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Abstract

We develop a model of vertical innovation in which firms incur a market entry cost

and position themselves in the quality space. Once established, firms compete monop-

olistically, selling to consumers with heterogeneous tastes for quality. We establish

the general existence and conditional uniqueness of the pricing game in such verti-

cally differentiated markets with a potentially large number of active firms. Turning

to firms’ entry decisions, exogenously growing productivities induce firms to enter

the market sequentially at the top end of the quality spectrum. We spell out the

conditions under which the entry problem is replicated over time so that each new

entrant improves incumbent qualities in fixed proportions. Sequential market en-

try overcomes the asymmetry of the location problem that unavoidably arises in the

quality space: the quality spectrum has a top and a bottom end. Our main technical

contribution lies in handling this asymmetry, a feature absent in Salop (1979) and

other circular representations of Hotelling (1929) and Lancaster (1966).
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1 Introduction

Hotelling’s classic "location" paradigm is widely used to reflect generic product charac-

teristics. The well-studied formalism of the spacing model, however, does not apply to

competition in quality. By its very definition, quality requires that individuals agree on the

ranking of varieties and, in particular, that individually preferred ideal varieties coincide.1

Aware of the spacing model’s fundamental misfit in addressing competition in quality,

Mussa and Rosen (1978), Gabszewicz and Thisse (1979 and 1980), and Shaked and Sutton

(1982 and 1983) pioneered research on vertically differentiated markets in which natural

oligopolies prevail. Shaked and Sutton (1982 and 1983) call the characteristic leading to

such market outcomes the finiteness property. Its key element is that marginal produc-

tion costs increase only moderately in quality, which implies that the highest quality firm

supplies the entire market.2 When this condition is violated and consumers differ in their

individual ranking of variety-price pairs, Shaked and Sutton (1983) observe that competi-

tion in quality is "reminiscent of the "location" paradigm" by Hotelling.

In this paper, we analyze endogenous firm entry into vertically differentiated markets

when the finiteness property is violated. Specifically, we model firms’ costly market entry

with endogenous quality choices. Exogenous productivity growth makes ever-higher qual-

ities affordable so that firms enter the market sequentially at the top end of the quality

spectrum. We specify conditions under which the entry problem of each new entrant is

replicated and which imply that new qualities improve upon existing qualities by a fixed

proportion. While our modeling choice with the sequential market entry of firms introduces

technical difficulties, it overcomes the asymmetry of the location problem that unavoidably

arises in the quality space: the quality spectrum has a top and a bottom end. Our main

technical contribution lies in handling the border conditions that arise (which are absent

in the circular world of the related Lancaster (1966) model).

As the building block of our modeling strategy we choose a framework based on Mussa

1Bils and Klenow (2001) and Broda and Romalis (2009) document that in most good categories, there

are pronounced quality differences in the type of goods that households with different incomes consume,

suggesting that quality differentiation is present in most industries. Additionally, the international trade

literature has documented that most industries are characterized by a high degree of vertical specialization.

Richer countries sell goods of higher quality (approximated with unit values in Schott (2004) and Hummels

and Klenow (2005) and directly estimated by Hallak and Schott (2011) and Khandewal (2010)). Higher-

quality goods are mostly imported by high income countries (Hallak (2006)).
2See also Shaked and Sutton (1984), Anderson et al. (1992), and Sutton (2007a) and (2007b).
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and Rosen (1978), Gabszewicz and Thisse (1979), and Shaked and Sutton (1982). These

models feature firms, each of which holds a blueprint of a unique quality of an otherwise

homogeneous good. All consumers value quality but differ in their "valuation" and thus in

their willingness to pay for quality.

Our analysis proceeds in two steps. In the first, we focus on monopolistic competition

in the quality space for given entry of any number of firms and arbitrary spacings, assuming

that the finiteness property is violated. Our basic assumption for production technology

is that the marginal production cost is convex in quality, which guarantees the survival of

many firms.3 We document that the analogue of the "transportation cost" in Lancaster

(1966) arises from the convexity of the cost schedule.4 We characterize the pricing strate-

gies and profits of firms that compete à la Bertrand, taking as given each firm’s quality,

i.e., its location in the quality space. Specifically, we prove the existence of a pure-strategy

pricing equilibrium, and, under certain additional conditions, uniqueness. We note that in

contrast to horizontally differentiated markets, "undercutting" does not arise in vertically

differentiated markets. Thus, the very definition of quality being globally preferred elimi-

nates discontinuities in firms’ best response functions and thus guarantees the existence of

an equilibrium.5

The second part of our analysis endogenizes firms’ location choice in the quality space.

Firms can incur a fixed cost to improve upon existing qualities, and they are granted a

perpetual patent to produce their particular quality. Exogenously growing productivities

reduce entry and production costs at equal rates. We prove that, in this setup, there

is a dynamic equilibrium in which each new entrant chooses a quality that is a constant

percentage higher than the incumbent technology leader. We analyze the resulting degree of

3We are not the first to note that a globally convex marginal cost schedule with respect to quality

guarantees that a large number of firms can co-exist in equilibrium (see Gabszewicz and Thisse (1980),

Shaked and Sutton (1982), and, in particular, the discussion in Anderson et al. (1992)).
4Consider, for example, three firms producing 1  2  3 under a marginal cost schedule that is

convex in quality (i.e., the cost increment per quality difference between the production of 3 and 2 is

larger than the cost increment between 1 and 2). Next, consider the range of consumers whose willingness

to pay for additional quality exceeds the first increment but falls short of the second. These consumers

receive a surplus by buying 2 at the marginal production cost instead of buying either 1 or 3 at any price

exceeding the respective marginal production costs. Because the producers of 1 and 3 never sell below

their marginal cost, the producer of good 2 enjoys positive market power. In this way, the convexity of

the marginal cost schedule generates market power for individual firms.
5D’Aspremont et al. (1979) discuss the assumptions on the "transportation cost" that are necessary to

guarantee the existence of an equilibrium in the classical Hotelling framework.
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product market competition as a function of market size and entry costs. Specifically, larger

markets induce more frequent firm entry and a higher density of quality supply because

higher sales and profits allow for the more rapid recovery of setup costs. Surprisingly, an

equal percentage increase in the marginal cost of production for all firms is associated with

a more densely supplied market. This result holds because markups are proportional to

costs. Thus, when production costs rise for all firms, profits actually increase for any given

quality spacing. Excess profits cannot exist in equilibrium, and consequently, firms must

exhibit denser quality spacing and "tougher" competition.

Our analysis adds to the sizeable literature on quality competition derived from Gab-

szewicz and Thisse (1979), Mussa and Rosen (1978), and Shaked and Sutton (1982 and

1983) that focuses on vertically differentiated markets in which natural oligopolies prevail

(for a survey of this literature, see Anderson et al. (1992)). Such markets are dominated by

a limited number of "market leaders." Shaked and Sutton (1984) and Sutton (2007a and

2007b) analyze the case of one-firm environments, whereas Champsaur and Rochet (1989)

address that of duopolies. This literature assumes that the marginal cost of production in-

creases only moderately with quality, which enables high-quality firms to price low-quality

competitors out of the market.6

The main technical contributions of this paper are the solution of the price game and

the entry game for the case of monopolistic competition in vertically differentiated markets.

The approach of the present paper differs from the existing literature, first in the assumption

concerning the underlying production technology, and secondly in the fact that entry is

costly. We analyze the case where the marginal cost of production increases sufficiently in

quality so that multiple firms can coexist, and explicitly model the firms’ quality choice

under the assumption of costly market entry, which is standard in models of monopolistic

competition.7

6Lahmandi-Ayed (2000 and 2004) extensively discusses the technological conditions that induce natural

oligopolies.
7We believe that the many-firm case in vertically differentiated industries is an empirically important

one. Multiple empirical studies in the field of international trade document that nearly all manufacturing

industries are characterized by many coexisting firms with heterogeneous prices and profits and that this

heterogeneity can, to a large extent, be explained by an underlying heterogeneity in product quality. See,

in particular, Khandelwal (2010) and Kugler and Verhoogen (2010), but also Baldwin and Harrigan (2011),

Johnson (2012), Verhoogen (2008), and Hallak and Schott (2009). Moreover, many industry-level studies

document the frequent coexistence of a technological leader and multiple lagging firms. For example,

Aizcorbe and Kortum (2005) document how, in the semiconductor industry, the innovation of increasingly

powerful chips coincides with the continued production of less advanced chips.
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Our analysis aims at a quasi-stationary, periodic equilibrium in which each firm enters

the industry as the technological leader and successively transits through the product cycle

as it becomes superseded by further innovators. The advantage of such a dynamic entry

game is that we only need to analyze the entry problem of one firm at a time. The quality

choice and product cycle of all subsequent entrants is then isomorphic. In particular, we

avoid the problems that arise in a simultaneous-entry game, as in Vogel (2008). In fact, the

resulting complications would be substantial in our setup, because the clear ranking of the

quality line prevents us from using the symmetry properties that arise in Salop (1979) or

other circular representations of Hotelling (1929) and Lancaster (1966). In a quality setup

any attempt to "close the circle" must fail, as it amounts to identifying the highest-quality

good with the lowest-quality good.

Nevertheless, our analysis of the firm’s location choice closely relates to Hotelling’s

classic "location" paradigm. This and the related ideal-variety approach of Lancaster

(1966) is the cornerstone of the location choice. These frameworks have been extensively

studied and widely used in various fields of the profession.8 Only recently, however, Vogel

(2008) has extended this setup to firms of heterogeneous productivities.9 The present paper

extends some of these insights to the quality space. At the same time, it overcomes the

technical difficulties of the entry game that are shared by models of vertical and horizontal

differentiation.

The remainder of this paper is structured as follows. In Section 2, we develop a theo-

retical model of competition in the quality space and examine its static predictions. We

next analyze free entry decisions and stationary equilibria in 3 and 4 before concluding in

Section 5.

2 A Model of Monopolistic Competition in the Qual-

ity Space

In this section, we analyze how firms compete monopolistically in the quality space for given

locations. We adopt a setup in the spirit of Mussa and Rosen (1978), Gabszewicz and Thisse

8For a survey of this literature see Anderson et al. (1992).
9Vogel (2008) also presents an extension of his model allowing for quality differentiation of goods,

thereby demonstrating that his results concerning the location of firms in the horizontal product space also

hold when firms can additionally choose the quality of their output.
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(1979), and Shaked and Sutton (1982), wherein consumers value quality at a linear rate.

We assume that the marginal cost of production increases sufficiently with quality, thus

violating the finiteness property, so that lower-valuation consumers in equilibrium prefer

to buy goods other than those of the current technological leader. Within this framework,

we can analyze the static determinants of prices and profits for a given quality spacing.

2.1 Preferences

There are two goods: a homogeneous good  and a good  that is differentiated in quality

and supplied at different quality levels {}∈. Individuals derive utility from consumption
of the two goods. Their utility is linear in the quantity of the homogeneous good. Each

individual consumes either one or zero units of the differentiated good . Apart from this

binary decision, if the consumer chooses to buy a  good, she can also choose between

different qualities  of this good. Specifically, the individual’s utility function is defined

as:10

 ( ) =  ·  +  (1)

where  is a parameter that determines the desire to consume quality (and the willingness

to pay it). In the following, we will therefore call  the valuation of quality, or simply the

valuation. Notice that no consumption of good  is equivalent to consumption of quality

zero at price zero.

The total number of individuals equals . These individuals value quality differently,

i.e., they have different values of . We define the resulting cumulative density function of

valuations as

 () : [0∞)→ [0 1] (2)

with bounded support of , i.e. () = [v
¯
v̄], where 0 ≤v

¯
v̄∞.

2.2 Production

Good  is produced competitively with constant returns to scale and labor as the only

factor. A normalized wage thus implies that good  is the numéraire. The production

technology of the -type goods depends on the quality level produced. A firm that enters

10We take this preference structure from Mussa and Rosen (1978); this structure is also similar to the

formulation of Shaked and Sutton (1982), who assume a multiplicative structure between the homogeneous

and the differentiated good.
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the -market to produce the quality  ∈ (0∞) must acquire a blueprint at the fixed cost
of

 () =  (3)

labor units. We thus assume that blueprints for higher qualities are always more expen-

sive.11

Having acquired a blueprint for quality , a firm can produce its quality of good  at

the constant marginal cost of

() =  (4)

labor units. The parameters    0 govern production costs. We assume that fixed cost

of entry and marginal cost are proportional to each other and are both increasing and

convex in quality.

  1

2.3 Optimal Pricing

Our aim is to characterize an equilibrium in which firms enter the industry at the optimal

quality level and subsequently engage in monopolistic pricing. The equilibrium is solved

through backward induction: we first determine the prices at given quality levels and

subsequently analyze entry decisions.

We begin by characterizing the general pricing solution for an arbitrary distribution of

a countable set of qualities. We normalize the price of the homogeneous good  to unity

and write () for the price of quality . For notational simplicity, we set  =  ()

and  =  (), where  is the quality level produced by firm . We index firms by

 ∈ {0−1−2 −} and order firms by their quality level so that firm 0 produces the

highest quality level 0, and all further quality levels satisfy −1  . We start with the

assumption that prices are such that the indifferent consumer is indifferent between buying

from firm  and + 1, a conjecture we prove below.12

11The setup cost can be generalized so that the cost of blueprints is decreasing in the quality of currently

existing varieties. See Auer and Sauré (2011).
12Notice that we implicitly assume that the set of firms is countable. By making this assumption, we

anticipate that, in the equilibrium of the subsequent entry game, firms must recoup their setup costs with

monopoly rents. Under Bertrand competition and positive setup cost, this assumption implies that firms

must be located at positive distances from each other. Thus, the number of firms is necessarily countable.
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Consumer Valuations

Firm Quality

maxvminv

q-3 q-2 q-1 q0

Figure 1: Segmentation of the consumer/valuation space by quality levels.

Firms compete in prices, i.e., each firm sets the price for its quality to maximize its

operating profits, while taking other firms’ prices as given. Under the preferences (1), a

consumer with valuation  is indifferent between two goods  and +1 if and only if their

prices  and +1 are such that +1 − +1 =  − . Thus, given () from (2) and

given the prices {}≤0, the  firm sells to all consumers with valuations  in the interval
[ +1], where

 =

⎧⎪⎨⎪⎩
v̄ if  = 1
 − −1
 − −1

if   1

v
¯

if  = −
(5)

The firms’ market shares are thus [ +1], and the market is partitioned as shown in

Figure 1: higher-valuation consumers tend to buy from high-quality producers. Each firm

(except the top and bottom quality producer) has two direct competitors and sells to a

range of consumers who value quality sufficiently highly to buy from the firm in question

rather than the direct lower-competitor but do not value quality highly enough to buy from

the higher-quality competitor.

Because each consumer with valuation  ∈ [ +1] demands one unit of the variety
produced by firm , firm  sells (+1) − () units of its good and solves the maxi-

mization problem:

max

( − ) [ (+1)− ()]  (5) (6)

The optimality condition of this problem is

 (+1)− ()− ( − )

∙
0 (+1)
+1 − 

+
0 ()
 − −1

¸
= 0 (7)
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where the expressions (5) apply. At v
¯
and v̄ (the constant limits of the distribution of

valuations), the derivatives in (7) are set to zero (0(v
¯
) ≡ 0; 0(v̄) ≡ 0).

Under adequate conditions and given qualities , the system (7) characterizes price

schedule in pure strategies, which is, in case of uniform distribution of valuations, unique.

Specifically, we formulate the following lemma.

Proposition 1 (i) If  is the uniform distribution on [v
¯
v̄], then the system (7) has a

unique equilibrium in pure strategies.

(ii) If  is twice continuously differentiable, then the system (7) has an equilibrium in pure

strategies.

Proof. See Appendix

We note that the results of Proposition 1 are strong, relative to corresponding results

in setups with a horizontally differentiated market à la Hotelling. Indeed, the pricing stage

of Hotelling’s location game is plagued by non-uniqueness and even non-existence in pure

strategies. Specifically, D’Aspremont et al. (1979) disprove Hotelling’s original claim in

the classical location game of vertical differentiation with two firms. They show that "no

[pure-strategy] equilibrium price solution will exist when both sellers are not far enough

from each other."13 With this pitfall of the horizontal location model in mind, and given

the parallels between the setups of horizontal and vertical differentiation, one might indeed

expect that non-uniqueness and non-existence affect the present paper’s setup as well. In

that sense, the result of Proposition 1 that, independently of firm locations, a pure strategy

pricing equilibrium exists for all continuous distributions of valuations is surprising.

The reason for the existence of an equilibrium in vertically differentiated markets lies

in the model’s specification through heterogeneity of valuations, i.e. of the consumer’s

willingness to pay for quality. As long as this willingness is continuously distributed, a

marginal decrease in a firm’s price increases its market share only marginally, leading to

continuity of profits in prices. This statement holds, in particular, when a firm charges a

price that is low enough so that it marginally drives one of its direct competitors out of

13This specific result derives from a discontinuity in profits and hence in the best response function when

undercutting the adjacent competitor and taking over its entire market. It is worth stressing that in this

classical model, this pathological outcome affects the model also under uniform distribution of consumers.
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the market.14 Thus profits depend continuously on prices, a key feature to derive existence

(and uniqueness) through the relevant theorems. By contrast, in models of horizontal

differentiation, the undercutting of prices from direct competitors induces discrete jumps

of market shares and profits and thus complicates the analysis.15

The second part of Proposition 1 establishes the conditional uniqueness of the pric-

ing game under uniform distribution. This uniqueness is independent of the number of

firms active in the market and their locations in the quality space. It is noteworthy that

the literature concerned with Hotelling’s location model has struggled to abandon both

uniformity and considering general distributions of consumers. Early attempts to relax

this assumption with specific distributions include Neven (1986) and Osborne and Pitchik

(1987). Anderson et al. (1997) observe that “one assumption, which is clearly unrealistic,

has been left virtually untouched by the tools of theorists. This is the condition that the

consumers are uniformly distributed [. . . ]” The authors analyze the location game under

the assumption that the “density is not ‘too asymmetric’ and not ‘too concave’.” Up to

today, only special cases of non-uniform distributions have been treated in the analysis of

location choice of the traditional setup of spatial competition (for a recent overview see Bis-

caia and Mota (2012)). Our later entry game will build upon the existence and uniqueness

of the pricing game.

With the existence (and conditional uniqueness) of the pricing game according to (7),

we can write the operating profits as

 = ( − )
2

∙
0 (+1)
+1 − 

+
0 ()
 − −1

¸
 (8)

With the characterization of prices and operating profits, in turn, an important regularity

of equilibrium prices and profits emerges.

14This statement can be checked directly by observing that firm ’s direct competitor (say +1) leaves

the market when +2 = +1 or, with (5)  = [+1 (+2 − )− +2 (+1 − )]  (+2 − +1)

holds. Up to this point, firm ’s market segment +1 −  is continuous in  and any further reduction

of  increases its market share +2 −  continuously.
15D’Aspremont et al. (1979) document that an equilibrium exists in the Hotelling setup when assuming

quadratic transport costs. See also Vogel (2008). Reny (1999) defines conditions under which a pure

strategy Nash equilibrium exists in discontinuous games. The central condition of better-reply security

is generally satisfied in Bertrand’s classical price-competition. In our setup, the discontinuity of profits,

which typically challenges games of Bertrand-competition, does not arise. Therefore, earlier theorems

apply, establishing uniqueness in the case of uniform distributions .
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Lemma 1 Let {}≤0, (4), (5) and (7) define a system with equilibrium prices {}≤0
and profits {}≤0. For given   0, consider the transformed system defined by 0 = ,

0 = 1−, (4), (5) and (7). This transformed system has the solution {0}≤0 and
{0}≤0 satisfying

0 =  and 0 =  ∀

Proof. Prices 0 solve the transformed optimality conditions (7). The relation for 
0


follows from (5) and (8).

The Lemma states that, if quality levels and marginal productivities change in suitable

proportions (and (4) follows), then equilibrium prices and profits constitute a constant

proportion of the marginal production costs. These regularities lead to a particularly

convenient location pattern when firms chose their locations endogenously in a dynamic

setting — namely, proportional spacing.

For the remainder of the paper, we restrict the setup to the case of uniformly distrib-

uted valuations, which guarantees, according to Proposition 1, a unique price equilibrium.

Formally, we write  from (2) as

 () =

⎧⎨⎩ 0 if   v
¯

( − v̄)(v
¯
− v̄) if  ∈ [v

¯
,v̄]

1 if   v̄

(9)

Before turning to the actual entry game, we shall take a moment to look at the equilibrium

prices under uniformly distributed valuations and a regular spacing that will later prove

important.

2.4 Pricing with Equal Relative Spacing

In this subsection, we solve the equilibrium prices under two restrictions. The first condition

is that the minimum consumer valuation is zero (v̄= 0), which we assume to save space.

In the Appendix we compute equilibrium prices and provide comparative statics for the

case of uniform distributions on [v
¯
v̄] with v

¯
 0. Our second, seemingly specific condition

is that qualities exhibit a particularly regular pattern, which we will call the equal relative

spacing property.

−1 =  ∀  (10)
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If (10) holds, each quality is a constant fraction higher than the immediately preceding

one. Our focus on this special case (10) will be justified further below.

In the case of uniformly distributed valuations and equal relative spacing, the equilib-

rium prices of firms can be solved explicitly and the system (7) becomes

 =

⎧⎪⎪⎨⎪⎪⎩
1
2

h
0 +

³
1− 1



´
0̄ + −1

i
if  = 0

1
2

h
 +

1
+1

+1 +


+1
−1

i
if   0

(11)

In this case we can formulate the following proposition:

Lemma 2 Assume equal relative spacing in quality, i.e., (10) holds. Then prices are

 = +  ∀ − ≤  ≤ 0 (12)

where

 =
 + 1

2( + 1)−  − 1−
(13)

 =  + 1 +
p
2 +  + 1 (14)

 =


2− 1
µ£
1− 

¡
2− −

¢¤
0 +

 − 1


0v̄

¶
 (15)

Proof. Substitution  =  −  into (11) yields

2 [ + ] =  +
1

 + 1
[+1 + +1] +



 + 1
[−1 + −1]

for   1. With  = (1 + )
£
2(1 + )−  − 1−

¤
this is 2( + 1) = +1 + −1.

The equation

2 − 2( + 1) +  = 0 (16)

has two roots,  =
h
 + 1 +

p
2 +  + 1

i
larger than unity and  =

h
 + 1−

p
2 +  + 1

i
,

smaller than unity. The general solution to the second-order recursive series is thus

 =  + +  (17)

Since lim→−∞  must be finite and non-negative,  = 0. Equation (17) for  = 0 is

20 = 0 + (0 − −1)v̄+−1 and, in combination with equation (17) for  = −1 implies

2 (+ 0) = 0 + (0 − −1) ̄ + (+ −1)

12



Solving for  proves the claim.

Lemma 2 shows that the equilibrium price of firm  under equal relative spacing (12)

features a constant markup term (− 1) and an auxiliary term .

The auxiliary term  may be of either sign. This term derives from the fact that the

first order condition of firm 0 is different from the first order condition of all other firms

since firm 0 faces only one competitor instead of two. It depends on the relative scarcity of

quality compared to valuations. In particular, if ̄ is relatively small and close to 0, firm 0

sells its top quality only to a small set of consumers. This implies that its demand elasticity

is relatively large, since small price decreases induce losses of large fractions of its market.

Consequently, its markup is relatively small and  is small or negative. Conversely, if ̄ is

very large, then the top firm serves a large market segment, faces a low demand elasticity

and charges high markups. The corresponding value  in (15) is thus positive.

Overall, the relative markups ()+ − 1 of prices  = (()+ ) must

obviously be positive. To verify that they are, we observe that the equivalence

  0⇔    (18)

holds, which can be checked by   0 ⇔ 2( + 1)   + 1− and 2( + 1) =  − 

(by (16)). Thus the contribution of  to the markup of low quality firms ( → −∞) is
negligible if and only if  is small in the sense that    holds. If   , instead, (18)

implies   0. In that case, all markups are positive, since, first, +   1 is required if

the top quality firm is to produce and secondly, the relative markup ()+ decreases

in .

Lemma 2 has shown that the price schedule (12) decomposes into two components — a

constant markup over production costs and an auxiliary term stemming from the border

condition. In addition, the closed form solution (12) allows us to derive comparative statics

with respect to the parameters, which we formulate in the following corollary.

Corollary 1 Assume that (10) holds. Then,

(i) prices , markups  and the slope of the pricing schedule (+1 − ) are increasing

in  for all .

(ii) prices  and the slope of the pricing schedule (+1 − ) are increasing in 0 and 

for all .

(iii) markups  are decreasing in  for all .

13



Proof. see Appendix

Two parts of Corollary 1 describe the dependence of prices on, first, the distribution

of consumer valuations and, secondly, on the set of qualities supplied. Neither of these

dependencies have a correspondence in the model of horizontal differentiation with a cir-

cular setup as in Salop (1979). Specifically, the corresponding equilibria under horizontal

differentiation are invariant to uniform taste shifts, because a firm’s losses at one end are

exactly offset by gains at the other end of the market. In the current setup of vertical

differentiation, however, this irrelevance does not hold. Thus, consider first an upward

shift of the range of valuations (Corollary 1 (i)). Higher valuations shift demand towards

the top quality. Consequently, the firm producing the top quality serves a larger market

segment which translates into a less elastic demand and results in an increased markup.

This price increase of the top quality firm increases all prices in the market, but the upward

shift of valuations benefits higher quality firms relatively more, so that the pricing schedule

steepens (all +1 −  increase).
16

Consider next a shift in the set of qualities offered — more precisely, an increase in 0 at

constant  — which is equivalent to an equal percentage increase of all qualities supplied.

Just as in the case of upwardly shifting demand, firms react to this shift in the set of qualities

with price increases. However, the nature of the shift in supply on prices is different now:

the increases in price simply reflect the increases in production costs that firms need to

pass on to consumers. Notice that, due to the convexity of costs in quality, this effect is

stronger for higher quality firms so that the prices for higher qualities increase by more (all

+1 −  increase).

Parts (ii) and (iii) of Corollary 1 show how technology impacts prices. Not surprisingly,

a uniform increase in production costs of all firms increases the prices of all firms. This

increase in prices induces consumers to substitute towards lower qualities. Thus the market

share of the top-quality firm shrinks and its market power falls, inducing the top firm to

charge lower markups. This increase in competition at the top end of qualities, in turn,

propagates downwards and lowers the prices of all firms (but affects high-quality firms

16In the appendix, we document a similar comparative static for the lower bound of the distribution of

the valuations: increasing the lowest valuation decreases all prices and decreases the slope of the pricing

schedule. We empirically examine the importance of the support of income distributions on markups in a

model of how quality is priced to market in Auer et al. (2012).

14



relatively more). Overall, the increase in production costs is thus imperfectly passed on to

consumers.

For comparison, we note that in the classical Hotelling model (for given entry), a uniform

change in the cost parameter leaves markups unaltered because it does not affect the

relative trade-off between varieties. The key reason for the differences of the impact of

the parameters on equilibrium prices is that in our setup with a vertically differentiated

market, the border condition of the top firm and thus all relative prices are affected.17

Corollary 2 Assume that (10) holds. Then, the equilibrium cutoff-valuations v are in-

creasing in ,  and 0.

Proof. Follows directly from (5) and Corollary 1 (i) and (ii).

Corollary 2 shows that the arrival of consumers with a high valuation for quality "crowds

down" other consumers: if there is an entry by high-valuation consumers ( increases),

all prices increase but the prices of high quality firms increase the most. Consequently,

cutoffs move up, i.e. the pre-existing set of consumers downgrades its quality. Similarly,

a proportional decrease in the marginal cost of all firms leads consumers to choose higher

qualities.

Notice also that, parallel to Hotelling’s setup, the market size impacts neither firms’

prices nor their market segments, since the recursive pricing formula (11) and, indeed, the

generic optimality condition (7) are independent of .

Finally, we can assess the impact of entry of an additional firm on the markups of

existing ones and on consumers’ equilibrium quality choice. The pricing rule allows us to

make an intuitive and simple statement regarding the effect of entry on the markups of

existing firms.

Lemma 3 Assume that (10) holds. The entry of an additional firm at the top end of the

quality spectrum (at 1 = 0)

(i) weakly decreases the markup of all established firms,

(ii) weakly flattens the pricing schedule (+1 − ), and

(iii) weakly decreases cutoff valuations v.

17By contrast, in Vogel (2008) transportation costs do impact markups for a given number of entrants due

to their effect on the equilibrium spacing: specifically, higher transportation costs mitigate the importance

of heterogeneity in productivity and thus the equilibrium degree of isolation between firms.
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Proof. (i) Denote the parameter from (15) before (after) the entry of the additional

firm with  (̃). If ̃+   1, the new entrant does not produce and there is no effect on

prices. Thus, assume that ̃+   1 holds. Denoting the price of firm  before and after

entry of the additional firm with  and ̃, respectively, we have

̃


=
e−1 + 

 + 
=

−1
³£
1− 

¡
2− −

¢¤
+ −1


1− 0

0
v̄
´

0

+ 2−1

+1
³

[1−  (2− −)] 0 +
−1


0
0
v̄
´

0

+ 2−1

+1


By     1 the numerator is larger than the denominator. Since both are positive, this

proves the statement. (ii) by (i), it also holds that

(̃+1 − ̃)− (+1 − ) =
¡
+1−1 − −1

¢ e− ¡+1 − 
¢
 ≤ 0

Finally, note that (iii) holds by (ii) and (5).

The Lemma shows that entry of a new technological leader crowds the top end of the

market, increasing competition and lowering prices. For a given v̄, the new technological

leader faces a smaller market segment and thus a higher demand elasticity than the old

technological leader did before the entry.18

Lemma 3 also establishes that entry weakly flattens the pricing schedule (+1 − )

and decreases the cutoff valuations . By lowering the cost to consumers of increasing

the quality of the consumed good, the entry of a new technological leader increases the

equilibrium cutoff valuations v not only for top-valuation consumers, but (weakly) for all

consumers.

This section has established comparative statics of prices for given entry and analyzed

the impact entry of an additional firm on prices. In all cases, we have considered the special

case of equal relative spacing. We did not, of course, choose the special case of equal relative

spacing by chance: endogenous firm entry generates exactly the pattern described in (10).

We now turn to the entry game and the resulting endogenous quality spacing.

18Technically, entry at the top reduces the constant from  to e. The incumbent technological leader
becomes firm −1, and is thus "isolated" from the new constant. If the constant is negative, this isolation

can be beneficial. However, Lemma 3 documents that the total effect is always such that prices (and

thus markups) of pre-existing firms weakly decrease once entry happens. Also note that the Lemma

distinguishes two cases. First, the additional firm engages in production and impacts the whole market by

depressing markups. Secondly, it does not pay for the additional firm to produce and sell its goods, and

consequently leaves the market unaffected. Since this second case may indeed occur, the entry of additional

firms decreases the markup of any preexisting firm only weakly.
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3 Endogenous Spacing with Exogenous Growth

This section analyzes the firms’ endogenous choice of qualities. Upon market entry, firms

form expectations about future profits, anticipating the price equilibria described in Propo-

sition 1. We remind the reader that we assume that valuations are distributed uniformly

on the interval [v
¯
v̄] according to (9). By Proposition 1 this assumption grants uniqueness

of the price equilibrium for all potential quality choices.19

We will show that in a dynamic version of the general setup as described above, free

entry supports equilibria with equal relative spacing of the firms, endogenously generating

quality levels that satisfy (10).

We introduce a dynamic dimension into our model by assuming that time is continuous

and that productivity in the -sector grows at the constant rate , which is exogenously

given.20 Indexing the cost parameters  and  with time subscripts, we can write

 = − and  = − (19)

Our analysis aims at a stationary equilibrium in which each firm enters the industry as

the technological leader and successively transits through the product cycle as it becomes

superseded by further innovators. The advantage of such a dynamic entry game is that we

only need to analyze the entry problem of one firm at a time. In particular, we avoid the

problems that arise in a simultaneous-entry game, as in Vogel (2008).21

In the entry game, firms decide not only which quality to invent but also when to enter

the market. We assume that, at each point in time, there is a pool of potential entrants who

may receive a perpetual monopoly to produce the good of quality level  when incurring

19As a general principle, price equilibria do not need to be unique for firms to compute expected profits

and entry decisions. In fact, the results of the current section apply conveniently when defining expectations

about future price equilibria. However, we focus on uniform distributions of valuations for simplicity’s sake

and to avoid distracting discussions regarding these expectations.
20In the working paper version, we endogenize the rate of technical progress  by assuming that aggregate

technological progress in the -sector is a byproduct of firms’ costly R&D activity. In this framework, we

document that introducing consumer heterogeneity has important consequences for the nature of "creative

destruction" and the mechanisms through which innovating firms create aggregate innovation (see Klette

and Kortum (2004)).
21In fact, the resulting complications would be tremendous in our setup, because the clear ranking of the

quality line prevents us from using the symmetry properties that arise in models such as Salop (1979) that

are based on Hotelling (1929) and Lancaster (1966) and assume that the characteristic space is formed like

a circular street or the beach surrounding an island. In a quality setup, however, any attempt to "close

the circle" must fail, as such an attempt would amount to identifying the highest-quality good with the

lowest-quality good.
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the fixed cost (3). Driven by competition among potential entrants, a firm innovates as

soon as innovation generates a profit flow with a net present value at least as large as the

innovation cost.

We begin the analysis with the situation described in the previous section: the set of

active firms is {0−1−2 } and the firms are ranked in ascending order by quality so that
a higher firm index corresponds to a firm producing higher quality  ∈ {}≤0. Moreover,
all existing qualities  satisfy (10).

We assume that a plant established to produce quality  automatically holds the

blueprints for all qualities between −1 and , where −1 is the next lowest quality

level. This assumption restricts the entry of additional firms to quality levels above the

pre-existing ones (+1 ≥ ).
22

Firms that gradually establish themselves at the top end of the quality spectrum are

indexed with  ≥ 1. Let  be the entry date of the  additional firm (implying

0 ≤ 1 ≤ 2 ≤ ) and  denote its quality level (0 ≤ 1 ≤ 2 ≤ ). It will prove

convenient to express the quality choice of the  entrant relative to the highest quality

of all incumbents (−1) as

 = −1  ≥ 1

At time  ∈ [+ ++1), the set of quality levels supplied to the market is {}≤+.
Current prices are determined by equation (7) and depend on all currently produced quality

levels and on productivities by equation (19). Consequently, at time  ∈ [+ ++1),
the operating profits of the  additional firm, given by equation (8), are a function of

the qualities {}≤+ and time  . Note that productivity depends on time  through the
term  only and we can thus express time dependence through  . Formally, operating

22We note that this is a strong assumption. In an unrestricted entry game we cannot exclude a priori

that an entrant would choose a quality below that of the technological leader. However, we focus on

the case of top quality entry only, since in international patent law entrants are granted a patent only

if innovation contains an element of novelty that improves upon existing technology and that patents

thereby also grant current technology leaders protection from future entry by lower quality competitors

(see World Intellectual Property Organization (2004)). Chor and Lai (2013) label this the “inventive step

requirement” and theoretically examine its welfare-maximizing level in a model of Schumpeterian growth

following Aghion and Howitt (1992).
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profits of the firm  at time  are thus23


¡
  + + +−1 +−2  1 

¢
 ∈ [+ ++1)

Defining the product

Γ =
Y

=1
+ (20)

yields + = Γ so that at time , the present value of the flow of operating profits

for a potential entrant can be expressed as

Π( ) =
X
≥0

Z ++1

+

−(−)
¡
 ΓΓ0−10 + +−1  1 

¢


(21)

where the parameter  is the constant rate at which firms discount future profits.

We are now in position to formulate firms’ entry decisions. The  firm chooses its

entry date () and its location on the quality line (). With the second choice, it

maximizes the present value of profits at time  (21) net of costs (3). Given the spacing

−1 −2  1 , and conditional on the entry date , the 
 optimal quality choice

is

̂
¡
−1  1 

¢
= argmax

̃≥1

(X
≥0

Z ++1

+

−(−)
³
  Γ̃̃Γ0−10 ̂+ ̂+−1

  ̂+1 ̃ −1  1 

¶
 − (̃Γ0−10)

¾
(22)

Here, Γ̃ denotes, similarly to (20), the product of the  future optimal relative spacing

parameters, given that the -entrant plays ̃:

Γ̃ =
Y

=1
̂+

¡
̂+−1 ̂+−2 ̃ −1  1 

¢


Notice that for  ≥ 1, all of the location choices ̂+ (and Γ̃) and the entry dates

+ are functions of the choice of firm . For expositional purposes, however, the argu-

ments ̂+(̃), Γ̃(̃), +(̃) are suppressed in (22) and further down. The 
 firm’s

23Notice that prices and profits  are unique by Lemma 1 and assumption (9). In cases of general

distribution functions and multiple pricing equilibria to the system (7), one may read  as the expected

profit with some exogenous probability assigned to each of the equilibria. Under the additional assumption

that the realization of the equilibria is not path-dependent, the expected profits depend on incumbent

qualities only and the following analysis applies.
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entry date is determined by the free entry condition, i.e., the requirement Π( ) ≥
 ( −1). Formally, we write

 = inf

(
 ≥ −1

¯̄̄̄
¯ sup̃≥1

"X
≥0

Z ++1

+

−(−)
³
  Γ̃̃Γ

∗
0−10 ̂+ ̂+−1 

 ̂+1 ̃ 
∗
−1 

∗
−2 

∗
1 

¶
 − (̃Γ

∗
0−10)

¸
≥ 0

¾
(23)

where the asterisk ∗ denotes the equilibrium locations:

∗1 = ̂1 () and ∗ = ̂(
∗
−1 

∗
−2  

∗
1 ) (24)

and Γ∗0 is defined parallel to (20) as the product of the equilibrium ∗

Γ∗0 =
Y

=1
∗ 

Optimal quality choices (22) and the free entry conditions (23) of all entrants ( ≥ 1) deter-
mine the equilibrium of the entry game. The first important result of this section concerns

the solution of the system (22) - (23) and is formulated in the following Proposition.

Proposition 2 Let (     ) be any combination of positive parameters. Then,

(i) for any given  and {}≤, the entry date ∗+1 and the relative location

∗+1(      {}≤) ∈ (1∞)

are unique. The choice ∗+1 does not depend on .

(ii) there is a ̄(     )  1 so that, if  = ̄ for all  ≤ , then

+1(      {}≤) = ̄

holds. In this case, time intervals between consecutive entries are constant and equal to

∗+1 − ∗ = ∆ = ln(̄) ( − 1)  (25)

Proof. See Appendix.

Part (i) of Proposition 2 shows that there is a unique equilibrium with finite relative

spacing ( = −1). Interestingly, the relative spacing of the  + 1 firm does

not depend on the level of previous qualities, {}≤, but just on their relative spacing
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{}≤. This result is a reflection of Lemma 1, and ultimately a result of the scaling
property of the model. A new entrant  + 1 compensates a proportional increase in

existing qualities  ( ≤ ) by postponing the entry date, which lowers entry costs and

marginal costs. The entry date is delayed, but location decisions are unaffected.

Part (ii) of Proposition 2 shows that equilibria can arise that exhibit a particularly

convenient and regular spacing pattern: equal relative spacing  = ̄ applies to qualities

of all incumbents but also for those of all future entrants. Notice, however, that part (ii) of

the proposition does not involve uniqueness. Specifically, the unique dynamic equilibrium

from part (i) does not guarantee that the equilibrium with equal relative spacing is unique.

Just as in growth models where unique investment strategies — given a set of relevant state

variables — do not guarantee unique steady states, uniqueness in part (i) does not translate

into uniqueness in part (ii).

The lack of uniqueness should not come as a major surprise as it is a typical property

of models of strategic complementarity in entry. Many comparable models of free entry to

markets are subject to the same indeterminacy (see Capozza and Van Order (1980) and,

more recently, Vogel (2008)). In general, some sort of strategic complementarity is involved

when multiple equilibria arise (see also Cooper and John (1988)). In our current modeling

setup, this would mean that a dense spacing of the existing qualities would make it relatively

more attractive for new entrants to choose a small  on its own (thus replicating the dense

spacing). At first sight, such an effect may seem counterintuitive. However, considering the

simultaneous choice of location and entry date, one consideration of the current entrant is

to delay the entry of the next entrant. One way to do that is to commit to lower future

prices. Such a commitment can be reached if preexisting qualities are densely spaced since

in this case, the impact of the additional entrant on the incumbent top-firm’s pricing rule

is lower. As long as the value of commitment rises with the density of preexisting qualities

relative to the loss in instantaneous profits, strategic complementarities can potentially

arise, thus giving rise to the possibility of multiple equilibria.

An equilibrium described in Proposition 2 (ii), which is characterized by  = ̄ for

all integers , can be labeled an Equal Relative Spacing Equilibrium (ERSE). Since the

proposition is silent about its uniqueness, in the following analysis we refer to the ERSE

as one equilibrium (out of possibly several equilibria) with the minimal spacing ̄. Notice

that (as argued in the proof of Proposition 2), under a preexisting spacing parameter equal
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to one ( = 1), the optimal spacing of the first entrant ∗() from (24) satisfies ∗()  

for all  ∈ (1 ̄). Therefore, at the minimal symmetric ̄, characterized by ∗(̄) = ̄, the

following inequality holds:
∗()


¯̄̄̄
=̄

 1 (26)

We note that under some conditions uniqueness of the ERSE follows directly — for

example if the distribution of valuations is sufficiently compressed (the ratio v̄v
¯
is small).

In that case, there is a unique optimal  for all initial conditions, which characterizes the

ERSE. To verify this statement, consider entry of firm 1 under any set {0 −1 } of
qualities of the existing firms. By Proposition 2 (i), the relative location choice of firm

1, 1, is independent of 0. Moreover, if the ratio v̄v¯
is small enough, 1 is independent

of −1 −2  as well, because at most two firms are simultaneously active in that case.24

Consequently, firm 1’s relative location choice 1 is independent of all previous qualities 

( ≤ 0) and is therefore unique. Hence, there is only one optimal  for all entrants, which
means that the relative spacing parameters of all entrants are identical.25

Turning to the general case, however, we consider ERSE for which (26) holds. Existence

of such an equilibrium is established in Proposition 2 (ii) and we can derive the following

Lemma, which exploits the scaling properties of the model to establish regularities of the

solution to the optimal entry problem of the firms.

Lemma 4 Let ̄ be the spacing parameter of the ERSE. Then,

(i) for given (), ̄ is independent of   and , so that ̄(()).

(ii) the transformation ( )→  · ( ) (  0) postpones entry dates by ln().

(iii) ̄ is constant under the transformation (0 0 0) =  · (  ) with   0.

(iv) the transformation ̃() = () (  0) leaves ̄ unchanged and postpones entry

dates by ln(1).

Proof. (i) Operating profits  are linear in  and setup costs  are linear in . Thus,

when replacing 0 = , population  factors out of the slanted brackets in (22) and

24Using (7) and (9), prices and profits are quickly computed for three firms  = 0−1−2. For v
¯
close

to v̄, the firms’ qualities (0 = 2−2, −1 = −2 and −2) need to be sufficiently close to each other for
all firms to be active. In particular,  → 1 as v

¯
→v̄. This implies zero profits in the limit and contradicts

free entry under any   0.
25Technically, the intertemporal links decouple and the dynamic system effectively becomes a static one:

the entrant’s problem of choosing the optimal  is independent of the model’s state variables (0 −1 )
and is thus replicated for each new entrant.
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the square brackets in (23). Consequently, the solution to problem (22) - (24) and thus ̄

depends on 0 =  only. Similarly, operating profits are, by Lemma 1, linear in  under

the transformation 0 = 0
1(−1) that leaves the relative spacing unchanged. Hence,

replacing 0 =  in (22) and (23) shows that ̄ depends on 0 only.

(ii) Consider the transformation (0 0) =  · ( ). Adding the time transformation
00 =  + ln() implies (00 00) = −1(0 0) = ( ) by (19), replicating the original

problem and thus its solution.

(iii) Given entry dates and locations, the net present profits (21) are constant under

rescaling of time  → . Thus firm entry remains unchanged. Finally, the time transfor-

mation is equivalent to the transformation (0 0 0) =  · (  ) (see (22) and (23)).
(iv) The transformation ̃() = () and (0 0) = ( ) leaves the optimality

conditions (7) unchanged. Since the time transformation 0 =  + ln(1) is equivalent

to the transformation (0 0) = ( ) (see (ii) above) this shows the claim.

Technically, part (i) of Lemma 4 shows that the density of spacing ̄ is only affected by

the costs  and  and the market size  only through the the ratio (). Intuitively,

since prices are independent of the market size , the operating profits are proportional

to . Thus, an increase in the fixed costs of market entry, , can be entirely offset by a

corresponding percentage increase in the market size without any impact on the equilibrium

spacing. Similarly, a proportional increase in market entry cost  and marginal production

cost  by the factor  does not matter for optimal spacing. In such a case, however,

entrants need to let time pass until costs have dropped according to (19). After a period of

length ln(1), the original level of costs is reached and the entry problem is replicated.

This is stated in part (ii) of Lemma 4.

Lemma 4 (iii) concerns the choice of units of time. Equal percentage changes in  and

 are isomorphic to changes in time units. Moreover, when doubling the units of time, the

flow of profits is "thinner". However, when this thinning out of profits is compensated by

an increase in market size , the total effect on relative spacing of qualities vanishes. This

statement also shows that for a fixed ratio of  (e.g. if  = ), the spacing property

of ̄ depends on the ratio  only. Together with part (i) of the lemma, we can write

̄(()) in this case.

Finally, Lemma 4 (iv) shows that stretching (or compressing) the distribution of val-

uations  does not affect the equilibrium spacing. Stretching the distribution  (with
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 ∈ (0 1)) increases each consumer’s willingness to pay for quality and thus simply ad-
vances the entry of firms. Together with (i) and (ii), this statement can be reformulated in

an intuitive way as an equivalence between the valuations  and costs  and . A propor-

tional increase in consumers’ willingness to pay for quality and the costs of quality leaves

the equilibrium qualities unchanged and the entry date of each given quality occurs earlier

by ln(1) units of time.

This section has derived a novel result about the regularity of firm spacing (Proposition

1) and the relative impact of the model’s key parameters (Lemma 2). In the next section

we will discuss the ERSE and provide comparative statics.

4 Properties of the ERSE

With Lemma 2 and Lemma 3, we can illustrate dynamics of the equilibrium described in

Proposition 2 (ii). The prices and profits of a firm producing 0 evolve as depicted by

the blue and green lines in Figure 2. Each continuous section represents prices and profits

when no innovation occurs. Innovations occur at regular intervals; the entry dates are

marked by the vertical dotted lines. At these equidistant dates of entry, firm 0’s markup

over marginal cost and thus its operating profit both drop by a discrete amount because

the new competitor reduces the incumbents’ market power and its market share.

Two opposing forces shape the overall trend, which is decreasing in the long-run. First,

for a given set of firms, the profit flow for the top-quality firm is increasing as productivities

increase over time, making production of all goods cheaper, spurring demand for quality

and thus driving up the market share of the top quality firm. Second, productivity growth

also implies that each firm’s market segment narrows. In particular, as time passes, the

firm serves consumers with lower and lower valuations. It becomes squeezed to the bottom

end of the quality distribution, serving an ever smaller segment. Therefore, the profit flow

drops to zero in the limit.

In the equilibrium depicted in Figure 2, an innovating firm immediately starts pro-

ducing once it enters the market. However, if entry is sufficiently cheap relative to the

marginal productivity, the zero profit condition may also force firms to enter the industry

preemptively: at the moment of entry, the production of the top quality is too costly so

that there is no demand for it even when sold at marginal costs.
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Figure 2: Profit Flow over the Life Cycle of the Firm Entering at ∗ = 0.

The resulting product life cycle with preemptive entry is depicted in Figure 3. In this

equilibrium, further technological progress is needed to reduce the cost of the highest quality

good before it is actually produced. In Figure 3 we depict such an equilibrium, where firms

only sell a while after entry. In this equilibrium, at the moment when productivities are

just high enough so that the consumer with the maximum valuation buys from the firm

that entered at ∗0, firm 0 sells at marginal costs (the firm’s demand is infinitely elastic

because it sells to a negligible set of consumers). Thereafter, the profit flow of firm 0

increases steeply: the set of its consumers grows with productivity growth. As it sells to a

growing range of consumers, its demand becomes less elastic so its markup increases. At

each date at which a new competitor starts producing (which occurs always some while

after innovation), the increased competition reduces markups and profits of the incumbent

firm. Again, the respective dates are marked by vertical dotted lines. In the limit, the

firm approaches a constant markup. However, because the firm’s market share converges

to zero in the long run, its profit flow approaches 0.

Our next aim is to conduct comparative statics with regard to the model’s parameters.

As a preparatory step, we write for the relative markup of the highest quality firm

+ − 1 = 

2− 1
½
 − 1


0̄

0
+

µ



− 1
¶
− − 1



¾

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Figure 3: Profit Flow of the Firm Entering at ∗0 under Pre-Emptive Entry

With the explicit formula for the prices (12), the operating profits from (8) are

 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
 ( − 1)

µ
+ − 1
 − 1

¶2
20
0



̄
if  = 0

(2 − 1)
Ã

¡


¢
+ − 1

 − 1

!2
2




̄
if   0

(27)

Observe with (13) and (15) that the limit

lim
→1

+ − 1
 − 1 =

1√
3

½
0̄

0
− 

¾
is finite. Thus, in the case of equal relative spacing, the operating profits are, by (13) - (15)

and the limit above, continuously differentiable for all  ≥ 1 and satisfy, moreover

 → 0 ( → 1)

Next, and very importantly, we can sign the slope of the ERSE’s location, i.e., the function

̄() for some (technical) parameter restrictions.

Proposition 3 Assume v
¯
=0 and let 0    ̄ ∞. Then, there is a 0  0 so that ̄()

is weakly increasing on [ ̄] for all  ∈ [0 0].
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Proof. See Appendix.

In combination with the proofs of the existence and uniqueness of the pricing game and

existence of the entry equilibrium (see Proposition 2), Proposition 3 represents the main

result of our analysis. It establishes the comparative statics of the equilibrium degree of

spacing with regard to the entry cost.26

The proposition shows that higher setup costs increase the relative spacing between

quality levels. Intuitively, firms must be compensated for increases in setup costs by in-

creased profits. The latter profit increases are brought about by larger market shares and

by higher markups and, ultimately, by a wider spacing parameter ̄. Larger markets induce

more frequent firm entry and a higher density of quality supply because higher sales and

profits allow for a faster recovery of setup costs. Markups, in turn, are decreasing in the

density of supply and are thus decreasing in market size.

Together with Lemma 2, Proposition 3 also determines the impact of market size ()

and marginal production costs () on the spacing ̄ of the ERSE. In particular, increases

in  and  have similar effects on ̄ as do reductions in setup costs: all decrease the

equilibrium spacing, ̄. Clearly, a larger market induces, ceteris paribus, higher profits

and allows firms to generate more profit. At given setup costs, larger markets therefore

experience more frequent entry of firms at closer distances; that is, the competitive pressure

among firms rises.

Surprisingly, productivity growth at the margin (a decrease in marginal production

costs ) increases relative spacing. This adverse effect of marginal productivity growth on

competitive pressure may appear somewhat puzzling. To understand the forces operating

to this effect, observe that the preference specification developed in this paper generates,

just as with preferences featuring a constant elasticity of substitution, relative firmmarkups

−1 that are independent of costs (see prices (12)). Put differently, at a given relative
spacing, operating profits constitute a constant share of revenues. Hence, when quality

levels are constant, an increase in marginal productivity (or a drop in marginal costs)

tends to curb revenues and thereby depresses operating profits.27 As firms must cover their

setup costs, however, the productivity gains that curb profits per consumer must come

26The condition on the interest rate  establishes an upper bound for the instantaneous profits upon firm

entry and is a technical requirement for the proof of Proposition 3.
27This aggregate relationship does not, of course, mean that each single firm can raise its profits by

artificially decreasing its productivity.
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about with increases in market share, i.e., with a wider equilibrium spacing. At the same

time, this widening of relative spacing does increase relative markups. Hence, competitive

pressure decreases as marginal productivity grows.28

It would be premature to infer welfare consequences based on the parameter ̄ alone

(and its impact on markups), conjecturing, e.g., that an equal increase in setup costs 

and operating costs  leaves the welfare levels of the economy unchanged. In fact it does

not. Such a change in technology actually postpones innovation by Lemma 4 (ii) so that

more time elapses until a product of a given quality is on the market. This delay means

that individuals purchase lower-quality goods, which has a negative impact on consumer

surplus.

5 Conclusion

In this study, we analyze the pricing game and endogenous firm entry into vertically dif-

ferentiated markets, assuming that the relevant production technology is such that the

finiteness property of Shaked and Sutton (1982 and 1983) is violated, i.e. that a potentially

large number of firms can coexist alongside the technological leader.

We first examine monopolistic competition in the quality space for given entry of any

number of firms and arbitrary spacings. Our basic assumption for production technology

is that the marginal cost of production is convex with respect to quality, which guarantees

the survival of many firms. We characterize the pricing strategies and profits of firms that

compete à la Bertrand, taking as given each firm’s quality, i.e., its location in the quality

space. Specifically, we prove the existence of a pure-strategy pricing equilibrium, and,

under uniform distribution of consumer valuations, uniqueness.

Secondly, we model the costly quality choices of firms entering the industry. Exogenous

productivity growth makes ever higher qualities affordable for consumers, so firms sequen-

tially enter the market at the top end of the quality spectrum. We specify the conditions

under which the entry problem of each new entrant is replicated, which implies that each

new quality level exceeds the current quality level by a fixed proportion. Although the

firms’ sequential market entry introduces technical difficulties, this model overcomes the

28Notice that this effect depends on the property of our model that demand does not react along an

intensive margin. In particular, consumers do not react to price changes by consuming more or less, but

instead by switching to other firms.
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asymmetry of the location problem that unavoidably arises in quality space: the quality

spectrum has top and bottom ends. Our main technical contribution lies in handling the

border conditions that therefore appear (and are absent from the circular world of Salop

(1979) and other circular representations of Hotelling (1929) and Lancaster (1966)).

Our main technical contribution lies in handling the border conditions that therefore

appear (and are absent from the circular world of Salop (1979) and other circular repre-

sentations of Hotelling (1929) and Lancaster (1966)).

Because it provides a rich, yet reasonably tractable description of vertically differenti-

ated industries featuring a large number of coexisting firms, we believe that our framework

has many further applications in the fields of industrial organization, international trade,

and economic growth.29

29For example, Auer et al. (2012) embed the preferences developed in this study in a multi-country

world featuring costly trade and then both theoretically and empirically examine how firms price their

goods differently depending on the density of quality competition in each market.
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A Appendix — Proofs

Proof of Lemma 1. We first show that firm ’s strategy space is convex, compact,

and non-empty for all . For prices exceeding max =v̄, consumer demand is zero, in-

dependently of other prices. Hence, firms ’s strategy lies within the convex and com-

pact interval [v̄]. Firms’ strategies are thus a subset of the convex and compact set

 = [0v̄0]× [−1v̄−1]× × [ v̄ ]. Furthermore, firm ’s profits are zero at  = 

or +1 = . The latter equality is equivalent to

̄ =
( − −1) +1 + (+1 − ) −1

+1 − −1
(28)

Convexity of () implies

̄ =
( − −1) +1 + (+1 − ) −1

+1 − −1
≥ ( − −1) +1 + (+1 − ) −1

+1 − −1
 

so that profits are non-negative on the interval  ∈ [ ̄] and positive on  ∈ ( ̄).
The strategy space 0 defined through  ∈ [ ̄] ∀ ≤ 0 is a closed non-empty subset

of  and is thus compact and non-empty. Finally, it is convex since for p = ()≤0 and

p0 = (0)≤0 and  ∈ (0 1) we have for p00 = p+ (1− )p0

 + (1− )0 ≤ ̄ + (1− )̄0 = ̄00

for all , where the respective upper bound on strategies ̄
(00)
 is defined parallel to (28).

Show (i): The Gershgorin circle theorem states that under condition +
P

 6= ||  0
the matrix  = () is negative definit. We aim to apply this theorem to the matrix 

consisting of the elements  = 2() + 2(), with descending indices

  = 0−1   . To save notation, we write  =  (), 
0
 = 0 (), and ∆ =

 − −1. Using (7), we then compute

2


=

⎧⎨⎩ 0
+1∆+1

−2 £0
+1∆+1 +0

∆
¤

0
∆

  = + 1

  = 

  = − 1

and zero else. Notice that 2() = 2() so that the matrix  is sym-

metric and its elements are

 = 2
2



This matrix satisfies the condition of the Gershgorin circle theorem.

30



Notice also that for given +1, −1, firm ’s profit

 = ( − ) [ (+1)− ()]

is continuous and convex in , since by 
0 (+1) =  (constant)

2

()2
= −2 ( − )

∙
0 (+1)
+1 − 

+
0 ()
 − −1

¸
  0

As each firm’s strategy space is convex, compact, and non-empty, each payoff function  is

continuous and concave in  and  = () is negative definit, we can now apply Theorem

2 in Rosen (1965) to conclude that the pricing equilibrium is unique.

Show (ii): Check with (5) that profits  = ( − ) [ (+1)− ()] are con-

tinuous in prices. For  ∈ {0−1 −}, define −() = (0 −+1 −−1 −) and

observe that profits ̃(−()) = max ( − ) [ (+1)− ()] are continuous in the

elements of −(). Applying the Theorem in Debreu (1952) thus proves the statement.

Proof of Corollary 1. 1 Write with (12)

 = 


2− 1
µ
 − −

 + 1
0 +

 − 1


0v̄

¶
+ 

+1 −  = (− 1) 

2− 1
µ
−

 − −

 + 1
0 +

 − 1


0v̄

¶
+ ( − 1)

(i) Follows by    1.

(ii) Compute




=

∙
− 

2− 1
 − −

 + 1
0 + 

¸
1


=

∙
−() 

2− 1
 − −

 + 1
+ 1

¸



(29)

If   , then   0 and the term in square brackets is

−() 

2− 1
 − −

 + 1
+ 1 ≥ − 

2− 1
 − −

 + 1
+ 1  − 

2− 1
− 1
 + 1

+ 1

Since  solves (16), it satisfies 2 = 2( +1)−  so that the expression on the right hand

side is

− 1

2− 1
2 − 1
 + 1

+ 1 = − 1

2− 1
2( + 1)−  − 1

 + 1
+ 1 = − 1

2− 1
2− 1
1

+ 1 = 0

If, instead,    then   0 holds and

−() 

2− 1
 − −

 + 1
+ 1 ≤ − 

2− 1
 − −

 + 1
+ 1  − 

2− 1
− 1
 + 1

+ 1
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The last expression is zero, as shown above. Hence, (29) is always positive since    ⇔
  0.

Further,

(+1 − )


=

∙
−()(− 1) 

2− 1
 − −

 + 1
+ ( − 1)

¸




The proof follows as above.

Observe with (12) that


0
=







0
+ 



2− 1
 − 1


v̄

so that
 (+1 − )

0
=

 (+1 − )





0
+ (− 1) 

2− 1
 − 1


v̄

Both expressions are positive by the statements   0 and (+1 − )  0

above.

(iii) and (iv) Follow directly from (12).

Proof of Proposition 2. Consider the location choice of the first entrant ( = 1) at

given 0 and {}≤0, where  = −1.

(i) Notice that  is bounded below by −1  −∞. Therefore, the infimum in (23) is

well-defined and 1 is unique. Consider firm 1’s location choice 1 = 10. For given 1,

the net present value of firm 1’s future operating profits 1(  1 {}≤0) isZ ∞

1

−(−1)1(  1 {}≤0 0)  − (10)


By Lemma 1, this expression is homogeneous of degree  in 0. This proves that the

maximazing 1 is independent of 0. We can thus set 0 = 1 wlog. Entry at 1 = 1 cannot

be optimal since Bertrand competition would imply 1 = 0. Similarly, entry at 1 →∞ is

not optimal. To verify this statement, observe that firm 1’s profits are bounded by profits in

absence of competitors. A monopolist would sell to the market segment [0v̄], charges its

optimal price  = (v̄+ )2, receiving profits that satisfy ()  1(v̄2)
2(v̄−v

¯
).

Thus, firm 1’s net profits are bounded by

1(v̄2)
2(̄ − v

¯
)

Z ∞

1

− − 1

1

which is negative as 1 → ∞. Thus, net profits are maximal for a 1 ∈ (1∞). Finally,
for given 1 the value 1 maximizing net profits is unique just as in generic maximization

problems.
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(ii) Assume that {}≤0 satisfy (10) with prevailing  and consider entry decision of

firm  = 1. Observe that entry with 1 = 1 is not optimal since Bertrand competition

would imply Π1(1) = 0 (regardless of 1), which violates the free entry condition. Hence,

 = 1 implies 1  .

We show next that 1   holds for  large enough. If this were not the case, 1 ≥  for

all  ≥ 1, which implies 1 →∞ as  →∞. But 1 →∞ was shown above to contradict

free entry. Consequently, 1   holds for  large enough.

Writing the first entrant’s relative location 1 as a function of the preexisting relative

location parameter , i.e., writing 1() we thus have 1()   for  = 1 and 1()  

for  large enough. Continuity then implies that there is a   1 so that 1 = . We

denote this by ̄. At this  = ̄, the firm  = 1 locates in the quality space, extending

equal relative spacing (10) to all  ≤ 1.
Under  = 1 = ̄, we call the spacing problem of the remaining additional firms ( =

2 3 ) the residual spacing problem. With the notation

0 = +1 ( ≥ 1) 00 = ̄0 = 1 and  0 =  + −1( − 1) ln ̄ (30)

the residual spacing problem solves the corresponding system (22) - (24) above, where the

relevant variables 0 0 and 0 now bear a prime. Applying Lemma 1, (19) and (30) shows

that



³
  Γ̃0̂

0Γ0(∗)0−1
0
0 

0
 

0
−1  

0
1 ̄
´
= ̄

³


0
 Γ̃0̂

0Γ0(∗)0−10 
0
 

0
−1  

0
1 ̄
´

Notice also that the setup cost (3) satisfies  0(· 00) = ̄1− (· ̄0) = ̄ (· 0). Hence, ̄
factors out of the right hand side of (22) and of the square brackets in (23). Consequently,

the solution of the residual spacing problem coincides with the original problem, implying

01 = 2 = 1 = ̄. A simple induction argument completes the proof that  ≡ ̄ for all

 ≥ 1.
Finally, (19) and the transformation (30) show that two consecutive entries occur at dates

satisfying  = ̄1−. With (19), this is 
−(+1−) = ̄1− and proves the second

statement.

Proof of Proposition 3. We start with some preparatory steps. First, we define Ψ

as net profits of the first entrant as a function of existing spacing , setup costs , entry

date  and location choice ̂. Suppressing dependence of Ψ on parameters other than  and
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normalizing 0 = 1, we have

Ψ(  ̂ ) = Π(̂ )−  (̂)


Free entry implies that equilibrium entry date and location ∗() and ∗() satisfy

Ψ( ∗() ∗() ) = 0 (31)

for all  and . Optimality of the firm’s location choice implies

Ψ∗( 
∗() ∗() ) = 0 (32)

Taking derivatives of (31) w.r.t.  and using (32) yields

Ψ +Ψ∗
∗


= 0 (33)

Next, we denote the relative spacing variable of the ERSE with ̄(). Along the path of all

these ERSEs (31) holds, so that Ψ(̄() ∗(̄() ) ̄() ) = 0. Taking derivatives w.r.t.

 and using (33) yields

0 =

∙
Ψ +Ψ∗

∗



¸
̄


+Ψ∗

∗


+Ψ = Ψ∗

∗


+Ψ

which implies with Ψ = −̄
∗


=

̄

Ψ∗
 (34)

Now, taking derivatives of (32) w.r.t.  leads to

0 = Ψ∗ +Ψ∗∗
∗


+Ψ∗∗

∗


 (35)

Along the path of all ERSE, (32) requires Ψ∗(̄() 
∗(̄() ) ̄() ) = 0. Taking deriv-

atives w.r.t.  yields

0 =

∙
Ψ∗ +Ψ∗∗

∗


+Ψ∗∗

¸
̄


+Ψ∗∗

∗


+Ψ∗

or, with (35),

Ψ∗∗

∙
1− ∗



¸
̄


= −Ψ∗∗

∗


−Ψ∗

Equations (3) and (21) imply Ψ∗ = (∗)−(∗) and thus Ψ∗∗ = (∗)−1−∗(
∗).

Further, Ψ∗ = − (∗)−1 holds so that we have with (34) at the ERSE

Ψ∗∗

∙
1− ∗



¸
̄


=
©
∗(

∗)̄ − (∗)̄−1
ª 1

Ψ∗
(36)
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The second order condition of the firm’s optimization requires Ψ∗∗  0, while (26) implies

that the term in the square brackets is positive. Moreover, by definition of ∗, Ψ∗  0 holds.

Consequently, ̄() is increasing (constant) in  if and only if the expression in the slanted

brackets on the right of (36) is negative (zero).

Whenever (∗) = 0 the expression on the right is zero and thus ̄ is constant in . We

thus need to show that at the ERSE  ln((∗)(∗))∗  0 holds for (∗)  0. To this

aim it is thus sufficient to show (remember 0 = 1 so that 1 = ∗)



1
ln((∗))  1

With profits 1 = (1 − 1)(v̄−1)v̄ and 1 = (1 − 0)  (1 − 0) (compare (5) and

(6), shifting up indices) and the envelope theorem (thus neglecting the terms 11) the

condition above is equivalent to

−̇1
1 − 1

+
−1
v̄− 1

µ −̇0
1 − 0

− 1 − 0

(1 − 0)2

¶
 

where ̇ ≡ 1. With (5) and firm 1’s optimality condition 21 = 1 + (1 − 0)v̄+0

(see (7), given (9), shifting up indices) this condition is

̇0 + 1 − ̇1   (1 − 1) (37)

To compute ̇0 write the system (7) as⎛⎜⎜⎝
2 −1 0 0

−(0 − −1) 2(1 − −1) −(1 − 0) 0

0 −(−1 − −2) 2(0 − −2) 

 0  

⎞⎟⎟⎠  =

⎛⎜⎜⎝
1 + (1 − 0)̄

(1 − −1)0
(0 − −2)−1



⎞⎟⎟⎠ (38)

where  ≡ (1 0 ). Taking derivatives w.r.t. 1 yields⎛⎜⎜⎝
2 −1 0 0

−(0 − −1) 2(1 − −1) −(1 − 0) 0

0 −(−1 − −2) 2(0 − −2) 

 0  

⎞⎟⎟⎠ ̇+

⎛⎜⎜⎝
0 0 0 0 

0 2 −1 0

0 0 0 0

 

⎞⎟⎟⎠  =

⎛⎜⎜⎝
̇1 + ̄

0
0



⎞⎟⎟⎠
and evaluating at the ERSE leads to⎛⎜⎜⎝

2 −1 0 0

−1 2( + 1) − 0

0 −1 2( + 1) −
 0  

⎞⎟⎟⎠ ̇ =

⎛⎜⎜⎝
̇1 + v̄


−20+−1+0

1−0
0



⎞⎟⎟⎠ (39)
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Replicating the proof of Proposition 2, we obtain that ̇ satisfies ̇ = ̇0 with  =

 + 1 +
p
2 +  + 1 for  ≤ 0. The second row of (39) thus becomes

−̇1 + [2( + 1)− ] ̇0 = −̇1 + ̇0 = − 20 − −1 − 0

1 − 0

where we have used the fact that  solves (16). Combining this equation with the first row

of (39) (2̇1 − ̇0 = ̇1+v̄) leads to

[2− 1] ̇0 = ̇1 + ̄ − 2 20 − −1 − 0

1 − 0
= ̇1 + ̄ − 21 − 20 + 0

1 − 0

where we used the second row of (38) in the last step. With 1 = (1 − 0)(1 − 0) and

v̄−1 = (1 − 1)(1 − 0) (compare (5) and (11)), we have

̇0 =
1

2− 1
½
3̄ − 61 + ̇1 + 2

1 − 0

1 − 0

¾
and hence

̇0 + 1 − ̇1 =
1

2− 1
½
3 (̄ − 1)− 2

µ
̇1 − 1 − 0

1 − 0

¶
− [2− 4] (̇1 − 1)

¾
(40)

We show next that (37) holds for all  ∈ [∗∗ ∗∗ + ] with   0 small enough and ∗∗

defined as the date where v̄= 1 holds. At this date we have 1 = 1 by (11) so that

̇0 + 1 − ̇1 =
−2
2− 1

∙µ
̇1 − 1 − 0

1 − 0

¶
+ [− 2] (̇1 − 1)

¸
 0

where the last inequality holds by   2 and

1 =
1 − 0

1 − 0


1 − 0

1 − 0
 ̇1

for all   1, showing (37). By continuity, there is a   0 so that (37) holds for all

 ∈ [∗∗ ∗∗ + ].

Now, since 1 from (27) is increasing in , there is an   0 so that  ∈ (∗∗ ∗∗ + ) holds

whenever 1  . This last condition holds for   0 small enough as Ψ∗  0 implies

0  −1 + Π or

1  ̄ (41)

Finally, we restrict the pair of parameters ( ) to the compact set [0 1]× [ ̄]. Hence,
there are min and max with 1  min  max ∞ so that ̄ is restricted to the compact set

[min max]. Consequently, there is a uniform 0 ≤ 1 so that for all ( ) ∈ [0 1]× [ ̄]
we have 1   and (37) holds uniformly. This proves the statement.
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B Appendix: Not For Publication

C Appendix — Lower Cutoff

We here generalize the solution of equilibrium prices (12). Specifically, we assume that the

distribution of consumer valuations (2) is uniform on [v
¯
,v̄], i.e.

 () =

⎧⎨⎩ 0 if   v
¯

( − v̄)(v
¯
− v̄) if  ∈ [v

¯
,v̄]

1 if   v̄

(42)

holds. In addition, we assume that (10) still holds , so that each quality is a constant

fraction higher than its immediately preceding one. In this case, the system (7) becomes

 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2

h
0 +

³
1− 1



´
0̄ + −1

i
if  = 0

1
2

h
 +

1
+1

+1 +


+1
−1

i
if −    0

1
2
[− + −+1 − ( − 1) −] if  = −

(43)

We can formulate the following proposition (noting that (− 2) = 3 ¡2− −1
¢−1
).

Proposition 4 Assume equal relative spacing in quality, i.e., (10) holds. Then prices are

 =  + ()
+

 +  ∀ − ≤  ≤ 0 (44)

where

 =
 + 1

2( + 1)−  − 1−
(45)

 =  + 1 +
p
2 +  + 1 (46)

 =
− 2
3

0 + ()


1− −2
(47)

 =
− 2
3

−0 + 

1− −2
(48)

0 =
¡
1− ¡2− −

¢

¢
0 + (1− 1) 0̄ (49)

 =
¡
1− ¡2− 

¢

¢
− − ( − 1) − (50)

and  is defined as

 = max
n
 |  +

¡


¢−
+   1

o

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Proof. Substitution  =  −  into (43) yields

2 [ + ] =  +
1

 + 1
[+1 + +1] +



 + 1
[−1 + −1]

for   1. With  = (1 + )
£
2(1 + )−  − 1−

¤
this is 2( + 1) = +1 + −1.

The equation

2 − 2( + 1) +  = 0 (51)

has two roots,  =
h
 + 1 +

p
2 +  + 1

i
larger than unity and  =

h
 + 1−

p
2 +  + 1

i
,

smaller than unity. The general solution to the second-order recursive series is thus

 = ̃ + ̃ +  (52)

Equation (43) for  = 0 is 20 = 0 + (0 − −1)v̄+−1 and, in combination with equation

(52) for  = −1 implies

2
³
̃+ ̃ + 0

´
= 0 + (0 − −1) ̄ +

³
̃−1 + ̃−1 + −1

´


while equation (43) for  = − is 2− = − + −+1 − ( − 1) −, in combination
with equation (52) for  = − + 1 hence implying that

2
³
̃− + ̃− + −

´
=
³
− + ̃−+1 + ̃−+1 + −+1 − ( − 1) −

´
We can substitute  using  = , which holds the solution by 2 − 2( + 1) +  = 0.

Finally, solving for ̃ and ̃ replacing  = ̃ and  = ̃− proves (15).

Corollary 3 Assume that (10) holds. Then,

(i) prices , markups  and the slope of the pricing schedule (+1 − ) are increasing

in  and decreasing in  for all .

(ii) if  ≤ , the slope of the pricing schedule (+1 − ) is increasing in  for all .

(iii) if  ≤ , the slope of the pricing schedule (+1 − ) is increasing in 0 for all .

(iv) if ̄   ()

holds, markups  are decreasing in  for all .

Proof. (i) The statement for prices  follows since   1 implies with (49) and (50)

̄  0,  = ̄ = 0 and   0 so that with (44) - (50) ̄  0
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and   0. The statement for markups  follows since ̄ =  = 0.

For the statement regarding (+1 − ) compute with (44)

 (+1 − )


= (− 1)


+ (− 1) ()+ 



Using (47) - (50), check that




=

− 2
3



1− (2) (1− 1) 0 and



=

− 2
3

−

1− (2) (1− 1) 0

By 2  1,  (+1 − )  is positive if and only if

[− 1] [− 2] − [1− ] [− 2] ()+ −

is positive. Since   2, all terms in squared brackets are positive so that the expression

above is increasing in  and hence minimal for  = − . It is thus sufficient to show that

[− 1] [− 2]− [1− ] [− 2]  0 (53)

holds. But this inequality is satisfied since  solves the identity 2 − (2 + 1) + 2 = 0
(see (51) in the proof of (44) in the appendix) so that the expression above equals

2 + 2− 2  0

This proves that  (+1 − )   0.

Next, compute

 (+1 − )


= (− 1)


+ (− 1) ()+ 



Using (47) - (50), check that




=

− 2
3

−()
1− −2

( − 1) − and 


=

− 2
3

−1
1− −2

( − 1) −

so that  (+1 − )  is negative if and only if

− [− 1] [− 2] + [1− ] [− 2] ¡2¢  0
holds. Since all terms in squared brackets are positive and 2  1 this expression is

maximal at  = 0 so that the statement holds by (50) above.

(ii) First notice with (45), (49) and (50) that

0 = −0 + (1− 1) 0̄ and  = − − ( − 1) −
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where

 =
 − −

2( + 1)−  − 1−

and compute with (44) - (50)

 (+1 − )


=  (− 1) 


−
³


´+ ³
1− 



´ 


+ 

¡
 − 1¢ 0



=

⎡⎢⎣−
⎛⎜⎝ (− 1) (− 2)

1−
³
1−


´
1− ¡ 

2

¢ + 

+
³


´+
(1− ) (− 2)− (




)− − 1

1− ¡ 

2

¢
!


3
+ 

¡
 − 1¢# 0



Using 2 = 2( + 1)−  from (51) we can substitute

(− 1) (− 2) = +  and (1− ) (− 2) = 
+ 1



so that

 (+1 − )


=

⎡⎢⎣−
⎛⎜⎝(+ )

1−
³
1−


´
1− ¡ 

2

¢ +  (54)

+

µ


2

¶ ³


´

+ 1


−

³




´−
− 1

1− ¡ 

2

¢
⎞⎟⎠ 

3
+

µ




¶


¡
 − 1¢

⎤⎥⎦ 0


To prove the claim, we will show that the expression in square brackets is positive. As a

first step, we look at the terms that depend on :

µ


2

¶

⎡⎢⎣−+ 1


µ


2

¶

³




´−
− 1

1− ¡ 

2

¢ ( − −)

⎤⎥⎦+µ


¶ £
3( + 1)

¡
 − 1¢¤ (55)

at  = − this expression equals

 = −+ 1


() − 1
1− −2

( − −) + 3

µ




¶−
( + 1)

¡
 − 1¢

=

∙
−+ 1



1− ()−
1− −2

 − −

 − 1 + 3( + 1)

¸µ




¶− ¡
 − 1¢
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The expression in square brackets satisfies

−+ 1


1− ()
1− (2)

 − −

 − 1 + 3( + 1)  −+ 1


 − −

 − 1 + 3( + 1)

 −+ 1


2 + 3( + 1)  0

Thus we have shown that, in absolute terms, the positive expression in the second squared

brackets in (55) is larger than the negative term in the first. Thus, multiplying the negative

term by
¡
2

¢
and the positive term by () increases the sum of both. Hence the

expression in (55) is increasing in  and so is the expression in (54). Therefore it is

sufficient to show that the expression in (54) is positive for  = − . To this aim, we set
 = − in (54), multiply by

¡


¢
and show next that

−

⎛⎜⎝(+ )

³




´
− ¡ 

2

¢
1− ¡ 

2

¢ + 
+ 1



1−
³




´
1− ¡ 

2

¢
⎞⎟⎠ ( − −) + 3( + 1)

¡
 − 1¢

is positive. To do so, we use that
() − −2

1− −2
+
1− ()
1− −2

= 1 so that we can

rewrite the expression above asµ
1− ()
1− −2

µ
(+ )− 

+ 1



¶
− (+ )

¶¡
 − −

¢
+ 3 (1 + )

¡
 − 1¢

Using now that
1− ()
1− −2

 1 is increasing in  and  ≥ 1, we have

 ≥
µ
1− 

1− 2

µ
(+ )− 

+ 1



¶
− (+ )

¶¡
 − −

¢
+ 3 (1 + )

¡
 − 1¢

= − ¡ + 
¢ ¡

 − −
¢
+ 3 (1 + )

¡
 − 1¢

To check that this last expression is positive, we divide by (1 + )
¡
 − 1¢ and look at

−
¡
 + 

¢
(1 + )

¡
 − −

¢
( − 1) + 3 ≥ −(+ )

(1 + )

(− 1)
(− 1) + 3

where we have used  ≤ . Simplifying further with 2 = 2(+1)− from (51) leads to

−(+ )

(1 + )

(− 1)
(− 1) + 3 = −

2 − 1 + − 

(1 + ) (− 1) + 3

= −2( + 1)− ( + 1)
(1 + ) (− 1) − − 1

(1 + ) (− 1) + 3

 −2− 1
− 1 −



+ − ( + 1) + 3  −2− 1 + 3 = 0
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The last inequality holds by   ( + 1) and proves the statement.

(iii) Notice with (44) - (50) that



0

µ
+1 − 

0

¶
=

 (+1 − )



µ


20

 − 1


¶
Since furthermore,



0

µ
+1 − 

0

¶
=
1

0

 (+1 − )

0
− +1 − 

20

we have

 (+1 − )

0
= 0



0

µ
+1 − 

0

¶
+

+1 − 

0

= 0
 (+1 − )



µ


20

 − 1


¶
+

+1 − 

0

which is positive by (ii).

(iv) Compute with (44) - (50)

()


= 

()


+ ()

+ ()



=
1

3
¡
1− −2

¢ ½(− 2) ∙(0)


+ ()
()



¸
+ 

+ ()
+

(− 2)
∙
−

(0)


+

()



¸¾
=

( − 1) ()
3
¡
1− −2

¢ ©(− 2)[−0̄ + ()−] + 

+ ()
+

(− 2) £−−0̄ + −
¤o

Straight forward simplification with − = −0 leads to

()


=

0 ( − 1) ()
3
¡
1− −2

¢ ½(− 2) ∙− ̄

+ −

¸
+ ()+(− 2)

∙
−− ̄


+ −

¸¾
Since ̄  1  − holds always and ̄  () by assumption, the term on the right

is negative, which proves the statement.

D Appendix — Endogenous Growth

In the main body of this paper we have treated productivity growth (19) and interest rates

as exogenous but have neglected economy-wide resource constraints. We address these
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shortcomings in this appendix. We show that a slight modification of the model we have

developed here is compatible with individual optimization under balanced growth, which,

in turn, is generated by spillover effects of innovation.

D.1 Extended Setup

We modify the preference setup introduced above in the following two ways. First, rather

than focusing on only one Q-type sector, there is now a continuum of differentiated goods

 of total mass one ( ∈ [0 1]). We will refer to the different  as sectors. Each sector
 comprises a set  of different quality levels {}∈ . The reason for introducing many
such sectors is that in each sector, technology growth happens at discrete moments and the

economy would thus display lumpy growth if it only consisted of a small number of sectors.

With a continuum of sectors, aggregate growth is smooth, as is required for the existence

of a balanced growth path.

Preferences. Individual utility is now derived from the quantity  of good  and the

vector of consumed qualities q = {}∈[01]. Specifically, we modify the preference structure
(1) to

 (q ) = 

Z 1

0

  + 

where valuations  are distributed according to (2), just as in the previous sections. We

can ensure that individuals with the highest valuation v̄ consume a positive quantity of

the homogeneous good  by choosing an adequately low value of v̄. Consequently, all

consumers consume good , and the demand structure of Section 2 applies separately for

each sector . Thus, optimal consumption and pricing follows as developed above. Note

also that resulting aggregate demand is identical across all sectors.

Intertemporal Optimization. Consumers trade off consumption between different

periods. Instead of modeling this trade-off, we simply assume that under balanced growth,

the economy’s savings rate  is constant and positive.

Productivity. Production costs are equal across all -sectors. Within each sector ,

the resulting equilibrium prices are determined by (7).
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D.2 Technology Spillovers from Innovation

We assume that there is a generic productivity parameter  that depends on the qualities

of all invented varieties in the -sectors:

 = 

Z 1

0

X
∈

 

Writing () for the variety invented at date , we can rewrite the integral as

 = 

Z 

−∞
() Ψ() 

where Ψ() is the rate at which the qualities are invented. On the balanced growth path,

a constant number of qualities is invented in any two time intervals of equal length. Put

differently, the rate at which qualities appear on the time-line is constant so that constant

innovation activity generates constant productivity growth. We observe that within the

time interval ∆ from (25), each sector  experiences exactly one innovation. Hence, in each

interval , there are ∆−1 qualities invented so that Ψ = ∆−1.

1 j

ln(q(t))

Figure 4

To determine the rate at which productivity grows, observe that within the period

[ +∆] exactly one invention is made in each sector so that (+∆) = ̄() holds true.

Thus, with (25), the maximal quality () grows at the rate

 = ( − 1)
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Figure 4 illustrates the (logged) quality levels of established firms on the industry-quality

plane ( ). Within each industry (for each ), firms establish in a regular equal log-spacing.

If  is high (() grows fast), then the sloped line in Figure 4 extends rapidly to the upper

left, replicating the regular pattern of the graph. The time required for each diagonal

segment to establish is ∆ = ln() by (25). Hence, a denser pattern (  0 small) or a

higher growth rate  correspondséto a faster pace at which the regular pattern extends to

the top.

We chose the constant  to normalize 0 = 1 and thus obtain

 =  (56)

Based on the definition of  we postulate the following type of productivity spillover.

Production costs (3) and the marginal costs (4) of -production fall proportionately to

−1
 :

 = 1−
 and  = 1−



This assumption generates the dynamics specified in (19).

As the blueprint for a new quality requires 

 units of labor, and  grows at the

rate , the required labor units for a new quality grow at rate  + (1− ) = . For the

economy to be able to cover these resource requirements in the long run, we assume that

labor endowments are multiplied by , so that effective labor supply grows at the rate .

The population size is constant, so that nominal income grows at the rate . On top of

that effect, effective income growth materializes through improved quality.

D.3 Economic Aggregates

Income. Nominal labor income is pinned down by the constant productivity on the

numéraire  and equals the size of the labor force, . At each point in time total in-

come  consists of returns on past savings  plus labor income, i.e.,

 =  + (57)

On the balanced growth path, both components of income must grow at the same rate .

Wealth. Aggregate wealth equals aggregate savings . By  = 
 we can compute

 =

Z 

−∞
 =  (58)
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Investment. Within each time interval of length ∆ = ln(), the qualities of all

industries are upgraded exactly once (see (25)). Thus, ∆−1 ·  new blueprints appear in
each infinitesimal time interval . The costs of these inventions are financed by the flow

of investment

 = ∆−1(())
 = ∆−1()

 ·  (59)

where () is the quality invented at date .

When writing the profits at time  +  of the firm established at date  as (  + ),

the free entry condition requires that

(())
 =

Z ∞



−( + )

Savings. By (58) the flow of aggregate savings is

 =  (60)

D.4 Market Clearing

Aggregate savings equals aggregate investment. Since all investment is channeled to the

invention of blueprints, this implies with (59) and (60)

 = ∆−1

 = ∆−1

Z ∞



−( + ) (61)

Total firm profits at time  consist of the sum of current profits of all firms invented at 

and before. These total profits cover the returns to investment, i.e.

 =

Z ∞

0

(−   ) (62)

To combine both expressions above, recall first that () represents the quality invented

at date . Moreover, two qualities established at  and  −  satisfy the relation () =

( − ). At time  +  , the producer of quality () faces the same market conditions

as the producer of (− ) at time , except for the fact that its quality (and those of its

competitors) is scaled by  and costs have dropped by −(−1) (see (19)). Thus, writing

( 0) for the profits at time 0, which the firm established at time  makes ( ≤ 0), we can

apply Lemma 1 to establish ( + ) = (  ). Remember again that the flow of firms
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establishing at each point in time is ∆−1. Multiplying the profits of the individual firm by

this density, we can rewrite the integral in (61) asZ ∞

0

(−   )  = ∆−1
Z ∞

0

−( + )  (63)

Combining the identities (61) - (62) leads toZ ∞

0

¡
− − −

¢
( + )  = 0

which is solved by  = .
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