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ABSTRACT It is relatively easy to represent by computer simulation the observed Rayleigh equilibrium fringe data for
systems that are both associative and nonideal in the thermodynamic sense, and to extract the determinant parameters
(see, for example, Roark, D., and D. A. Yphantis, 1969, Ann. NY Acad. Sci., 164:245-278; and Johnson M. L., J. J.
Correia, D. A. Yphantis, and H. R. Halvorson, 1981, Biophys. J. , 36:575-588). It is, however, considerably more
difficult to represent systems that are both polydisperse (namely, those that consist of noninteracting species of different
molecular weight) and nonideal, although the ideal case has been well described (see, for example, Tindall, S. H., and K.
C. Aune, 1982, Anal. Biochem. 120:71-84). Here we show that the representation of nonideal polydisperse systems is
now possible, after certain assumptions, by using a two-part interdependent minimization routine that uses readily
available numerical packages. The method is applied to a well-characterized mucus glycoprotein (M, ~ 2 x 10°) from
the bronchial secretion of a cystic fibrosis patient. An excellent fit to the observed fringe data is obtained for a
polydisperse three-component system, with a value for the second virial coefficient, B, of 0.57 ml mol g2,

INTRODUCTION

The interpretation of Rayleigh interference fringe patterns
from equilibrium analytical ultracentrifugation is often
complicated by the presence of any inherent heterogeneity
of the sample. By “heterogeneity” we mean the presence of
solute particles in chemical equilibrium with each other
(i.e., association) or the presence of nonreacting species of
different molecular weight or densities (polydispersity).
The interpretation may be further complicated by the
effects of thermodynamic nonideality, even at low cell-
loading concentrations. This problem has been manifested
in, for example, mucus glycoproteins, which appear to be
highly polydisperse, associative, and have very large
excluded volumes in solution.

It is relatively easy to represent the fringe and molecular
weight distributions for actual data in terms of, where
appropriate, associating systems that are ideal in the
thermodynamic sense, and even nonideal single-solute and
associative systems (Roark and Yphantis, 1969; Teller,
1973; Kim et al., 1978). Several recent examples of such
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representations using nonlinear least-squares fitting proce-
dures to simulated data have been given by Johnson et al.
(1981). The representation of ideal polydisperse systems is
also relatively straightforward (Creeth, 1980). Another
recent study has demonstrated the successful application of
minimization procedures for the fitting of synthetic data to
ideal polydisperse associating systems (Tindall and Aune,
1982). The representation of polydisperse systems that are
not ideal in the thermodynamic sense is, however, more
difficult but can still be achieved for certain cases using
readily available numerical packages. An algorithm using
such data-fitting procedures is presented here.

MATHEMATICAL FORMULATION

Self-associating Systems

Before considering polydisperse, nonideal systems, it may be instructive to
consider a simple (nonideal) associative system, for example, a nonideal
isodesmic association (IDA). The monomer (fringe) concentration J,(r)
is given by (Kim et al., 1977)

Jir) = J(@) exp{(P — aD) A, — BM,[J(r) — J(@)]l, (1)

where r is the radial position, a the corresponding radial position of the
meniscus, 4, the reduced (monomer) molecular weight (Creeth and
Harding, 1982), J(r) the total concentration, and B the communal second

0006-3495/85/02/247/04 $1.00 247



virial coefficient. For an IDA the total concentration, J(r), at a given
radial position, 7, is given by

Ji(r)

T oP

(2)

where k is the intrinsic association constant (in fringe units). Other simple
relations exist for other types of self-association (Kim et al., 1977).

The assumption is made throughout that a second virial coefficient is
sufficient to account for all the nonideality (namely, no higher coefficients
are needed) and also that the same coefficient can be used to adequately
describe the nonideality of all species present in the system. The concen-
tration distribution may therefore be obtained for given values of 4,, B,
and k by solving the simple nonlinear equation

Ji(r) = Ji(a) exp

Ji(r) Ji(a) 3
M- kor k@] @

subject to the conservation-of-mass condition

J° b2 2
./:b.l(r)dr=%, )

. (A.(r2 —a) - BM,[

where J° is the initial cell loading concentration and b the radial position
at the cell base.

An example of such a fit to a real system is given in Fig. 1, for a
well-characterized mucus glycoprotein (Harding and Creeth, 1983) from
a cystic fibrosis patient. Fig. 1 also illustrates how the effects of
association (and/or polydispersity) and thermodynamic nonideality can
often compensate for each other to give a Rayleigh interference pattern
that appears to represent a single solute system that is thermodynamically
ideal (Teller, 1965). Fitting real data using parameters for a nonideal
self-association can be performed relatively quickly using modest compu-
tational facilities, and is, therefore, amenable to full nonlinear least-
squares types of analyses and investigation of the relationship between
data error and the derived parameters (Johnson et al., 1981). For
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FIGURE 1 Plot of the logarithm of the fringe concentration, J, as a

function of the radial displacement parameter {[~ (* — a%)/(b* — a?)}
for glycoprotein CF PHI: 30-mm cell, 3-mm solution column. Initial
loading concentration, ¢® ~ 0.2 mgs/ml. The line fitted is for a nonideal
IDA with the following parameters: M, = 2.15 x 10% k = 0.26 dnm’g~', B
=15x 10"*mimol g2
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thermodynamically nonideal polydisperse representations this is, unfor-
tunately, not the case.

Polydisperse Systems

The concentration distribution for each component, i, of an ideal,
noninteracting n-component mixture is given by the Rinde formula
(Rinde, 1928; Fujita, 1962)

A, — @) exp [A4,(F — a?)]

MO A - A1 -

)

The total concentration at each radial position of the cell is given simply
by J(r) = Z1J(r).

For the generalized thermodynamically nonideal polydisperse case the
representation is not so simple. The concentration distribution for each
component, i, is given by

Ji(r) = Ji(a) {CXP A (P - d)
— BM,[Z]J,(r) - ZJ;(@)]} (6)
(i,j=1—n).

This is no longer a simple nonlinear equation (unlike Eq. 3) because the
nonideal term in Eq. 6 involves the summed concentration over all the
components at a particular radial position r (and a). There are now 2n
unknowns (Ji[r], Jfal, i = 1 — n) to solve between the n nonlinear
equations for each radial position, subject to the n constraints (over all
radial positions)

B+ @
[" Ji(r) dr = —% M

COMPUTATIONAL METHODS

It is convenient to separate the minimization into two parts. First, to
assume a set of the parameters J{a), and for this set to minimize the set of
nonlinear equations (Eq. 6) that will now be

Fi(r) = Ji(r) — J:(a)
-exp {4;i(F — @) — BM, (2} J;(r) - Z J; (@]} (8)
(”j =1— n)

for each of, say, five more (in addition to the meniscus) radial positions in
the cell. The best value of the Ji(r) for a particular choice of the J{a) can
then be readily found taking advantage of the fact that the differentials
8F;/dJ(r) (i, j = 1 — n) can be specified. Eq. 8 can then be regarded as a
special case of finding a minimum of

S(r) = 21, [F,(0). )

A suitable routine here that makes use of the (user specifiable) first
derivatives is the NAG routine EO4GEF (1978), based on an algorithm of
Gill and Murray (1978). EO4GEF is an easy to use modified Gauss-
Newton algorithm for finding an unconstrained minimum of a sum of
squares of / nonlinear equations in i variables (or less).

From the calculated values of the J(r) (for the current estimate for the
Ji[a)) for each radial position of the cell, the total cell concentration, J? of
each noninteracting component i can be calculated by numerical integra-
tion from Eq. 7 by quadrature, using, for example, NAG (1978)
DO1GAF. This routine, based on a method of Gill and Miller (1972) uses
a four-point finite-difference formula centered on the interval concerned,
except in the case of the first and last intervals where four-point forward
and backward difference formulae are respectively used.

The values of G; = J{ carc — J5 for each component are then fed back
into the global minimization route in (e.g., NAG CO5NBF), which
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initiates a different set of estimates for the J,(a). COSNBF is a routine for
finding a zero of a system of i nonlinear equations in i variables (for which
explicit derivatives cannot be supplied by the user) by a modification of
the Powell hybrid method (Powell, 1970). It chooses the correction at
each step as a combination of the Newton and scaled-gradient directions,
normally guaranteeing global convergence for starting points far from the
solution and a fast convergence. The whole process (involving EO4GEF
and DO1GAF) is then iterated until G; — 0. This procedure has been
outlined in the flow chart of Fig. 2.

RESULTS AND DISCUSSION

We have already demonstrated (Fig. 1) that if we neglect
polydispersity, a nonideal self-associating system could
reasonably represent the observed fringe data for a cystic
fibrosis mucus glycoprotein (CF PHI). It is normally
impossible, however, to distinguish between the effects of
association and polydispersity in a single experiment, even
when nonideality is present. However, it was demonstrated
earlier (Harding, 1984), using the diagnostic test of nonov-
erlap of point-weight average molecular weight vs. concen-
tration plots for different initial cell loading concentrations
(Roark and Yphantis, 1969), that polydispersity must be
significant for this glycoprotein. It was also demonstrated
(Harding, 1984) from the lack of effect upon blocking any
potential sites for association, that self-association was not
significant. These conclusions are consistent with the find-
ings of Creeth and Cooper (1984) for other mucus glyco-
proteins: the observed heterogeneity in mucins appears to
be generally due to polydispersity.
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FIGURE 2 Flow chart for the nonideal polydisperse algorithm.

Fig. 3 shows an attempt to represent observed fringe
data for the glycoprotein CF PHI (Harding and Creeth,
1983) as a thermodynamically nonideal three-component
mixture. It is now widely accepted (Silberberg and Meyer,
1982; Harding et al., 1983a) that mucus glycoproteins
such as CF PHI are built up from multiples of a 500,000
600,000 molecular weight basic unit. These units are
apparently assembled into a linear array (Harding et al,,
1983a; Carlstedt et al., 1983). For a given mucus glycopro-
tein sample there is likely to be considerable variability in
the numbers of units per molecule, giving rise to a discrete
distribution of molecular weights. This is apparently evi-
dent for CF PHI, as visualized by electron microscopy
(Harding et al., 1983a, b). To a first approximation, if we
take the dominant form (say 67%) as the three—basic-unit
form (mol wt = 1,800,000) and assume a lower proportion
of two-unit and four-unit forms (16.5% each) it is possible
to obtain an excellent fit to the observed fringe data if a
value for the second virial coefficient of 0.57 x 10~* ml mol
g % is chosen (Fig. 3). The value of B estimated earlier
(Harding and Creeth, 1982) using the technique of ultra-
short column sedimentation equilibrium (1.5 x 107%) is
found to give a poor fit; an ideal system (B = 0.0) also gives
a poor fit.

The goodness of fit does not necessarily mean that a
three-component nonideal system is the best model for CF
PHI. As is always the problem in attempting to represent
systems involving terms of an exponential character, there
may be other solutions giving equally good fits involving,
for example, four, five, or more components. In addition to
the discrete form of polydispersity arising from the varia-

L

(2%}

FIGURE 3 Plot of InJ vs. £ for glycoprotein CF PHI: 12-mm cell, 3-mm
solution column. J° = 5.4 (= ~2.0 mgs/ml). K [= (1 — #p)/RT] =
0.87316 x 107® mol g~'. The line fitted corresponds to a nonideal
three-component mixture with the following component parameters:
component 1, M, = 1.2 x 10°% J9 = 0.9; component 2, M, = 1.8 x 105,
J$ = 3.6; component 3, M; = 24 x 105 J$ = 09. 4, = KM,/2
(i = 1 — 3); units of B: ml mol g~2 x 10%
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bility in the numbers of subunits, there is likely to be
superimposed on this a quasi-continuous distribution of
molecular weights (and partial specific volumes) arising
from variability in the carbohydrate composition. Repre-
sentation in terms of a nonideal log-normal distribution
may prove to be more realistic. Although at present modest
computational facilities will allow up to, say, 21 = compo-
nent fits with, for example, a Gaussian distribution of
molecular weights, nonideal log-normal fits provide at the
present time insurmountable scaling problems due to the
widely varying distribution of molecular weights. Note
that the single fit described for the three-component
system uses a relatively large amount of central processor
unit time, even on a very fast computer (~1 min on an IBM
3081, model B; IBM Instruments, Inc., IBM Corp., Dan-
bury, CT). This would appear to limit at the present time
the application of full nonlinear least-squares fits of data to
the parameters (B, M,, ¢}, etc.), particularly where more
than one of these parameters is considered a variable (a
single iteration for such a procedure would correspond to
this time). This would also therefore appear to limit a full
determination of the relationship between data error and
the derived parameters.

However the strength of the present technique is when it
is supplemented by other information on the polydispersity,
such as from electron microscopy as illustrated above, and
from photon correlation spectroscopy (Provencher, 1979),
and also when we can establish that it is polydispersity and
not self-association that is the dominant contribution to
observed solute heterogeneity (Harding, 1984).
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