
Excluded Volume for Pairs of Triaxial Ellipsoids 
at Dominant Brownian Motion 

J. M. RALLISON* AND S. E. HARDING t 

*University of Cambridge, Department of Applied Mathematics and Theoretical Physics, Silver Street, 
Cambridge CB3 9EW, and t University of Cambridge, Department of Biochemistry, 

Tennis Court Road, Cambridge CB2 1QW, England 

Received May 4, 1984; accepted July 19, 1984 

An expression is given for the volume excluded by one rigid convex particle to another when 
Brownian motion dominates the orientation statistics. Explicit numerical results are presented for 
pairs of  triaxial ellipsoids. Implications for the determination of  macromolecular size and shape by 
measurement  of  the second virial coefficient are discussed. © 1985 Academic Press, Inc. 

1. INTRODUCTION 

One of the ways in which the shape of a 
biological macromolecule in solution may be 
inferred from macroscopically observable so- 
lution properties is through the second virial 
coefficient, B, which arises in the analysis of 
osmosis and sedimentation equilibrium. B 
can be interpreted, after due allowance for 
other factors, in terms of the excluded volume 
or "molecular covolume," u, between pairs 
of molecules and can thus be calculated for 
various simple model shapes. Such shapes as 
have hitherto been available are the sphere 
(1), the rod (2-4), and spheroids (5-7). All 
these shapes are axisymmetric, and so involve 
only one aspect ratio. For many macromol- 
ecules, restriction to such simple shapes is a 
poor approximation to the true conformation 
in solution: an extension of the formulation 
to cover the triaxial ellipsoid with two aspect 
ratios may, where applicable, represent a 
considerable improvement. 

In this study, the earlier contributions of 
Isihara (5) and Winzor et al. (6, 7) describing 
the covolume for pairs of axisymmetric ellip- 
soids are extended to the general case of pairs 
of triaxial ellipsoids (centrally symmetric). 
As before, the theory only caters for pairs of 
excluding macromolecules (and not triplets, 

etc.) and hence its applicability is restricted 
to dilute dispersions. The extension to cover 
more concentrated dispersions is formidable 
and is only briefly discussed here. Neverthe- 
less, our excluded volume formulation may 
provide the basis, if combined with other 
macroscopic solution properties of ellipsoids 
such as viscosity and electric birefringence, 
for providing reasonable estimates for the 3 
axial dimensions of macromolecules in so- 
lution. 

Conversely, in the case when estimates of 
the three axial dimensions of a biological 
macromolecule are known from, say, X-ray 
crystallography, our formulation may provide 
the basis for improved methods of making 
allowance for thermodynamic nonideality in 
the interpretation of physical measurements. 

2. THE PROBLEM FOR GENERAL 
PARTICLE SHAPES 

At first sight, the calculation of the volume 
UAB excluded to a point P of a rigid particle 
B, by the presence of a second, A, involves 
fixing the relative orientations of B and A, 
calculating the volume of the region swept 
out by P as B moves around A while remain- 
ing in contact with it, and finally averaging 
this volume over all possible choices of the 
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relative orientation (see Fig. 1). In cases 
where the orientation statistics are nonuni- 
form, this is probably the easiest way to 
compute the excluded volume. 

In the case where Brownian motion dom- 
inates, however, a simpler method exists, 
which in essence involves performing the 
orientational average first (all relative orien- 
tations of  A and B now being equally prob- 
able). This technique was demonstrated by 
Isihara (5), but the mathematics in his paper 
is somewhat abstract and complicated and 
we sketch below a simpler method which 
arrives at the same conclusion, and illustrates 
clearly the cases in which the shortcut will 
fail, and in which the more laborious tech- 
nique sketched above must be used. 

Let the surface of  A be specified paramet- 
rically by coordinates (u, v). Then at a fixed 
relative orientation of B for the configuration 
in which B touches A at x(u, v) the position 
of P is given as X(u, v) = x(u, v) + y(u, v) 
as shown in Fig. 1. Now extend the particles 
to families of geometrically similar surfaces 
in which the "axes" of  A and B are stretched 
by amounts XA and XB. In that case, 

X(u, v) = XAX(U, V) + XBy(u, V) 

and, for these stretched particles, the volume 
V swept out by P is 

Iff 0x0x I V = ½ X'-~-du A -~v dudv 

as may be shown by the divergence theorem. 
Provided A and B are convex, the limits of 
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FIG. 1. Volume excluded to point P for a fixed relative 
orientation of particle B to particle A. 

~ B 

FIG. 2. Case where UAB is not a polynomial. 

integration are independent of the sizes of A 
and B and hence of ~kA, ~B. Hence on 
averaging over all relative orientations we 
must have a cubic expression for UAB, namely 

UAB ---- JT~ : CI ~k3 -t- C2X2~kB -]- C3~A ~x2 "~- C4 ~k3. 

For nonconvex shapes (e.g., that shown in 
Fig. 2) the limits of  integration for u, v do 
depend on XA, XB and thus UAB is no longer 
of the form above. It is worth noting in 
passing that because two touching spheres do 
not form a convex shape, the analogous 
expression for UAB for three spheres is not a 
polynomial, and hence that there is no simple 
analog of the Isihara treatment for more than 
two particles. 

Next suppose that ~,B ---' 0. Then at leading 
order UAB becomes just the volume of A, VA, 
SO that 

C I ----VA, 
and similarly, 

c4 = VB, 

and further, c2 may be identified as the 
volume of the thin shell swept out by (the 
mean position of) P as B moves round A 
(see Fig. 3). Let R be the distance of P from 
the tangent plane at x, and denote by R(x) 
the mean value of R as the orientation of  B 
is varied (the thickness of the shell at x), all 
orientations being equally probable. Then 

/ f - - - - ~  i RB 

\ \ ~ / /  

FIG. 3. Case when ?~B/XA ---* 0, "shell"-excluded volume. 
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c 2  = 

where SA is the surface area of  A, and ( )A 
denotes a surface mean over contact points 
x of  A. 

Now because kB is small, A may be re- 
garded as being locally planar (with slight 
smoothing of corners and edges if necessary). 
Hence /~ depends on x only through the 
normal n (to A) at x. But since Brownian 
motion is dominant, and in calculating/~ all 
relative orientations are averaged with equal 
probability,/~ is independent of  n and hence 
also of x. This is not, of  course, true if the 
orientation statistics are nonuniform. Thus 
( R ) A  = R independently of  A, and hence/~ 
depends only on P and the shape of  B, and 
may be computed as the mean distance of  P 
from a tangent plane to B, all directions of 
the normal (to B) being equally probable (see 
Fig. 4). Thus if 0, ¢ are spherical polar 
coordinates at P, and X(0, ¢) is the position 
of a point X of B, then X is single-valued by 
convexity and 

1 f 
Ju X(0, q~). ~ sin OdOd¢. 

/~  = ~ nit sphere 

By the divergence theorem, if X is replaced 
by X + d where d is a constant vector,/~ is 
unchanged, and hence/~  is independent of 
the choice of  reference point P in B; thus it 
is proper to speak of  /~ (and hence UAB) 
without reference to P, and /~  as RB. For a 
smooth surface (twice differentiable) Isihara 
has identified RB as the surface mean radius 
of curvature RB = (1/2(R1 + R2))B where 
R1, R2 are the principal radii of curvature of 
the surface of B. 

On combining these results we have finally 
Isihara's general formula 

UAB = VA -~- VB -~- S A R B  d- S B R  A . 

n 

fixed direction 

FIG. 4, Definition of RB. 

In the particular case where A, B are identical 
this gives 

Ured = UAA/VA = 2 + 2RASA/VA,  [1] 

where the dimensionless quantity Ured is the 
"reduced" molecular covolume. 

Alternatively, if B is a sphere of  radius r, 

47rF3 UAB = VA 71- rSg + 47r rZRg  + ~ , [2] 

and thus if UAB can be computed, SA, RA 
(and hence Ured) can be identified as appro- 
priate coefficients of powers of r. This method 
is used by Winzor et al. (6, 7) and below. 

3. APPLICATION TO TRIAXIAL ELLIPSOIDS 

We now turn to the problem of computing 
R, S, and Ured for a general triaxial ellipsoid, 
of semi-axes a, b, c. We first compute the 
volume excluded by the ellipsoid to the center 
of a sphere of radius r. 

Let the ellipsoid be specified parametrically 
by x = (a cos u cos v, b cos u sin v, c sin u), 
-7r/2 ~< u ~< ~-/2, 0 ~ v ~ 27r. Then the 
normal n at (u, v) is 

n = (cos u cos v/a, cos u sin v/b, sin u/c)A, 

where 

A _  2 _ COS 2 U COS 2 V -1- COS 2 U s in  2 v + s in  2 U 

a 2 b 2 C 2 

Hence the center of a sphere of radius r 
which touches the ellipse at (u, v) is at 

X = [(a + rA/a) cos u cos v, 

(b + rA/b)cos u sin v, (c + rA/c)sin u], 

and as u, v vary, X sweeps out a surface Sr 
which encloses a volume Vr given by 

Vr= fsrX'aSr 

oo OV ~u  " 

It is then a matter of straightforward but 
tedious algebra to evaluate the integrand and 
collect powers of r to obtain by means of  Eq. 
[2] the results 
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r- fo: S = 8 Jo cos ududv 
c a  

+ -~- + A - sin 2 

3 / C O S 2  /)  sin2v ~ ) I (  b cOs2 v 
- s i n  2 u c o s  2 u A k T  "~ b ~ c a 

and 

{(;cc = cos ududv + - -  + A 2 
R ~ ao Jo ac 

a 1 
'l) C0S2 '0 COS 2 u A 3 c ( ~  - -  ~ ) ( ~ - ~  - -  ~ 2 )  

_ _ +  a Sb2--------~v ) - - ~ 3 }  [3] 

- s i n  e v c o s  2 v c o s  2u  ~a z - -~ c - 

- - s i n 2 u c ° s 2 u A \  a-  + b ~ -~ c a 

In each case it is possible to perform one of  
the double integrations analytically, but the 
results are so complicated as to be opaque, 
and for numerical purposes it is as easy to 
start from the double integrals. 

4. R E S U L T S  

Without loss of generality we may take a 
>/ b >f c. Rescaling lengths by (abc) 1/3 (so 
that the volume is 4~-/3) then implies that 
only the ratios of  lengths are relevant, so let 
I~ = a/b >t 1 and v = b/c  >1 1. The cases of 
axisymmetric ellipsoids t~ = 1 (oblate) v = 1 
(prolate) are then given by Isihara (5) and by 
Winzor et aL (6, 7) and displayed in Table 
I. The asymptotic limits for rods and disks 

asin2v) c al} 
- - +  ~ + a b  a c  b c  " [4] 

are easily derived. For the general case we 
have two new asymptotic limits. First, the 
general ellipsoidal near-sphere for which 
# ~ l, v ~ 1. After some algebra the results 
in Table I are obtained: it is noteworthy that 
the first correction from sphericity is qua- 
dratic, reflecting the fact that the sphere 
minimizes R and S over all particles of  
volume 47:/3. Second, for a tape-shape par- 
t ide with a ,> b >> c we find that the longest 
axis a is crucial as regards R (so that the tape 
is asymptotically like a rod), but the inter- 
mediate axis b is also important as regards S 
(and thus the coefficient is the same as that 
for a disk). 

T A B L E  I 

Asympto t i c  Resul ts  

Panicle Region R S/4~- u,~n 

Near-sphere 
t2 = ( t ~ _  1) 2 + ( v -  1) 2 

R 
+ ( / a -  l ) ( v -  1) I 1 + ~ t  2 

1# -- 1] ,~ 1, iv - 1] ,~ I 

Rod: v =  1,#>> 1 ½~/s 

Disk: u >> 1,/~ = 1 _r v,/s 
4 

Tape: v >> 1, # >> 1 11 ½~ 2/~v'l~ 

Axisymmetric 
particles: 

Prolate: v = 1 

Oblate: # = 1 

1 2,~( I _a ) 

1 
v cos -I - 

1 ,,~fl v ) 

~v, ~; + ( :  _ l>',----~, 

8 2 
1 + ~ t  8(1 + l~t 2) 

"4 ~ / 3~ru/4 + 2 

lv~/3 31rv/4 + 2 

½/zn/3v213 3 ~av + 2 

l pfl # _~ 1) 3 

½v2/,{l cosh-'v I 
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For  intermediate values o f  # and u a 
numerical  evaluation is needed. When  #, v 
are moderate  in size (less than 10, say) com- 
putat ion is straightforward, but  when t~, P 
become larger the integrand is highly peaked 
near u = 0, or ~r/2, and hence new variables 

a sin u 
s t = 0 ~< s ~ ~< 1, 

(a - c) sin u + c 

av 
v' = 0 <~ v' <~ 1 

(a - b)v + b~r/2 

are appropriate. The integrals in [3] a n d  [4] 
may  then be evaluated for specified (~, v) by 
Gaussian numerical  routines (for example, 
the N A G  package D O 1 D A F  (8)). In Table II 
we give values of  ured correct to 3 decimal 
places for axial ratios f rom (1, 1) to (10, 10). 

In Figs. 5-7 we show contours  o f  constant  
R, S, and urea in the (~, v) plane. The dotted 
lines delineate the regions within which the 
asymptotic  results for near-spheres (I) and 
tapes (II) given in Table I differ by less than 
5% from the numerical  results. It is remark- 
able that whereas R and S depend very 
differently on t~ and v, u ~  is symmetr ic  in 
#, ~ (which extends Isihara's observation that  
prolate and oblate spheroids have the same 
excluded volume). Thus  for instance, the 
normalized self-excluded volume for an ellip- 
soid o f  axes 1:2:8 is the same as that  for one 
of  axes 1:4:8. 

5. DISCUSSION 

The excluded volume u, has been related 
by, for example, Ogston and Winzor  (6), to 
the second virial coefficient B f rom os- 
momet ry  in terms o f  an operationally defined 
"effective" molar  covolume (6, 1): 

U = 2 B M  2, [5] 

where M is the molecular  weight and U, the 
molar  covolume (ml/mole),  is related to u 
by (1) U = uNA,  NA being Avogadro 's  num-  
ber. U as defined by Eq. [5] was termed an 
"effective" covolume in the sense that there 
may  be other contributions to the observed 
nonideality parameter  B, notably the effect 
o f  charge on the macromolecule.  I f  the ex- 
periment  is not  conducted at the isoionic 
point  (i.e., the net charge, Z, is nonzero),  Eq. 
[5] has been modified to (6, 9) 

Z 2 
U = 2 B M  2 - -  [6] 

2m0 ' 

m0 being the concentrat ion o f  the uni-uni- 
valent supporting electrolyte. An improve- 
ment  to the second term on the r ight-hand 
side o f  Eq. [6] has recently been given by 
Wills et al. [(10), especially Eq. [A.9]]. Other  
terms involving macroion-electrolyte  and 
electrolyte-electrolyte interactions, as origi- 
nally given by Scatchard (1 1), are generally 

TABLE lI 

Values of u~d as a Function of (a:b:c) for a General Triaxial Ellipsoid (a >~ b >I c) 

b/c 

a/b l~f ] 2 3 4 5 6 7 8 9 10 

L 
• 1 8.000 1 9_._:.077 10.908 12.956 15.104 17.308 19 .547  2 1 . 8 1 0  2 4 . 0 9 0  26.383 

---9.077 11.568 14--~70~ 18.-~034- 21.--463--- 24.--947-- 28.---463-- 32.00-6- 35.564 - -35 .134  
3 10.908 I 14.701 19.149 23.817 28.593 33.431 3 8 . 3 0 8  4 3 . 2 1 2  4 8 . 1 3 6  53.074 
4 12.956 [ 18.034 23.817 29.843 36.005 42 .232  4 8 . 5 0 6  5 4 . 8 1 2  6 1 . 1 4 1  67.487 
5 i5.1041 21.463 28.573 36.005 43.559 51 .196  5 8 . 8 8 8  6 6 . 6 1 6  7 4 . 3 7 1  82.146 
6 17.3081 24.947 33.431 42.434 51.196 60 .256  6 7 . 3 7 7  7 8 . 5 4 1  8 7 . 7 3 5  96.953 
7 19.547 [ 28.465 38.308 48.506 58.888 69 .377  7 7 . 9 3 6  90 .544  101.187 111.855 
8 21.810 32.006 43.212 54.812 66.616 78.541 90 .544  102.601 114.698 126.823 
9 24.090 I 35.564 48.136 61.141 74.371 87.735 101.187 114.698 128.252 141.839 

l0 26.393 I 39.134 53.074 67.487 82.146 96.953 111.855 126.823 141.839 156.891 

• This row corresponds to an oblate ellipsoid. 
t This column corresponds to a prolate ellipsoid. 
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FIG. 5. Contours of constant R in the (~, u) plane. 
The dotted lines delineate regions where the asymptotic 
values in Table I are accurate to within 5%. 

negligible in compar ison to those o f  Eq. [6] 
(6, 9). 

It will be apparent from Fig. 7 that although 
a given value o f  (#, u) uniquely specifies a 
value for Ured, the converse is not  true: a 
given value o f  Urea specifies a l ine solut ion of  
possible values for (u, z,). Thus  in order to 
determine (u, v) uniquely the solution must  
be combined graphically with the line solution 
o f  another  measurable triaxial ellipsoidal 
property. An  additional problem is that  in 
order to determine empirically the shape 
function u,ed, the volume V, o f  a macromol -  
ecule in solut ion is required (cf. Eq. [1]). This 
problem can be c i rcumvented by use o f  
another  suspension property which also de- 

' ' ~ ' l  z ~  

i 1 >~ "~, , , , ~ ,  , , I 

3 10 

FIG. 6. Contours of constant S/4~r in the (#, u) plane. 

10 

l \~' \ 

\ 
\ ~ ,0 

\ \ 

i i 
10 

FIG. 7. Contours of constant ~/red in the (#, v) plane. 

pends on V, for example, the viscosity incre- 
ment  for triaxial ellipsoids (12, 13) to give a 
volume-independent  funct ion I I  (14), which, 
o f  course, also has line solution properties. 
Graphical inversion procedures employing 
the combinat ion  o f  II  with other volume- 
independent  triaxial properties to produce 
(tz, p) uniquely for a given macromolecule  
will be described elsewhere. 
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