of consumption that is optimal
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according to the social objectives with respect to intertemporal distribution embodied

in (5a).

The influential work of Nordhaus (2008) calls ρ and η “unobserved normative param-

eters”. Much of the recent economic debate on the social costs of carbon focuses on how

a society should choose the values for the parameters ρ and η. Interpreting the social

welfare function (5a) as the utility function of a representative ILA, these parameters

can be derived from observed behavior on markets reflecting opportunity costs of capital

(Arrow et al. 1996, Buchholz and Schymura 2011). In this vein, Nordhaus (2008) argues

that short-term time preferences should be in line with historical consumption choices.

He thus uses the Ramsey equation (5b) to determine ρ and η from inferred values of

real market interest rates and the consumption growth rate.

Other studies interpret the intertemporal SWF (5a) as the (discounted) Utilitarian

objective. According to this point of view, ethical considerations regarding intergenera-

tional trade-offs of consumption should guide the choice of ρ and η (Arrow et al. 1996,

Aldy et al. 2010) and focus more on long-term climate impacts (Stern 2007). Already

Ramsey (1928) and Pigou (1932) argued for a zero rate of social pure time preference on

ethical grounds. In this approach, the rate at which future consumption is discounted

falls considerably below the opportunity cost of capital and these studies arrive at much

higher estimates for the social cost of carbon. In that vein, (Stern 2007) uses a very

small value of ρ = 0.001, merely to reflect a positive probability that mankind may be-

come extinct at some future date, and arrives at an optimal carbon tax, which exceeds

the one recommended by Nordhaus (2010) by almost one order of magnitude.

3.2 Direct specification of the intertemporal distribution of

well-being

In the following we propose to shift the focus and directly assume a parametric form for

the intertemporal distribution of well-being.

At least since the Brundtland Report (WCED 1987) sustainability is a key concept

in the environmental discussion. Also the United Nations Framework Convention on
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Climate Change (United Nations 1992) formulated the objective achieving sustainable

economic development for reasons of climate protection. Asheim et al. (2001) showed

that under plausible ethical assumptions sustainability calls for non-decreasing and ef-

ficient paths of well-being.

Against this background one possible intertemporal distribution of well-being is ob-

tained by applying the maximin criterion, which maximizes consumption of the worst-

off generation. Solow (1974) first applied a version of the maximin criterion to the

Dasgupta-Heal-Solow growth model where an exhaustible resource is modeled being

continuously substituted with produced capital. However, by construction, maximin

dismisses any investment into the well-being of future generations above the level of the

present generation. Consequently, a strict application hinders economic growth leading

to stagnation (Rawls 1971). Yet, growth in human well-being may be desirable for a

manifold of reasons. For example parents may wish their children to have a higher

quality of live compared to them or society wants to make an on-going development of

mankind’s achievements, like increasing average life expectancy, also possible in the far

future (Llavador et al. 2011). Economic growth in a carbon-dependent economy comes

at a cost, since emitting one additional ton of carbon into the atmosphere causes future

climate damage, which society should (in a normative sense) consider in form of the so-

cial cost of carbon. According to the DICE modeling structure society can either invest

in man-made capital or in the natural capital of the climate system. The social cost

of carbon associated with each intertemporal distribution of well-being is measured by

the shadow price of carbon reflecting the “green” investments into the climate system,

which are necessary to implement the respective path.

In this paper we study the trade-off between growth in human-well being and the

social cost of carbon today by parametrizing the following intertemporal paths of con-

sumption per capita. Let τ be some arbitrary, but fixed, time-horizon, measured in

number of years, for which positive but linearly decreasing growth in consumption per

capita is maintained. Under this assumption, consumption per capita evolves according

to

ct =

(
1 + max

{
0, gc ·

(
1− t

τ

)})
· ct−1 for all t > 0, with c0 given. (6a)
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Thus, we have growth, ct > ct−1, for all t < τ and ct = ct−1 thereafter. The corresponding

time path of consumption per capita is logistically shaped reaching its satiation level cτ

at t = τ , which can be understood as being similar to the concept of carrying capacity in

ecology. It is the level of consumption per capita, which will be sustained until the end

of the modeling horizon. Such a limit to growth is contained in the DICE model, which,

in the long run, is identical to the Dasgupta-Heal-Solow-Stglitz model discussed above.

The time path of consumption per capita is constructed similar to the one obtained

under Nordhaus and Sztorc (2013).

The red dashed curves in Figure 1 illustrate the parametrized intertemporal distri-

bution of consumption per capita. The upper panel shows the growth rate, which is

linearly decreasing from gc to zero within the time horizon τ , and remains zero after τ .

The lower panel in Figure 1 shows the resulting consumption per capita, as described

by (6a).

year

co
n

su
m

p
ti

on
c t

τ2010

c0

gr
ow

th
ra

te
g
c t

max

gc

0

Figure 1: consumption per capita ct and its growth rate gct , for an arbitrary time-horizon τ where

gcτ = 0. While the red dotted line shows a sub-optimal time path, the blue dotted line depicts the

optimized scenario we use.

12



A consumption path described by (6a) is feasible only if gc is sufficiently small.

Indeed, the longer the time horizon τ , the smaller gc must be to render the consumption

path (6a) feasible given the economic and climate constraints (1).

The time-horizon τ could also be thought of as a measure of sustainable growth

in human well-being, i.e. how many generations can sustain a positive growth rate.

The more we shift τ into the future, the more evenly growth in well-being will be

intertemporally distributed and thus, the more weight society puts on intergenerational

distributive justice. In the limit case (τ = ∞) gct will be the maximal constant growth

rate of consumption per capita, which can be sustained for the total modeling horizon of

300 years given the DICE economic and climate constraints. However, we are interested

in how the social cost of carbon varies with τ . Hence, we exogenously change τ and

evaluate the corresponding optimal social cost of carbon in 2015 as it is defined in DICE

(see Appendix).

Among all feasible paths described by (6a), we shall consider the Pareto efficient

one, which is characterized as the solution to the following optimization problem, and

illustrated by the blue curves in Figure 1,

max
{ct,et}

gc subject to (1) and (6a). (6b)

Using ϕt to denote the Lagrangian multiplier for the constraint

ct ≥ c̄t ≡ c0

t∏
j=0

(
1 + max

{
gc ·
(

1− j

τ

)})
(7)

derived from (6a), everything else as in (2), we find that the first-order conditions for

this dynamic optimization problem are formally identical to (3), except that (3a) is

replaced by ϕt = λKt for all t.

Thus, we can interpret the expression ∆(t; τ) ≡ ϕt

ϕ0
as a consumption discount factor,

which depends on τ for obvious reasons.

4 Quantitative Results for the DICE Model

In this section we present the numerical dynamic optimization results. They have been

calculated using the Knitro solver (version 8.1.1) together with the AMPL optimization
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software. The AMPL code is provided in the Appendix.

Figure 2 shows the time paths for consumption per capita for different time horizons

τ = {50, 100, 150, 200, 250, 300} for which positive growth takes place, under maximized

initial growth rates gc. Figure 3 shows the social cost of carbon in 2015 as a function of

year

20302010

12

11

10

9

8

7

year

co
n

su
m

p
ti

on
p

er
ca

p
it

a
c t

[1
00

0
U

S
$/

ye
ar

]

τ = 300

τ = 250

τ = 200

τ = 150

τ = 100
τ = 50

230021502010

200

150

100

50

0

Figure 2: Time paths (2010-2300) of consumption per capita for τ = {50, 100, 150, 200, 250, 300}, with

initial growth rate gc optimized.

the time horizon τ .

We find that the social cost of carbon in 2015 is a convex function of the time horizon

for which positive growth in consumption per capita is sustained. While the social cost

of carbon in 2015 is US$ 10.63 (at 2005 prices) for a time horizon of 150 years, it is US$

140.44 for a time-horizon of 300 years. The convex relationship between the time horizon

and the social cost of carbon shows how strongly the social cost of carbon depends on

the desired prospects for growth. When thinking of τ as a measure of sustainable growth

in human well-being, i.e. how many generations can sustain a positive growth rate, the

trade-off between future growth in well-being and the social cost of carbon becomes the

14



Stern 2007

Nordhaus 2013

time horizon τ

so
ci

al
co

st
of

ca
rb

o
n

2
0
15

,
U

S
$

p
er

to
n

o
f

C
O

2

3001500

140

120

100

80

60

40

20

0

Figure 3: Social cost of carbon in 2015 as a function of the time horizon τ .

more severe the more sustainable a society wants to grow and thus, the more a weight

society puts on intergenerational distributive justice.

We can also compare the results of our approach with the previous literature. The

scenario of Nordhaus and Sztorc (2013) which leads to a social cost of carbon of US$

19.24 in 2015 (red vertical line) is equivalent to a time horizon of growth until year 2194,

whereas a time horizon until year 2303 leads to a social cost of carbon equivalent to the

one obtained when considering Stern discounting (Stern 2007), which implies a social

cost of carbon of US$ 92.88 in 2015.

As illustrated in figure 2 in the sub-graph, future growth in consumption per capita

can only be implemented at the expense of lower near term growth rates (2010-2030).

The earlier the point τ of zero growth is reached, the higher are the initial levels of

consumption per capita from 2010 to 2030. The point of consumption catch-up, i.e.

the point in time where the consumption-per capita path with the next higher growth

horizon cuts the next lower consumption per capita path, is displayed in figure 4 (left

panel).
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Figure 4: Consumption catch-up time (left panel) and endogenous consumption discount factor (right

panel) as a function of τ .

The graph makes obvious that the more sustainable the growth rate of consumption

per capita is distributed over time, the longer it takes for the respective consumption

path to catch up with a path where the distribution of growth is shifted towards earlier

generations. The right panel in figure 4 tells the same story: It depicts the endogenous

discount factor for consumption per capita ∆(t; τ) at two points in time, t = 2020

and t = 2100, as a function of τ . The red line points show ∆(2020; τ); the blue ones

∆(2100; τ). Both are increasing functions of τ reflecting that the longer the growth

horizon, the more it is dynamically efficient to attach higher weights to consumption

levels of future generations.

In short, our analysis makes the intergenerational trade-off in the light of anthro-

pogenic climate change very transparent: Increasing τ and thereby letting gct be more

evenly intertemporally distributed, raises both the social cost of carbon in 2015 and the

consumption sacrifice for early generations.
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5 Discussion and Conclusions

Our paper explores how alternative social objectives on the intertemporal distribution

of well-being affect the integrated assessment of climate change. Specifically, it departs

from the lively debate on which parametrization of an intertemporal SWF should be

applied, thus shifting the focus from the “correct” parametrization of the SWF to a

more direct analysis. We use the deterministic modeling structure of Nordhaus’ latest

version of DICE (Nordhaus and Sztorc 2013) and assume that the growth rate of per

capita well-being linearly decreases to zero in some given time horizon.

Maximizing the short-run growth rate by means of dynamic optimization, we obtain

that the social cost of carbon in 2015 is a convex function of the time horizon for which

positive growth in well-being is sustained. While the social cost of carbon in 2015 is

US$ 11 for growth over a time horizon of 150 years, it is US$ 140 for a time-horizon of

300 years. The convex relationship between the distribution of growth in well-being and

the social cost of carbon implies that continued growth for about 180 years (until 2194)

results in social cost of carbon of US$ 19 in 2015, which is equivalent to Nordhaus and

Sztorc (2013) specification of the standard social welfare function. Sustaining growth for

about 290 years (until 2303) results in social cost of carbon of US$ 93 in 2015, equivalent

to the discounting implied by the specification of Stern (2007).

The lengths of the time horizon with positive growth in human well-being can be

interpreted as a measure of ‘sustainability’ in growth and thus the weight society puts

on intergenerational distributive justice. In this respect, we find that a more evenly

(sustainable) intertemporally distributed growth rate of well-being more than strongly

raises the social cost of carbon and increases the consumption sacrifice for early gener-

ations. Consequently the earlier the point of zero growth is reached, implying a more

uneven distribution of growth in well-being over time, the higher are the initial levels of

per capita well-being from 2010 to 2030.

We decided to use DICE for that exercise, a model that combines a one sector optimal

economic growth model with a simple climate module. One reason for choosing DICE

is that it is one of the most popular IAMs. Its advantages of clarity, transparency and
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accessibility without compromising too much realism of the complex climate-economy

feedbacks produce a large audience being familiar with its philosophy (Traeger 2014).

DICE makes it possible to obtain quantitative estimates of the social cost of carbon

while it is still possible to understand what actually drives these results. Hence, DICE

is suited particularly well to inform a wide audience on the implications of contrasting

perceptions of intergenerational distributive justice on the social cost of carbon.

By making the intergenerational trade-off in the light of anthropogenic climate

change more transparent, the results show that normative conceptions of intergener-

ational distributive justice crucially determine the social cost of carbon. Therefore the

knowledge of the overall societal goal in terms of the intertemporal distribution of well-

being should be the starting point of any climate change related cost-benefit analysis.

Policy-makers may then choose among different feasible paths of well-being, which we

find more transparent as opposed to discussing the “correct” parameters of the respec-

tive intertemporal SWF.
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Appendix

DICE 2013R Model

Table 2: DICE 2013R, Data (1)

Parameter Unity Equation

Preferences

Time preference rate / year - ρ = 0.015

Elasticity of marginal utility of consumption - η = 1.45

Population and technology

Capital elasticity - γ = 0.3

Initial world population Millions L0 = 6838

Population growth rate - gL = 0.134

Depreciation rate of capital / year - δK = 0.1

Initial world gross output Trillions 2005 US$ Y Gross0 = 63.69

Initial capital Trillion 2005 US$ K0 = 135

Initial level of total factor productivity (TFP) - A0 = 3.8

Initial growth rate of TFP / period - gA0 = 0.079

Decline rate of TFP / period - δA = 0.006
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Table 3: DICE 2013R, Data (2)

Parameter Unity Equation

Emissions

Initial industrial emissions Gigatons CO2 EInd0 = 33.61

Initial emissions control rate - µ0 = 0.039

Emissions control rate 2010-2150 - µ = [0, 1]

Emissions control rate 2150-2310 - µ = [0, 1.2]

Initial land emissions Gigatons CO2 ELand0 = 3.3

Initial cumulative emissions Gigatons CO2 ECum0 = 90

Initial carbon intensity Kilograms CO2 σ0 =
EInd0

Y Gross(1−µ0)

Initial growth of carbon intensity - gsigma0 = −0.01

Decline rate of carbon intensity / period - δσ = −0.001

Carbon cycle

Initial concentration atmosphere Gigatons carbon MAT
0 = 830.4

Initial concentration upper oceans Gigatons carbon MUP
0 = 1527

Initial concentration deep oceans Gigatons carbon MLO
0 = 10010

Equilibrium concentration atmosphere Gigatons carbon MAT
EQ = 588

Equilibrium concentration upper oceans Gigatons carbon MUP
EQ = 1350

Equilibrium concentration deep oceans Gigatons carbon MUP
EQ = 10000

Flow atmosphere to atmosphere - φ11 = 1− φ12

Flow upper oceans to atmosphere - φ21 = φ12
MAT
EQ

MUP
EQ

Flow atmosphere to upper oceans - φ12 = 0.088

Flow upper oceans to upper oceans - φ22 = 1− φ21 − φ23

Flow deep oceans to upper oceans - φ32 = φ23
MUP
EQ

MLO
EQ

Flow upper oceans to deep oceans - φ23 = 0.0025

Flow deep oceans to deep oceans - φ11 = 1− φ12
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Table 4: DICE 2013R, Data (2)

Parameter Unity Equation

Climate model

Equilibrium climate sensitivity ◦C increase /doubling of CO2 ν = 2.9

Forcing due to equilibrium CO2 doubling Watts / square meter κ = 3.8

2010 forcing of non-CO2 GHG Watts / square meter FEX0 = 0.25

2100 forcing of non-CO2 GHG Watts / square meter F18EX = 0.7

Initial atmospheric temperature change ◦C from 1750 TAT0 = 0.8

Initial deep oceans temperature change ◦C from 1750 TLO0 = 0.0068

Speed of adjustment atmospheric temperature - χ1 = 0.098

Equilibrium forcing /doubling of CO2 - χ2 = κ/ν

Heat loss from atmosphere to deep oceans - χ3 = 0.088

Heat gain of deep oceans - χ4 = 0.025

Climate change abatement costs

Damage quadratic term - ψ = 0.00267

Initial abatement costs Trillions 2005 US$ Λ0 = 0

Exponent of abatement cost function - Θ = 2.8

Initial backstop price 2005 US$ pBack0 = 344

Decline rate of backstop price / period - gBack

21



Table 5: DICE 2013R, Exogenous equations

Parameter Unity Equation

Total population Millions Lt = Lt−1

(
10500
Lt−1

)gL
Total factor productivity (TFP) - At = At−1

1−gAt−1

Growth rate TFP per period - gAt = gA0 e
−5tδA

Total factor productivity (TFP) - At = At−1

1−gAt−1

Carbon intensity Kilograms CO2 / output σt = σt−1e
−5gσt−1

Growth rate of carbon intensity / period - gσt =
gσt−1

(1+δσ)5

External forcing Watts / square meter FEXt = FEX0 + 1
18

(
FEX18 − FEX0

)
(t+ 2)

Backstop price 2005 US$ / tonne of CO2 pBackt = pBackt−1

(
1− gBack

)
Adjusted cost factor for backstop 2005 US$ / tonne of CO2 p̂t

Back =
pBackt σt
1000 θ
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Table 6: DICE 2013R, Endogenous equations

Parameter Unity Equation

Welfare under Nordhaus - W0(c0, c1, c2, . . . ) =
60∑
t=0

1
(1+ρ)5tLt

c1−ηt

1−η

Total emissions Gigatons CO2 Et = EIndt + ELandt

Carbon concentration atmosphere Gigatons carbon MAT
t = 5

3.666Et + φ11MAT
t−1 + φ21MUP

t−1

Carbon concentration upper oceans Gigatons carbon MUP
t = φ12MAT

t−1 + φ22MUP
t−1 + φ32MLO

t−1

Carbon concentration lower oceans Gigatons carbon MLO
t = φ23MUP

t−1 + φ33MLO
t−1

Total radiative forcing Watts / square meter Ft = κ

[
log(MAT

t /MAT
EQ)

log 2

]
+ FEXt

Atmospheric temperature change ◦C from 1750 TATt = TATt−1 + χ
[
Ft − χ2TATt−1 − χ3

(
TATt−1 − TLOt−1

)]
Upper ocean temperature change ◦C from 1750 TLOt = TLOt−1 + χ4

(
TATt−1 − TLOt−1

)
Capital Trillions 2005 US$ Kt =

(
1− δK

)5
Kt−1 + 5It−1

Gross output Trillions 2005 US$ Y Gross = At
(
Lt

1000

)1−γ
Kγ
t

Industrial emissions Gigatons CO2 EIndt = σt (1− µt)Y Gross

Cumulative emissions Gigatons carbon ECumt = ECumt−1 + 5
3.666E

Ind
t−1 ≤ 6000

Abatement costs Trillions 2005 US$ Λt = Y Grosst p̂t
BackµΘ

t

Damage fraction - Ωt = Ψ(TATt )2

Net output Trillions 2005 US$ Yt =
[
Y Grosst (1− Ωt)

]
− Λt

Consumption Trillions 2005 US$ Ct = Yt − It

Consumption per capita Thousands 2005 US$ ct = 1000 Ct
Lt

Social cost of carbon 2005 US$ / tonne of carbon pct = pBackt µΘ−1
t
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AMPL programming code

# AMPL code (mod-file) for Hänsel and Quaas (2015)

#Intertemporal Distribution of Well-Being in DICE

# PARAMETERS

# modelling horizon

param T:=60;

# population and technology

param gamma:=0.3; # capital elasticity in production function

param L0:=6838; # initial world population (millions)

param gL:=0.134; # initial growth rate of world population per perio

param L {t in 0..T}>=0;

let L[0]:=L0;

let {t in 1..T} L[t]:=L[t-1]*((10500/L[t-1])^gL);

param deltaK:=0.1; #depreciation rate on capital per year

param Qgross0:=63.69; #initial world gross output (trillions 2005 USD)

param K0:=135; #initial capital value (trillions 2005 USD)

param A0:=3.8; #initial level of total factor productivity (TFP)

param gA0:=0.079; #initial growth rate for TFP per period

param deltaA:=0.006; #decline rate of TFP per period

param gA {t in 0..T}>=0; # growth rate for TFP per period

let {t in 0..T} gA[t]:=gA0*exp(-deltaA*5*(t));

param A {t in 0..T}>=0; # TFP

let A[0]:=A0;

let {t in 1..T} A[t]:=A[t-1]/(1-gA[t-1]);
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# emission parameters

param gsigma0:=-0.01; #initial growth rate of sigma (coninuous per year)

param deltasigma:=-0.001; #decline rate of decarbonization per period

param ELand0:=3.3; # initial land emissions(GtCO2)

param deltaLand:=0.2; #decline rate of land emissions per period

param EInd0:=33.61; # initial industrial emissions(GtCO2)

param Ecum0:=90; #initial cumulative emissions (GtC)

param mu0:=0.039; # initial emissions control rate

param Lambda0:=0; # initial abatement costs(trillions 2005 USD)

param sigma0:=EInd0/(Qgross0*(1-mu0)); #initial carbon intensity(kgCO2 per output)

param gsigma {t in 0..T}; # growth rate of carbon intensity per period

let gsigma[0]:=gsigma0;

let {t in 1..T} gsigma[t]:=gsigma[t-1]*((1+deltasigma)^5);

param sigma {t in 0..T}>=0; # carbon intensity(kgCO2 per output of 2005 USD)

let sigma[0]:=sigma0;

let {t in 1..T} sigma[t]:=sigma[t-1]*exp(gsigma[t-1]*5);

param ELand {t in 0..T}>=0; # land emissions per period (GtCO2)

let ELand[0]:=ELand0;

let {t in 1..T} ELand[t]:=ELand [t-1]*(1-deltaLand);

# carbon cycle

param MAT0=830.4; # initial concentration in atmosphere(GtC)

param MUP0:=1527; # initial concentration in upper ocean(GtC)

param MLO0:=10010; # initial concentration in deep oceans(GtC)

param MATEQ:=588; # equilibrium concentration in atmosphere (GtC)

param MUPEQ:=1350; # equilibrium concentration in upper ocean (GtC)

param MLOEQ:=10000; # equilibrium concentration in deep oceans(GtC)
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# flow parameters (carbon cycle transition matrix)

param phi12:=0.088;

param phi23:=0.00250;

param phi11=1-phi12;

param phi21=phi12*MATEQ/MUPEQ;

param phi22=1-phi21-phi23;

param phi32=phi23*MUPEQ/MLOEQ;

param phi33=1-phi32;

# climate model parameters

param nu:=2.9; # equilibrium climate sensitivity (°C per doubling CO2)

param kappa:=3.8; # forcing of equilibrium CO2 doubling (Wm-2)

param Fex0:=0.25; # 2010 forcing of non-C02 GHG (Wm-2)

param Fex18:=0.70; # 2100 forcing of non-C02 GHG (Wm-2)

param Fex {t in 0..T}=Fex0+1/18*(Fex18-Fex0)*(2+t); # external forcing (Wm-2)

param TLO0:=0.0068; # initial temperature change of upper ocean (°C from 1750)

param TAT0:=0.80; # initial atmospheric temperature change (°C from 1750)

param xi1:=0.098; # speed of adjustment parameter for atmospheric temperature

param xi2=kappa/nu; # climate model parameter

param xi3:=0.088; # coefficient of heat loss from atmosphere to upper oceans

param xi4:=0.025; # coefficient of heat gain by deep oceans

# climate damage parameters

param Psi:=0.00267; # damage quadratic term

# abatement cost

param Theta:=2.8; # exponent of abatement cost function

param pback0:=344; # initial backstop price(2005 USD per tCO2)

param gback:=0.025; # decline rate of backstop price per period

param pback {t in 0..T}>=0; # backstop price(2005 USD per tCO2)

let pback[0]:=pback0;

let {t in 1..T} pback[t]:=pback[t-1]*(1-gback);
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# adjusted cost factor for backstop

param phead {t in 0..T}=pback[t]*sigma[t]/Theta/1000;

# VARIABLES # Upper and lower bounds for stability according to Nordhaus (2013)

# capital(trillions 2005 USD)

var K {t in 0..T}>=1;

# aggregate consumption(trillions 2005 USD)

var C {t in 0..T}>=2;

# Investment(trillions 2005 USD)

var I {t in 0..T}>=0;

# per capita consumption (1000s 2005 USD]

var c {t in 0..T}>=0.01;

# Gross output(trillions 2005 USD)

var Qgross {t in 0..T}>=0;

# carbon atmosphere (GtC)

var MAT {t in 0..T}>=10;

# carbon upper ocean (GtC)

var MUP {t in 0..T}>=100;

# carbon lower ocean (GtC)

var MLO {t in 0..T}>=1000;

# total radiative forcing (Wm-2)

var F {t in 0..T}=kappa*((log(MAT[t]/MATEQ))/log(2))+Fex[t];

# atmospheric temperature change (°C from 1750)

var TAT {t in 0..T}>=0,<=40;

# ocean temperature change (°C from 1750)

var TLO {t in 0..T}>=-1, <=20;

# damage fraction

var Omega {t in 0..T}=Psi*(TAT[t])^2;

# damages(trillions 2005 USD)

var damage {t in 0..T}=Omega[t]*Qgross[t];

27



# output net of damages and abatement(trillions 2005 USD)

var Q {t in 0..T};

# emission control rate

var mu {t in 0..T}>=0 <=1;

# abatement costs as fraction of output(trillions 2005 USD)

var Lambda {t in 0..T}=Qgross[t]*phead[t]*(mu[t]^Theta);

# industrial emissions (GtCO2)

var EInd {t in 0..T}=sigma[t]*Qgross[t]*(1-mu[t]);

# total emissions (GtCO2)

var E {t in 0..T}=EInd[t]+ELand[t];

# maximum cumulative extraction fossil fuels (GtC)

var Ecum {t in 0..T}<=6000;

# Marginal cost of abatement (social cost of carbon)(2005 USD per tCO2)

var cprice {t in 0..T}=pback[t]*mu[t]^(Theta-1);

# OBJECTIVE FUNCTION AND CONSTRAINTS

param tau default 10; # Time-horizon until zero growth: To be varied up to tau=60

var g>=0; # growth rate per period

let g:=((240.632802/6.886393)^(1/59))-1; # CAGR Nordhaus (2013)

maximize objective_function: g;

subject to constr_c {t in 1..T}: c[t]=(1+max(0,g*(1-t/tau)))*c[t-1];

subject to constr_capital_dynamics {t in 1..T}:

K[t]=(1-deltaK)^5*K[t-1]+5*I[t-1];

subject to constr_output_gross {t in 1..T}:

Qgross[t]=A[t]*((L[t]/1000)^(1-gamma))*(K[t]^gamma);

subject to constr_output_net {t in 0..T}:

Q[t]=(Qgross[t]*(1-Omega[t]))-Lambda[t];

subject to constr_accounting {t in 0..T}:

C[t]=Q[t]-I[t];
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subject to constr_consumtionpercapita {t in 0..T}:

c[t]= 1000*C[t]/L[t];

subject to constr_cumulativeemissions {t in 1..T}:

Ecum[t]=Ecum[t-1]+(EInd[t-1]*5/3.666);

subject to constr_atmosphere {t in 1..T}:

MAT[t]=E[t]*(5/3.666)+phi11*MAT[t-1]+phi21*MUP[t-1];

subject to constr_upper_ocean {t in 1..T}:

MUP[t]=phi12*MAT[t-1]+phi22*MUP[t-1]+phi32*MLO[t-1];

subject to constr_lower_ocean {t in 1..T}:

MLO[t]=phi23*MUP[t-1]+phi33*MLO[t-1];

subject to constr_atmospheric_temp {t in 1..T}:

TAT[t]=TAT[t-1]+xi1*((F[t]-xi2*TAT[t-1])-(xi3*(TAT[t-1]-TLO[t-1])));

subject to constr_ocean_temp {t in 1..T}:

TLO[t]=TLO[t-1]+xi4*(TAT[t-1]-TLO[t-1]);

# Initial conditions

subject to initial_C: C[0]=47.09;

subject to initial_capital: K[0] = K0;

subject to initial_netoutput: Qgross[0] = Qgross0;

subject to initial_Ecum: Ecum[0]=Ecum0;

subject to initial_MAT: MAT[0]=MAT0;

subject to initial_MUP: MUP[0]=MUP0;

subject to initial_MLO: MLO[0]=MLO0;

subject to initial_TLO: TLO[0]=TLO0;

subject to initial_TAT: TAT[0]=TAT0;

subject to initial_mu: mu[0]=mu0;

subject to control1 {t in 1..28}: mu[t]<=1;

subject to control2 {t in 29..T}: mu[t]<=1.2;

# OTHER

# savings rate
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var srate {t in 0..T}=I[t]/Q[t];

# yearly growth rate (CAGR) of consumption per capita

var grate {t in 1..T}=(((c[t]/c[t-1])^(1/5))-1)*100;
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Arrow, K. J., W. Cline, K.-G. Mäler, M. Munasinghe, R. Squitieri, and J. Stiglitz (1996).

Climate Change 1995: Economic and Social Dimensions of Climate Change, Chapter

Intertemporal Equity, Discounting, and Economic Efficiency. Cambridge University

Press.

Asheim, G. B. (2010). Intergenerational equity. Annual Review of Economics 2 (1),

197–222.

Asheim, G. B., W. Buchholz, and B. Tungodden (2001). Justifying sustainability. Jour-

nal of Environmental Economics and Management 41 (3), 252 – 268.

Boden, T., G. Marland, and R. Andres (2013). Global, regional, and national fossil-

fuel co2 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National

Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.

Botzen, W. and J. van den Bergh (2014). Specifications of social welfare in economic

studies of climate policy: Overview of criteria and related policy insights. Environ-

mental and Resource Economics 58 (1), 1–33.

Buchholz, W. and M. Schymura (2011). Intertemporal evaluation criteria for climate

change policy: the basic ethical issues. ZEW Discussion Papers 11-031.

Dasgupta, P. (2008). Discounting climate change. Journal of Risk and Uncertainty 37 (2-

3), 141–169.

Dasgupta, P. S. and G. M. Heal (1979). Economic Theory and Exhaustible Resources.

Cambridge: Cambridge University Press.

31



Drupp, M. A., M. C. Freman, B. Groom, and F. Nesje (2015). Discounting disentangled:

An expert survey on the determinants of the long-term social discount rate. Grantham

Research Institute on Climate Change and the Environment, Working Paper No. 172.

Edenhofer, O. and J. Minx (2014). Mapmakers and navigators, facts and values. Sci-

ence 345 (6192), 37–38.

Fleurbaey, M. and S. Zuber (2014). Discounting, beyond Utilitarianism.

Golosov, M., J. Hassler, P. Krusell, and A. Tsyvinski (2014, 01). Optimal taxes on fossil

fuel in general equilibrium. Econometrica 82 (1), 41–88.

Llavador, H., J. E. Roemer, and J. Silvestre (2011). A dynamic analysis of human

welfare in a warming planet. Journal of Public Economics 95 (11), 1607–1620.

Muller, N. Z., R. Mendelsohn, and W. Nordhaus (2011). Environmental accounting for

pollution in the United States economy. American Economic Review 101 (5), 1649–75.

Nordhaus, W. D. (2008). A Question of Balance: Economic Modeling of Global Warm-

ing. New Haven: Yale University Press.

Nordhaus, W. D. (2010). Economic aspects of global warming in a post-Copenhagen

environment. Proceedings of the National Academy of Sciences 107 (26), 11721–11726.

Nordhaus, W. D. and P. Sztorc (2013). Dice 2013r: Introduction and user’s manual.

Pigou, A. (1932). The Economics of Welfare. London: Macmillian.

Ramsey, F. P. (1928). A mathematical theory of saving. The Economic Journal 38 (152),

pp. 543–559.

Rawls, J. (1971). A Theory of Justice. Harvard University Press.

Solow, R. M. (1974). Intergenerational equity and exhaustible resources. The Review of

Economic Studies 41, pp. 29–45.

Stern, N. (2007). Stern Review on the Economics of Climate Change. Government

Economics Service.

32



Traeger, C. (2014). A 4-stated dice: Quantitatively addressing uncertainty effects in

climate change. Environmental and Resource Economics 59 (1), 1–37.

United Nations (1992). Earth Summit Convention on Climate Change. Brazil: United

Nations.

WCED (1987). Our Common Future. Oxford: Oxford Univ. Press.

Zuber, S. and G. B. Asheim (2012). Justifying social discounting: The rank-discounted

Utilitarian approach. Journal of Economic Theory 147 (4), 1572 – 1601. Inequality

and Risk.

33


	Introduction
	Efficient development of the climate-economy system
	Intertemporal Distributional Objectives and the Social Cost of Carbon 
	Distributional objectives embodied in a social welfare function
	Direct specification of the intertemporal distribution of well-being

	Quantitative Results for the DICE Model
	Discussion and Conclusions

