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The concentration-dependence of macromolecular parameters

Stephen E. HARDING* and Paley JOHNSONt
Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 IQW, U.K.

Theories concerning the concentration-dependence of sedimentation and diffusion coefficients for macro-
molecules in dilute solution are compared and discussed, together with their experimental basis. An attempt
has been made to clarify an important uncertainty still present in the literature as to whether sedimentation
coefficients should be corrected for solvent or solution density. It is pointed out that the two processes yield
the same extrapolation limit but different concentration-dependencies, which have, however, been related.
A general expression is derived thermodynamically for the concentration-dependence of diffusion that
includes the coefficient of the concentration term involved in sedimentation (on the basis of sedimentation
coefficients corrected from solution density). For rigid spherical particles the expression is shown to be exactly
equivalent to one given by Batchelor [(1976) J. Fluid Mech. 74, 1-29], which was derived on the basis of
sedimentation coefficients corrected from solvent density. Finally, we discuss the concentration-dependence
of apparent weight-average relative molecular masses ('molecular weights') (from, e.g., sedimentation
equilibrium) and note an important omission in some earlier representations.

INTRODUCTION

Over the last decade, considerable interest has
developed over the details of sedimentation and other
transport processes, as occurring in dilute solutions of
suspended particles and macromolecules. In particular,
the magnitudes ofconcentration effects on sedimentation,
diffusion and viscosity have been calculated, as well as
certain thermodynamic coefficients. Some comparisons
with experiments have been undertaken [e.g. Cheng &
Schachman (1955), Maude & Whitmore (1958) and
Buscall et al. (1982)]. In the present paper we review the
theoretical advances and discuss their -experimental
support, and in the following paper (Harding & Johnson,
1985) introduce new experimentally obtained data
against which to test the theoretical values.

THEORY

Concentration-dependence of sedimentation velocity
It is usually assumed (e.g. Schachman, 1959) that the

concentration-dependence of the sedimentation coeffi-
cient, Sc, correct to first-order in concentration, c (g/ml),
is given by: _ t 1

- "-Sc = s(iK1sc) (ia)
where s is the infinite dilution value, with sc referring to
a finite concentration c, ks being an empirical constant
(ml/g). An equivalent expression may, however, be
written in -terms of the volume fraction of suspended
particles, s5: sc = s(1 -KSo) (lb)
where b = cvs, vs being the 'swollen' specific volume of
the particles, in which allowance is made for bound or
entrained solvent, and Ks is given by:

Ks = kslvs (Ic)
Schachman (1959) reviewed the relevant theoretical

work that had been performed to that time, including

particularly that of Kermack et al. (1929) and that of
Burgers (1941a,b, 1942a,b). Both sets of workers had
considered the backflow of solvent arising from the
sedimentation ofthe assumed spherical, neutral, particles
themselves and of the surrounding liquid dragged along
by normal viscous forces. In all, this amounted to 4 times
the volume of the particles according to Schachman
(1959), but substitution in Burgers's (1941a,b, 1942a,b)
equations of his evaluated constants gives an even larger
value (up to 6.88 times the volume). Progress was also
made by Pyun & Fixman (1964), who attempted to
evaluate Kr for the sedimentation of soft as well as hard
spheres.
A further theoretical advance was made by Batchelor

(1972), who also considered dilute homogeneous (mono-
disperse) suspensions of rigid, neutral, impermeable
spheres and reviewed the difficulties associated with
previous work. In Batchelor's (1972) work the occurrence
of divergent integrals was circumvented and evaluations
were performed without the uncertainties mentioned by
Burgers (1941a,b, 1942a,b). Thus, with the above
notation, Batchelor (1972) obtained:

SC = s(I -6.550) (2a)
where the coefficient -6.55 contains contributions from
several types of effect. Thus motion of the particles alone
is responsible for -0, and the viscous dragging of the
fluid surrounding each particle contributes - 4.50, giving
a total - 5.50 for these backflow terms. Two further
smaller terms were considered. One, representing the
mutual effect of the particles upon one another, yields a
term - 1.55q, and a further term +0.50 arises from
Faxen's relation owing to the non-zero mean value of the
second derivative of the fluid velocity in the environment
of any sphere due to all the others.
A large measure of agreement occurs between

Batchelor's (1972) work and that of Burgers (1941a,b,
1942a,b), as well as that of Pyun & Fixman (1964).
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Solution density
corrected
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Fig. 1. Illustration of the effect of choice of density of the medium
through which sedimentation occurs in correcting
experimental sedimentation coefficients Isbl(c)l to water at
20 °C Is%O(c)l

Burgers (1941a,b, 1942a,b) estimated the numerical
coefficient to be -6.88, whereas Pyun & Fixman (1964)
obtained -7.16; in both cases Batchelor (1972) offers an
explanation for the discrepancies. In further theoretical
work, Batchelor (1976, 1982) and Batchelor & Wen
(1982) have now extended this treatment to Brownian
diffusion and to the properties of dilute polydisperse
systems of interacting spheres.

Sedimentation coefficients are normally obtained in
buffer solution, indicated by superscript b, at a
temperature T, indicated by the subscript. In order to
consider concentration effects only, it is necessary to
correct such coefficients to a common temperature,
usually 20 °C, and to a solvent environment, usually
water. In making this correction, an expression of the
following type is utilized (see, e.g., Tanford, 1961):

s°%(c) = 5b (c) (1-P) (2b)

Here Sb (C) iS the actual measured sedimentation
coefficient and s%20(c) is the value corrected to water at
20 'C. The partial specific volume v- is usually taken as a
constant. y refers to the viscosity of the solvent, but it is
necessary to make an assumption regarding the density,
p, of the medium through which sedimentation occurs
during the measurement of Sb(C). Is it merely the buffer
solution at temperature T, whose density is usually well
known, or should it be the whole solution (containing
macromolecules), for which the density would require
measurement for every s value? In each case it should be
mentioned that the corrected value is hypothetical, for it
does not correspond to a real situation and therefore
cannot be experimentally checked. Further, the two
corrected values will differ significantly at any finite
concentration, though the difference will decrease with
decreasing concentration and disappears at infinite
dilution. Thus the general dependence of s%O(c) on c in the
two cases will be of the type shown in Fig. 1. For the
remainder of the present paper we are concerned with
s°0(c) values, but for simplicity refer to them as s(c), and
the values extrapolated to infinite dilution as 's'.

It should be made clear that, in his treatment,
Batchelor (1972) considered the motion of the spheres
through a medium with the density of the pure solvent

(rather than the whole solution), though he takes account
of the distribution of spheres about a given sphere. Thus,
in correcting experimentally measured s values to the
solvent at a particular temperature (for comparison with
Batchelor theory), pure solvent densities must be utilized.
In such a case it is valid to compare the value of K.
derived with Batchelor's (1972) calculated value of 6.55.
On the other hand, it has been argued by several authors
[e.g. Schachman (1959), Fujita (1962, 1975), van Holde
(1971) and Rowe (1977)] that the effective density of the
fluid through which sedimentation occurs is the solution
density. This view is strongly supported by the
irreversible thermodynamic approach to the flow in the
ultracentrifuge cell together with the thermodynamic
nature of the partial specific volume (v) normally utilized.
However, correction to the density of pure water at a
standard temperature (i.e. 20 °C or 25 °C), from solution
density, yields (i) a corrected s, value that is significantly
higher than that sc obtained from solvent properties and
(ii) a k5 value that is numerically lower. Referring to the
solvent-derived constant as k' Rowe (1977) obtained the
following approximate inter-relation (which is exact for
the limiting value at infinite dilution):

k =k'-v- (3)
A proof of this formula is given in the Appendix. Thus
KS and KS differ significantly, and dividing eqn. (3) by v.
we obtain: ,,

KS = KS-VVs (4)

where Ks refers to the solvent-derived parameter. Thus
the two forms of correction give s, (or s')-versus-c plots
of differing slope (as in Fig. 1), and either may be utilized.
However, it is essential to be consistent in treating
measured coefficients.

For solid, impermeable, inert and unsolvated spheres,
v ; vs, so that Ks = (K's- 1). Thus, for Batchelor's (1972)
model spheres, a K, value of 5.55 is to be expected. Where
solvation is appreciable, (Ks'- Ks) < 1. It should be
noted also that either procedure of correction is valid in
determining limiting s, values at zero concentration.

In the paper already mentioned Rowe (1977) also dealt
with the problem of the concentration-dependence of
sedimentation and other processes. However, he assumed
initially 'that for particles sedimenting at very low con-
centrations, the velocity relative to solvent is unchanged
by varying the particle concentration'. This model
therefore does not consider interaction terms that other
workers have calculated and found significant. Rowe
(1977) considered the backflow of solvent due to the
sedimentation of the particles (cf. Enoksson, 1948), but,
by imposing a boundary condition of 'infinite slip' (where
the frictional ratio tends to 0) and by consideration of
different frames of reference, he magnified this backflow
term to give a K. value for unhydrated spheres of 4. This
is at variance, however, with Happel & Brenner (1965),
who showed that 'infinite slip' corresponds in fact to a
frictional ratio of 2, not 0, so that the theoretical basis
of the boundary condition is doubtful. It will be recalled
that Batchelor (1972) calculated a contribution of 5.5
(% 4.5 if solution-density corrections are used) for the
total backflow (including that due to solvent viscously
dragged along), but that he also found significant
interaction terms that bring the total term to 6.55 (i-e.
Ks % 5.5 for v ; es).

In comparing experimental and theoretical values ofKs
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or K,, one ofthe most serious difficulties is associated with
the nature of P, defined as the partial molar volume
divided by the relative molecular mass ('molecular
weight'). Although it is generally accepted that the term
(1- ep), p being the solution density, is valid in the
Svedberg equation [M = RTs/D(l -vip), D being the
translational diffusion coefficient] for the calculation of
relative molecular mass, M (see, e.g., Alexander &
Johnson, 1949), or valid in correcting s, values to
standard conditions, it is generally agreed that the solute
volume fraction, 0, cannot normally be equated with cc
for the reason that a macromolecular solute is expected
to bind and entrain solvent molecules, as suggested in
connection with eqn. (Ib), where v. is used to denote the
swollen specific volume of the solvated particles. The
extent to which vs differs from v is expected to be very
variable. Thus, for polystyrene-latex spheres in aqueous
suspension, little or no hydration is through to occur, and
Cheng & Schachman (1955), Maude & Whitmore (1958)
and Buscall et al. (1982) were able to take 1/v as the bulk
density. For such systems, experimental support for the
various theoretical values for Ks (or K',) has been mixed.
Buscall et al. (1982) have obtained a value of 5.4 + 0.1 for
K, (4.5 for Kj) for latex spheres sedimenting under
gravity. They argued that the discrepancy with Batchelor's
(1972) theoretical result could be accounted for in terms
of the formation of temporary doublets of spheres,
although this is perhaps open to question. Maude &
Whitmore (1958) had earlier obtained a value of 5 for K,
(4 for Ks) for latex particles again sedimenting under
gravity. Cheng & Schachman (1955), in a thorough study
using the analytical ultracentrifuge in which all sediment-
ation coefficients had been corrected in terms of solution
density, had also obtained a value for K, of (4.06 + 0.10).
On the other hand, as stated above, most biological

macromolecules are significantly solvated. For example,
a human macroglobulin (Johnson & Miller, 1970) was
found to have an effective specific volume in aqueous
solution almost 5 times v-. In the more extreme case of a
mucus glycoprotein (Harding et al., 1983) the ratio vs/li
was found to be greater than 100. With such a range of
values for vs/l, it is clear that reliable values of 0 cannot
be obtained from accurate weight concentrations (c).
However, for a particle of given shape, v. may be

determined from the intrinsic viscosity [,]; in general:

[v] = vvs (Sa)

where the coefficient iv for spherical particles is 2.5. With
elimination of v. from eqns. (5a) and (1c), a ratio R can
be defined (Rowe, 1977):

R _ kl/[y] = Ks/l (5b)

The predicted theoretical values of this ratio (corrected
to solution density) for spheres are 5.88/2.5 = 2.35
(Burgers, 1941a,b, 1942a,b), 6.16/2.5 = 2.46 (Pyun &
Fixman, 1964), 5.55/2.5 = 2.22 (Batchelor, 1972) and
4.00/2.5 = 1.60 (Rowe, 1977). A comprehensive review
of experimentally obtained data by Creeth & Knight
(1965) has shown that, in general, globular macro-
molecules have a value for R of 1.4-1.7, with lower
values for more-asymmetric particles (see also Harding &
Rowe, 1982). It may also be noted that for randomly
coiled macromolecules Wales & van Holde (1954) have
obtained a value for R of 1.66.

Concentration-dependence of diffusion
The variation in the sedimentation coefficient with

concentration may be considered to arise from the
increase in frictional coefficient with concentration,
where: r ,,, \ ,

Jc =J(1 +ksC) (6)
correct to first-order in concentration, where f, is the
frictional coefficient at finite concentration c andf is the
corresponding value at infinite dilution; k, is the same
term as occurs in eqn. (la). A similar consideration
applies in the case of the diffusion coefficient, but, in
addition, activity-coefficient terms are also involved, since
the driving force for diffusion is essentially the gradient
in chemical potential (It). Using the subscript '1' to
denote solvent and '2' to denote macromolecular solute,
we have: ,, Dr,,p 1.. 17k /)
y being the (solute) activity coefficient at a particular con-
centration. Differentiating with respect to c we obtain:

C a/2 - d(lny)+ I

RT ac d(ln c)

Now, from the Gibbs-Duhem Relation:

ac2 M(1-cv) (4ti)
Oc VIc Oc

(8)

(9)

where V1 is the partial molar volume of solvent and M
is the relative molecular mass of the macromolecule. This
was first pointed out by Ross & Minton (1977), although
in earlier work [e.g. Tanford (1961) and Tombs &
Peacocke (1974)] the term cv is missing, presumably on
the grounds that civ < 1. However, as shown below, it
should be retained in general. It could be argued that cv.
rather than co should be used in this expression, but,
because the source of the term in eqn. (9) is
thermodynamic rather than hydrodynamic (,t, refers to
the solvent irrespective of whether it is free or bound), cv
appears to be correct.

Recalling that Iut is related to osmotic pressure (H) by:
o
=#°-11 V1 (10)

where ,u is the standard state chemical potential, we find:

-c - 1 .c (1 1)

assuming V2 to be constant. Substituting eqns. (9) and (11)
into eqn. (8), we obtain:

d(lny) M(1 -tic) rI_d=In c*RT -1
d(lnc) - RT ac

(12)

Since the diffusion coefficients at finite concentration, DC,
may be written:

DC= RT(ld(lny)) (13)

with N as Avogadro's number, we have, on introducing
eqn. (12):

RT M(I-ic) an)Dc = *.Nfc RT C9c (14)

The concentration-dependence of osmotic pressure is
usually written as (Tanford, 1961):

I- R[1+BM c+O(c2)]
c M

(15)
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where B is the second virial coefficient, and hence:
an RT

-M [ +2BM-C+O(c2)] (16)

Introducing eqn. (16) into eqn. (14) and substituting for
fA from eqn. (6), we obtain:

D = RT(l-VC) [1+2BM-C+ . .. ]
c Nf(I+ksc)

which to a good approximation may be written:

DC = D(1 +kDC) (17a)

where D (the value of DC at c = 0) is RT/Nf, and where
kD is given by:

kD= 2BM-e-ks (18)
Writing eqn. (17a) in volume fraction terms:

DC = D(1 +KDO) (17b)

where:

/kD2BM f
KD (_ D) =----Ks (18b)

s ~~~~s
From eqns. (18) it is apparent that omission of the v term
in the coefficient of c may be justifiable where asymmetry
or solvation of the particles cause the excluded volume
term BM to be very large, but in general it should be
included. Its contribution for spherical particles of
moderate solvation is significant. Since the arguments
leading to eqns. (17) and (18) have been almost entirely
thermodynamic, it is clear that k5 or K. (rather than ks
or Ks) should appear in these equations. On the other
hand, Batchelor (1976), on statistical-mechanical as well
as thermodynamic grounds, considered the diffusion of
hard neutral spheres [the same model as he used in
sedimentation (Batchelor, 1972)] and obtained:

RT
DC= Nf[1+(8-6.55)0] (19)

which can also be written for the particular model:
RT

DC= N [1 + (8vS-k)c] (20)

But 2BM for the same model has the value 8vs (see, e.g.,
Tanford, 1961), and, from eqn. (3), k' = ks+tv. Thus
Batchelor's (1976) formulation (eqn. 19) and our
formulation (eqns. 17 and 18) are identical.

Rewriting eqn. (18b) in terms of KS, we find in general:
2BM

KD = -KSVs

Now, since the first term is simply 8 for spheres, ifwe take
the Batchelor value of KS as 6.55, then KD = 1.45, as
reported by Batchelor (1976). An earlier attempt to
support this empirically had been made by Newman et
al. (1974), with circular DNA, and was quoted by
Batchelor (1976). The fact that circular DNA is far from
a rigid impermeable unsolvated sphere in solution
appears to have been overlooked by these authors. Since
circular DNA possesses assymmetry relative to a sphere,
the apparent agreement would tend to suggest that K, for
a sphere should be lower than 6.55.
A more recent analysis has been give by Kops-

Werkhoven & Fijnaut (1981) on silica spheres (coated

with long-chain hydrocarbons) in cyclohexane. These
workers have obtained a value for vs from measured
values of D (by using photon correlation spectroscopy)
and the corresponding Stokes radius, and apparently
employed this to obtain a value for KS of6+1 and a value
for KD of 1.3+0.2. Their use of the parameter qe,
however, makes it clear that it is equivalent to our v., and
is thus a solvated specific volume rather than an excluded
volume, as these authors claim. Nonetheless, their
experimental values for K and KD appear to support the
calculated Batchelor (1976) coefficients (6.55 and 1.45
respectively).

Concentration-dependence of the apparent relative
molecular mass from sedimentation equilibrium
The apparent relative molecular mass of a macro-

molecule in a two-component system is given by:

(22)Mapp. - M

(I +d(In )

Substituting for d(ln y)/d(ln c) using eqn. (12) and again
using the virial expansion of eqn. (16), we obtain:

M
Mapp. = 1 +2Mz)+0(C2) (23)

Thus:

Map=. M- [1+(2BM-b)C+...]
(24)

The v term is missing from the coefficient of c in eqn.
(16.20) of Tanford (1961), but is present in an expression
given by Ross & Minton (1977) and in an equivalent
expression for a self-associating system given by Wills et
al. (1980). As previously, although the contribution of
this term may be small for highly assymetric, solvated or
charged macromolecules, where 2BM may be > v-, in
general this is not so. For example, for unsolvated spheres
2BM is only 8b. For solutions of more than one
component of macromolecule the Mapp and M values
become weight averages [see, e.g., eqn. (34) in Teller
(1973)].

DISCUSSION
In considering the sedimentation process, the thermo-

dynamic nature of v and the viewpoint from the
thermodynamics ofirreversible processes tend strongly to
suggest that the solvated macromolecule or particle
should be viewed as moving through a medium with the
density of the solution rather than the pure solvent. As
has been shown above, this leads to a coefficient, ks, that
differs significantly (see eqns. 3 and 4) from that, kS,
obtained if solvent density had been utilized. Further,
these coefficients are also involved in the concentration-
dependence of diffusion coefficients (eqn. 18), even
though there is no ambiguity in correcting diffusion
coefficients to standard conditions. It is of interest that
the coefficient in the diffusion case takes on a simpler form
(kD = 2BM-k) where v does not occur explicitly if
solvent-corrected, k', values are utilized. However, in
sedimentation equilibrium, it is clear that the coefficient
of the concentration term must contain v. In the following
paper (Harding & Johnson, 1985) an application of the
various equations to monodisperse preparations of
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spherical virus particles (turnip-yellow-mosaic virus) is
attempted.

We are grateful for the opportunity of discussing this work
with Dr. J. M. Rallison, Professor G. K. Batchelor and
Dr. A. J. Rowe.

REFERENCES

Alexander, A. E. & Johnson, P. (1949) Colloid Science, p. 290,
Oxford Univeristy Press, Oxford

Batchelor, G. K. (1972) J. Fluid Mech. 52, 245-268
Batchelor, G. K. (1976) J. Fluid Mech. 74, 1-29
Batchelor, G. K. (1982) J. Fluid Mech. 119, 379-408
Batchelor, G. K. & Wen, C. S. (1982) J. Fluid Mech. 124,
495-528

Burgers, J. M. (1941a) Proc. K. Ned. Akad. Wet. 44, 1045-1051
Burgers, J. M. (1941b) Proc. K. Ned. Akad. Wet. 44, 1177-1184
Burgers, J. M. (1942a) Proc. K. Ned. Akad. Wet. 45, 9-16
Burgers, J. M. (1942b) Proc. K. Ned. Adad. Wet. 45, 126-128
Buscall, R., Goodwin, J. W. & Ottewill, R. H. (1982) J. Colloid

Interface Sci. 85, 78-86
Cecil, R., Johnston, J. P. & Ogston, A. G. (1949) Nature
(London) 163, 919-920

Cheng, P. Y. & Schachman, H. K. (1955) J. Polym. Sci. 16,
19-30

Creeth, J. M. & Knight, C. G. (1965) Biochim. Biophys. Acta
102, 549-558

Enoksson, B. (1948) Nature (London) 161, 934-936
Fujita, H. (1962) Mathematical Theory of Sedimentation

Analysis, chapter 1, Academic Press, New York
Fujita, H. (1975) Foundations of Ultracentrifuge Analysis,

chapter 1, John Wiley and Sons, New York

Happel, J. & Brenner, H. (1965) Low Reynolds Number
Hydrodynamics, chapter 4, Prentice-Hall, London

Harding, S. E. & Johnson, P. (1985) Biochem. J. 231, 549-555
Harding. S. E. & Rowe, A. J. (1982) Int. J. Biol. Macromol. 4,

160-164
Harding, S. E., Rowe, A. J. & Creeth, J. M. (1983) Biochem.

J. 209, 893-896
Johnson, P. & Miller, J. N. (1970) Biochim. Biophys. Acta 207,

297-307
Kermack, W. O., M'Kendrick, A. G. & Ponder, E. (1929) Proc.

R. Soc. Edinburgh 49, 170
Kops-Werkhoven, M. M. & Fijnaut, H. M. (1981) J. Chem.

Phys. 74, 1618-1625
Maude, A. D. & Whitmore, R. L. (1958) Br. J. Appl. Phys. 9,
477-482

Newman, J., Swinney, H. L., Berkowitz, S. A. & Day, L. A.
(1974) Biochemistry 13, 4832-4838

Pyun, C. W. & Fixman, M. (1964) J. Chem. Phys. 41, 937-944
Ross, P. D. & Minton, A. P. (1977) J. Mol. Biol. 112, 437-452
Rowe, A. J. (1977) Biopolymers 16, 2595-2611
Schachman, H. K. (1959) Ultracentrifugation in Biochemistry,

p. 90, Academic Press, New York
Tanford, C. (1961) Physical Chemistry of Macromolecules, pp.

195-196, 234, John Wiley and Sons, New York
Teller, D. C. (1973) Methods Enzymol. 27, 346-441
Tombs, M. P. & Peacocke, A. R. (1974) The Osmotic Pressure

of Biological Macromolecules, chapter 2, Clarendon Press,
Oxford

van Holde, K. E. (1971) Physical Biochemistry, chapter 5,
Prentice-Hall, Englewood Cliffs

Wales, M. & van Holde, K. E. (1954) J. Polym. Sci. 14, 81-86
Wills, P. R., Nichol, L. W. & Siezen, R. J. (1980) Biophys.
Chem. 11, 71-82

APPENDIX

Proof of ks = ks- o

If solution density is used for the correction of
sedimentation coefficients, we have:

SC = s(l-k,c) (Ila)
If solvent density is used, we may write:

s = s(l -k'c) (A1)
Therefore, using eqn. (2b), we obtain:

Sc I1-k'c (1-vp'

Sc I1-ksc (1-vp)
Re-arranging:

kS = A2)(1-tp') c

Take M' g of solvent with volume V'. The solvent density
p'will be M'/ V'. Ifa small quantity g g of solute ofpartial
specific volume b is added, there will be an increase in
volume of solution of gb. The solution density p is
therefore p = (M'+g)/(V'+gv), and:

M',+g M'
(P-P ) = V'+gt -V' = C(l-pv)

where the concentration c(g/ml) = g/(V'+gv). Substit-
uting for (p -p') in eqn. (A2) we obtain:

= ks-u(l -ksc) (A3)
As 'infinite dilution' is approached (namely c - 0) eqn.
(A3) becomes:

k = k'-v
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