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Optimization of Products and Processes

By J. R. Mitchell, H. Back, K. Gregson, . Harding, and S. Mather
FACULTY OF AGRICULTURAL SCIENCE, UNIVERSITY OF NOTTINGHAM
SUTTON BONINGTON, LOUGHBOROUGH, LEI2SRD, UK '

1 Introduction

One o(.lhe definitions of the verb ‘to optimize’ in Chambers Dictionary is ‘to make
as efficient as possible especially by the use of analysing and planning processes’
Clearly the objective of anybody concerned with product and process developmeni
is }o obtain the best or most efficient product or process possible. The purpose of
this contribution is to consider some of the planning and analysing processes
which can be used to achieve this objective. ) ‘
A{] Qpllmization problem can be defined in the following terms. We wish to
maximize some parameter y, which we shall term the objective function. y will be a
function of a scries of variables, ‘
- ¥ :’./‘(xnxz»xy' )
whfch can be termed the decision variables. In general there will be constraints
which place limitations on the values of x; which are allowed.
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Figure I The elements of a static optimization problem for two decision variables presented as
a contour ploi. In this case the constraints are active since, if they were omitted. the
optimum would be located at a different point. ‘
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We can distinguish between sratic and dynamic optimization problems. In a
static problem the solution is a series of single values of x;. In a dynamic problem
the decision variables themselves are functions of another variable, most fre-
quently time (1). In this case the solution to the problem will be a series of
functions, x,(t), which maximizes y. An example of a dynamic optimization
problem is the determination of the retort temperature as a function of time which
maximizes nutrient retention in a thermal process within the constraint that the f,
value should exceed the minimum required for commercial sterilization.! Methods
for the solution of dynamic optimization problems have been discussed by Saguy.?
In this short chapter we will confine ourselves to the simpler static optimization
problem. The elements of this problem are illustrated in the case of two decision
variables in Figure 1.

There are two ways in which this general problem can be tackled systematically.
The first is what we shall term the mathematical model method. In this approach
the function y = f{x,) is represented by an equation which is an approximation of
the true relationship. The equation is then examined to find the maximum value of
y within the constraints on x,.

The second approach will be termed the sequential or evolutionary method. Here
a series of measurements are made for different values of the vector x = [x;]. An
algorithm is then used to predict the next sct of decision variables at which a mca-
surement of y should be made. In this way it is possible to move iteratively or
sequentially towards the optimum. In practice these two approaches can overlap.
Thus the algorithm used to drive an experimental programme can equally well be
used to examine a mathematical model with the advantage that the value of y can
be calculated from the mathematical model in a fraction of the time taken to deter-
mine it experimentally. Conversely a mathematical model can be used to predict
where the next experiment should be carried out, or a model can be fitted to a set of
data obtained from a series of experiments driven by a sequential algorithm.

In this chapter we will outline these two different approaches to the static opti-
mization problem. In the case of the mathematical model method it will be poss-
ible to illustrate the approach with examples relating to baked products. In the
case of sequential methods this is more difficult since this approach has been dis-
cussed less frequently in the food technology literature. One reason for this is that
sequential methods are directed at finding a single point optimum whereas pub-
lished research is more concerned with obtaining an overall understanding of the
system. Mathematical model methods are more appropriate if this is the objective.

2 The Mathematical Model Approach

This method is often called response surface methodology (RSM) since the relation-
ship between the response y and the ‘n’ decision variables x, is a surface in (n + 1)
dimensions. The stages in an optimization exercise using this approach are shown
in Figure 2.

' D. B, Lund, Food Technol., 1982, 36 (7),97.
! |. Saguy, in ‘“Computer-aided Techniques in Food Technology', ed. 1. Saguy, Marcel Dekker, New
York, 1983, Chapter 11.
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Identify important variables (x,) and ranges over which they are to be varied

Identify parameters to be measured and method of measurement

Decide form of equation relating measured parameters to variable levels

Devise an appropriate experimental design

Carry out the expsriment

Fit moda! to data

Determine if fit satisfactory and model appropriate

|
If above conditions hold, determine optimum within constrained range from inspection
of equations

Figure 2 Siages in an optimization process using the mathematical model method

It has been assumed in the above that the response surface has to be obtained pre-
dominantly by experimental methods. For food systems it is extremely unlikely
that a model of the process can be obtained from engineering first principles,
.lhough of course a knowledge of these principles is essential in selecting the
Important variables. In this procedure the critical stage is obtaining a suitable
mathematical model.

The prediction of the optimum from the model is generally straightforward. In
the case of a product optimization exercise, defining what properties of the pro-
fiuc( are required, and what the constraints should be, may be as much a market-
ing as a technical decision.

We will now discuss some of the stages listed in Figure 2 and then consider some

Zxamp!es where the mathematical model approach has been applied to baked pro-
ucts.

Selection of Variables.—The number of experimental trials required increases
rapidly with the number of variables and with the complexity of the model to be
fitted. From these considerations a decision can be made on the number of vari-
ables that it is possible to handle. In many cases it is obvious which variables to
.ch‘oose. If, however, there are a large number of variables which may be important
1t1s necessary to select a few for detailed examination, and the use of a fractional
factorial design as a screening experiment may be valuable. Examples of such
designs for 2" * fractional factorial experiments for up to fifteen variables have
recently been given by Mullen and Ennis.® For example if there are twelve vari-
ables, a full factorial experiment where each variable can be held at two levels and
all possible combinations are examined would require 4096 (2'?) treatments. A
fractional factorial experiment consisting of 32 treatments (2'2~ ") is given by Mul-
Icp and Ennis including a blocking scheme. Although the main effects will be
aliased with higher-order interactions (since the latter can almost certainly be neg-
lcclefj) i¥ will be possible from the analysis of such an experiment to decide on the
relative importarice of the variables and in a subsequent experimental design keep
the variables of lesser importance at a constant level,

* K. Mullen and D. M. Ennis, Food Technol., 1985, 39 (5), %0
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In an optimization exercise one is generally attempting to improve on an exist-
ing situation. The logical centre point of the design is, therefore, the current pro-
duct or process. It is easier to analyse the experiment in terms of coded levels and
the values of the variables at this centre point would be coded as zero. The range
over which the variables will be changed is governed by the conflicting require-
ments of obtaining sufficient data in the critical region to predict an optimum pre-
cisely and making the experimental net large enough to avoid missing the optimum
region altogether. The actual levels of the variables are converted into coded levels
(=1, +1, 42, etc.) by an appropriate transformation which can be linear or
non-linear. A non-linear form may be suggested by a theoretical knowledge of the
process; for an example of this see the brief discussion below of the work of Keagy
et al.* on vitamin retention in biscuits.

Form of Model.—Polynomial models are most frequently employed. These have
the advantage of being easy to fit using multiple regression. They are however
notoriously untrustworthy when extrapolated outside the experimental range. The
use of a second-order polynomial of the form shown in equation (1) is often
chosen. It is a good compromise between the conflicting requirements of pro-
viding a good fit 10 a complex surface, keeping the total number of experimental
points down to an acceptable level, and using terms whose mcaning can be readily
appreciated.

y = ay + Lax; + Lbyx;? + Laxx; )
i i i
i>)

A preliminary examination of the appropriateness of the model can be made by
plotting the residuals [y(predicted) — y(measured)] against the values of each of
the variables. The analysis of variance will give information about the overall
goodness of fit.

Experimental Designs.—Central Composite Designs. It is obvious that no
information about the squared terms in equation (1) can be obtained from a 2
factorial experiment where the variables are only examined at two levels. Some
information about non-lincarity can be obtained if a centre point is added to such
a design, so in addition to the + 1 and — 1 levels of the coded variables the (0, 0,
---) treatment is also investigated. This centre point is generally replicated to give
information on the error associated with an individual measurement. Information
about non-linearity can also be obtained from full or fractional 3" experiments. An
example of such a design is given by Henika.® However, only a poor estimate of
quadratic terms can be obtained when the variables are held at three levels. The
design most frequently applied to baked products is the central composite type
discussed by Box and Hunter® and by Cochran and Cox.” In addition to the centre

¢ P. M. Keagy, M. A. Connor, and T. F. Schatzki, Cereal Chern., 1979, 56, 567.

* R. G. Henika, Cereal Sci. Today, 1972, 17, 309.

¢ G. E. P. Box and J. S. Hunter, Ann. Math. Siat., 1957, 28, 195.

' W, G. Cochran and G. M. Cox, ‘Experimental Designs’, 2nd Edn., Wiley, New York, 1957,
Chapter 8.
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point and the 2" factorial points, measurements are made at the star points (a, 0, 0,
) (~=9,0,0,--)(0,2,0,--)(0, —a, 0, - ), etc. By choosing an appropriate
value for a and repeating the centre point a number of times the design can be
given the property of rotatability. This means that the standard error of y will be
the same for all points that are the same distance from the centre of the region (the
coded 0, 0, 0, - - - point). If this condition is to hold, then a = 2"4. As the number
of variables (n) increases, it may be desirable to replicate fractionally the factorial
part of the design. If this is the case, then the value of a is reduced. For example,
for a half replicate design it becomes 2"~ "'* Very often the standard error in y is
kept roughly constant within a circle (thinking in two-dimensional terms) of radius
1 from the centre. Mullen and Ennis® give a number of examples of designs of this
type.

Constant Weight Mixture Designs. Where the objective of the work is to find an
optimum blend of ingredients, the constraint that the total weight of the
components is a constant impinges on the design, i.e. Tw,x, = a constant, where w;
is the weight of one unit of component x, Clearly there are no longer n
independent variables. One approach to this problem is to use n — 1 sets of ratios of
the true variables and use these ratios as the actual variables in a central composite
design. From a knowledge of the n— 1 ratios the n true variables can be evaluated.
Examples of this approach are given later in this section under Cakes.

Specific designs for handling constant-weight mixtures are discussed by Draper
and Lawrence,”'® Scheffe,'!*'? and McLean and Anderson.'? The extreme ver-
tices design of McLean and Anderson seems particular pertinent since it allows
constraints to be put on the allowed levels of the individual values of x,. An exam-
ple of its application to a cake formulation problem will be given below.

Examination of Model to Find the Optimum.—In general, for a polynomial model
the maximum will lie outside the region of interest. Setting the partial derivative of
y with respect to each variable equal to zero, and solving the resultant simulta-
neous equations to determine the stationary point, will not often be useful. Where
the number of variables is reasonably small the use of contour plots obtained by
keeping all but two of the variables constant is a useful way of visualizing the sur-
face. In a situation where there is a large number of variables the best approach is
to use one of the optimization routines in major software libraries, such as the Nu-
merical Algorithms Group (NAG) or the National Physical Laboratory (NPL).
The available software is listed and discussed by Saguy ef al.'* Where a number of
y values have been measured, a decision is made on the one to maximize or mini-
mize and then the remainder are used to define constraints. For example, the cost
of a process might be minimized subject to certain constraints regarding the qua-
lity of the product. The cost function would be a straightforward linear function,

L]
°
10

K. Mullen and D. M. Ennis, Food Technol., 1979, 33 (7), 74.

N.R. Draper and W. E. Lawrence, J. R. Statis, Soc., Ser. B, 1965, 27, 450.

N. R. Draper and W_E. Lawrence, J. R. Statis. Soc.. Ser. B, 1965, 27,473.

"' H. Scheffe, J. R. Statis, Soc.. Ser. B, 1958, 20, 344.

'? H. Scheffe, J. R. Statis. Soc., Ser. B, 1963, 25, 235.

R.A.McLean and V. L. Anderson, Technometrics, 1966, 8. 447.

'* 1. Saguy, M. A. Mishkin, and M. Karel, CRC Crit. Rev. Food Sci. Nurr., 1984, 20, 275.
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whereas various quality attributes could be represented by second—.order polyn(?-
mials obtained using response surface analysis. An example of this approach is
given in the Appendix to this chapter.

Examples of Modelling of Baked Products and Processes.—Cakes. The response
surface approach has frequently been used to determine the effect of a wnd? range
of variables on cake quality (cake volume, structure, and top contour being the
major parameters measured). An early but interesting example is given by Donel-
son and Wilson.'® They fractionated soft white flour into four components, water
solubles, gluten, tailings, and prime starch. To determine the role of these compo-
nents, cakes were then baked from reconstituted flours containing different pro-
portions of the flour ingredients. Cake volume was measured by a seed displace-
ment method. Cake structure was scored on a 0—15 scale composed of the sum of
separate evaluations of cell wall size, cell wall thickness, and unifonn.ity of cell dis-
tribution. The weight of reconstituted flour in the formulation remained constant
so a four-variable design would be inappropriate since the ingredient levels could
not be varied independently. Instead three variables were used which were the fol-
lowing ratios of the ingredient levels.

water solubles

Y1 = gluten + tailings + starch
gluten
e = tailings + starch
tailings
= “Starch

Each of these ratios could be varied independently but the specification of all
three defined the levels of the four components in the flour. The coded levels of the
variables were selected so that the components were kept within the range of inter-
est (1—7% for water solubles, 5—17% for gluten, 3-—20% for tailings, 65—82%
for prime starch). Thus, for example, the ratio x, was transformed to the coded
variable X, by the relationship

Xy= T~

The central composite design consisted of the 2* factorial, the centre point, the
‘six star points (2,0,0; —2,0,0; 0,2,0, etc.) and the centres of the faces of the cube
(1,0,0; —1,0,0; 0.1,0, etc.). A second-order polynomial was fitted to the .data.
Because ratios were used as the variables, interpretation of the model was slightly
awkward. However, by using three-dimensional representations of sections of the
surface it was possible to illustrate the major features of the model. One such
three-dimensional representation is shown in Figure 3. ’ .

A very similar approach to the problem of handling a constant—welgh(‘ mixture
was used by Kissell and Marshall.'® In this case the total recipe conlam.e'd five
ingredients, baking powder, shortening, flour, sugar, and water, In addition to

'S D. H. Donelson and J. T. Wilson, Cereal Chem., 1960, 37, 241.
Y% L. T. Kissel and B. D). Marshall, Cereal Chem., 1962,39, 16.
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Figure 3 Example of a second-order polynomial response surface for cake volume. The axes
‘water solubles increasing’ and ‘tailings increasing’ are the coded variables for X, and
X, which are defined in the text; X, was fixed at the median of its range
(Reproduced with permission from Cereal Chem., 1960, 37, 241)

volume, top contour appearance was evaluated subjectively on a 1—10 scale. A
central composite design was used giving 25 formulations (16 from the 2* factorial,
8 star points, and the centre point); again the results were fitted by a second-order
polynomial. In a later paper Kissel'” investigated a more commercial formulation
containing egg albumen and milk powder as additional ingredient variables plus
constant low levels of salt and vanilla. This gave seven ingredient variables and
therefore six ratio variables. The central composite design thus had 77 treatments
(2° + 12 + 1). Volume, top contour, and total internal score were measured and
the usual second-order polynomial model was used.

It may sometimes be helpful to transform the model to a canonical form (e.g.
Wilson and Donelson'®). That is to say the response is given by

Y =flv)

where the vectors v, correspond to the principal component vectors. One advan-
tage of this approach is that variables with little influence on the property to be

"7 L.T. Kisscl, Cereal Chem., 1967, 44, 253,
'* J.T. Wilson and D. H. Donelson, Cereal Chem., 1965, 42, 25.
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optimized may be easily detected and omitted from the subsequent analysis. The
dimensionality of the problem may thus be reduced with consequent reduction in
the number of experiments necded.

A more recent example of the use of second-order polynomial models applied to
cakes is the work of Lee and Hoseney,'® who optimized the fat-emulsificr system
and the gum-egg-water system for a laboratory single-stage cake mix. The two
systems were treated separately in individual three-variable experiments. The vari-
ables in the fat-emulsifier system were the levels of shortening, propylene glycol
monostearate, and a mono-diglyceride emulsifier. Specific gravity, viscosity of
mix, volume, top contour, shrinkage, and cake structure were measured. Splitting
the design in this way reduces the amount of work and simplifies the inter-
pretation, but implies that there is no interaction between the two systems; i.e. the
optimum level for the emulsifier—shortening system is independent of the levels
of the gum-egg—water system.

An example of the application of the extreme vertices design of McClean and
Anderson'? o cakes is given by Johnson and Zabik.?? They were interested in the
effect of the levels of five egg proteins, in a blend, on the properties of angel food
cakes. The procedure for selecting the treatments consisted of initially defining the
admissible ranges for proteins in the blend; e.g. the minimum and maximum
values for ovomucin were 0 and 2.50%, whereas the corresponding figures for
ovalbumin were 30% and 89%.

The vertices were constructed by considering all possible treatments with five of
the proteins at the maximum and minimum of their range and adjusting the level
of the sixth protein (ovalbumin) to make up the blend to 100%. In view of the
large allowed range for ovalbumin all 32 formulations calculated in this way were
feasible. The design was completed by including the centroids of the three-dimen-
sional faces. This was achieved by averaging the vertices.

The authors used a technique described by Becker?! to detect components with
a linear blending behaviour. This resulted in a model containing terms of the form

as well as linear, second-order, and third-order terms.
Bread. A simple fractional 3* factorial design has been used by Henselman et al.??
to investigate breads fortified with added protein from different sources. The vari-
ables were the type of added protein (soya, milk, or fish) and the protein level (0, 4,
and 8%). Bread volume, specific volume, structure, and flavour were determined.
The results were fitted by a second-order polynomial.

Paloheimo er al.?? investigated the effect of oven variables on bread quality
using a half replicate 2%~ ! factorial design with four replicates at the centre point.
Variables were baking temperature, the height of the bread in the oven, humidity,
air circulation velocity, and the presence or absence of a separate heatable hearth.

' C. C. Lee and R. C. Hoseney, Cereal Chem., 1982, 59, 392.

20 T, M. Johnson and M. E. Zabik, J. Food Sci., 1981, 46, 1226.

' N. G. Becker, J. R. Statis. Soc., Ser. B, 1968, 30, 349.

12 M. R. Henselman, S. M. Donatoni, and R. G. Henika, J. Food Sci., 1974, 39, 943.

M. Paloheimo, Y. Maleki, and S. Kaijaluoto, in ‘Thermal Processing and Quality of Foods’, ed. P.
Zeuthen et al., Elsevier Applied Science, London, 1984,
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Measured parameters included theoretical energy consumption, volume and speci-
fic volume, and thickness and colour of the crust. The results were expressed in
terms of a linear model only, as it was considered that there were insufficient exper-
imental data to justify determining cross-product (interaction) terms.
Biscuits. A good example of the transformation of variables can be found in the
studies of Connor and Keagy on vitamin retention during the baking of vitamin-
fortified biscuits.*-2* Here the primary objective of the work was to study the
retention of thiamin or folacin. The variables were biscuit thickness, baking time,
temperature, rest time, and levels of sodium bicarbonate and ammonium bicar-
bonate. Rest time was defined as the time from the end of mixing to the beginning
of baking.

It has been shown that the thermal destruction of the vitamins follows first-
order kinetics, i.e.

In C,/C = Kt

where C,, is the initial vitamin concentration and C the concentration at time ¢. In
the above equation

K = Aexp(—E,/RT)
Where E, is the activation energy. Substituting and taking logs gives
Inln(Co/C) =InA—E/RT + Int

Thus the measured vitamin retention is expressed as In In (Co/C) and time and
temperature are expressed in terms of In ¢ and 1/T respectively.

The centre point of the design and an appropriate value for the + 1 level were
decided by the investigator. It was then possible to generate the transformation
equation. For example in the case of baking time the real value at the centre point
was 9.7 min and the + 1 level was 12.2 min.

The transformation equation takes the general form

X=B+Clnt

where X is the coded level of the time variable which will be used in the design and
subsequent analysis. B and C are constants. We thus have
0=B+Cln9.7
and 1 = B+ Cln12.2

Solving these two equations gives the appropriate transformation relationship:

X=—-984+433Int

Extrusion. A large proportion of the recent extensive research on extrusion cook-
ing utilizes response surface methods (RSM). Space precludes a detailed examina-
tion of specific examples. A very good discussion of the applicability of central
composite rotatable designs to extrusion cooking is given by Olkku and Hag-
qvist.2® This paper includes examples of the use of RSM to model the extrusion
processing of barley, wheat, and rye flours. Another excellent example of the
use of RSM to optimize extrusion process variables is given in the case of soya
extrusion by Frazier ef al.2%

;: M. A. Connor and K. P. M. Keagy, Cereal Chem., 1981, 58, 239.
e J. Olkku and A. Hagqvist, J. Food Eng., 1983, 2, 105.
. P.J. Frazier, A. Crawshaw, N. W. R. Danicls, and P. W. Russell-Eggit, Food Eng., 1983, 2, 79,
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3 Evolutionary and Sequential Methods

Evolutionary Operation (EVOP).——Evolutionary operation (generally termed
EVOP for convenience) is as much a management philosophy as a statistical tech-
nique. It is described in detail in the book by Box and Draper.?” An optimization
exercise carried out in the laboratory or pilot plant will normally be only partly
applicable to a full-scale process. The EVOP approach is to make small systematic
changes in the full-scale process. The results are then analysed and decision
variables are altered in the direction which it is predicted will most improve the
process. The changes are sufficiently small to preclude the production of unsale-
able product. The statistical designs used are very straightforward so production
personnel are directly involved in the exercise, which is a continuous process rather
than a project of limited duration.

Most frequently 2? or 2? factorial designs are used with the current process
being taken as the centre point. In view of the fact that the ‘experiment’ is run by
process operators it is generally considered that a design involving more than two
variables will be too demanding and result in a negative reaction from the person-
nel involved. The experimental cycle is repeated a number of times, the exact
number depending upon the significance of the changes that are being detected.

The approach can also be applied to the case where the responses are ranked
rather than evaluated quantitatively.?®2°

Simplex Methods.—A simplex is a figure in n dimensions with n + 1 vertices. Thus
in two dimensions it is a triangle and in three dimensions a tetrahedron. In the
basic simplex approach the responses are measured at the vertices and a new sim-
plex is created by elimating the worst vertex by reflection through the centroid of the
remaining vertices. A simple example of the early stages of this approach is shown
in Figure 4.3 Here the gel strength of a blend of the three polysaccharides guar,
locust bean gum, and carrageenan is being measured. Although there are three
ingredients the dimensionality of the problem is reduced to two by giving all
formulations tested the same total cost. That is to say the relationship

4X, +2X, + X, =27

is obeyed where X, X,, and X, are the concentrations of carrageenan, locust bean
gum, and guar gum respectively in g I~ *. (At the time of writing these relative costs
would not be realistic.) It is clcar that a quantitative evaluation of the response at
the vertices is not required; all that is necessary is that the worst response is identi-
fied. 1t has been suggested that for this reason the simplex approach would be use-
ful in product development since it is far easier for a sensory panel to sclect one
product from a series than quantitatively to evaluate or rank all of them.?' How-
ever, an attempt in our laboratory to hit a target ice cream formulation starting

7 G. E. P. Box and N. R. Draper, ‘Evolutionary Operation’, Wiley, New York, 1969.

28 A Kramer, Food Technol., 1964, 19 (1), 37.

2% A. Kramer and B. A. Twigg, ‘Quality Control for the Food Industry’, 3rd Edn. AVI, Connecticut,
1970, Chapter 16.

3 J.Y. Y. Lee, ‘Optimisation of a Gel Formulation by Simplex and Response Surface Methods’, BSc.
Thesis, University of Nottingham, Faculty of Agricultural Science, 1984.

' J.R. Mitchell, Food Manuf., 1983, 58 (8), 27.
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Figure 4 The early stages of a simplex, run experimentally, to determine an optimum gel blend
SJormulation. Although the blend contains the three polysaccharides, carrageenan,
locust bean gum, and guar gum, the use of the constant-cost constraint discussed in
the text reduces the dimensionality of the problem to 2. The numbers (i)y—(iii)
correspond 1o the progress of the optimization procedure and the arrowed lines show
the successive reflections. The next move will trespass into a region of negative guar
concentration, which is experimentally inaccessible, so a decision is now required. The
numbers at the vertices are F.I.R.A. gel strengths obtained for a 30° paddle turn. The
blends have been autoclaved at 121.1°C for 60 min prior to measurement

(Adapted from J. Y. Y. Lee, BSc. Thesis, University of Nottingham, 1984)

from random levels of four ingredient variables using this approach was not
successful.

There have been extensive modifications of the basic simplex idea. These have
aimed at speeding up the search and dealing with the problem, illustrated in Figure
4, of what to do when the next vertex requested by the algorithm trespasses into a
forbidden region. Examples include the modified simplex of Nelder and Mead,??
where expansion and contraction steps are included if the reflected vertex is respec-
tively the best or the worst of the new simplex. Trespassing into forbidden regions
is handled by assigning a very unfavourable value of y to that region, when a con-
traction into the allowed area will automatically follow. In the super modified sim-
plex of Routh ez a/.*? a second-order polynomial is fitted to the responses at the

32 J A.Nelder and R. Mead, Comput. J., 1965, 7, 308.
> M. W. Routh. P. A. Swartz, and M. B. Denton, Anal. Chem., 1977, 49, 1422.
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centroid, the worst, and the reflected vertices. If the maximum of this curve lies
between the worst and reflected vertices, then this is taken at the new simplex
vertex; if, however, the curve is concave upward then the vector joining the worst
and reflected vertices is extended by an appropriate interval. If a boundary is
transgressed then the point where the vector crosses the boundary is taken as the
new vertex. Nakai** compared a number of different optimization techniques by
evaluating the efficiency with which they found the maxima or minima of surfaces
described by second-order polynomials containing three or five variables. Overall,
a modified super simplex algorithm performed best. This algorithm followed the
approach by Routh et al.>? described above, with the addition of a subprogram of
quadratic factorial regression analysis to calculate new vertices at various stages in
the process. To improve the efficiency further Nakai ef al.>® added a graphical
mapping procedure. It is claimed that the mapping super simplex procedure has
been applied to more than 20 food processing experiments and has markedly
improved the efficiency of research. Most experiments on food analysis and
processing have been optimized within 25—35 iterative experiments depending on
the number of factors.

One of the few examples of the application of the simplex method to a baked
product is reported by MacDonald and Bly.?® The objective of the investigation
was to determine optimum combination of four emulsifiers (monoglycerides, sor-
bitan monostearate, polysorbate 60, and glyceryl lactopalmitate) for cake mix
shortenings. Initially a designed experiment was carried out in which the four
emulsifiers could take one of three levels where each level was a percentage of the
total weight of the shortening—emulsifier mixture. This latter total weight was kept
constant. Cakes were evaluated for volume (measured by seed displacement),
volume index (the sum of cake height measured at three points), symmetry index,
grain, and texture. Total score was obtained as sum of grain, volume, and texture.
A second-order polynomial [equation (1)] was fitted for each of the responses.
Initially an attempt to determine the optimum ingredient combination region was
made by constructing a series of two-way tables for each of the responses, i.e. two
of the independent variables were kept constant and the response was tabulated
for a range of combinations of the other two independent variables. Minimum
standards for each response were decided on and areas of unacceptable results
were eliminated in turn. Hence a region of acceptable formulations suitable for
further examination was attained. (This is a manual method of solving the prob-
lem discussed in the Appendix.) Having determined a near optimum formulation
in this way, a simplex design was then employed to refine the optimum further.
Thus a decision was made as to the scale length for each of the four emulsifiers and
the size of the simplex was defined. A five-point simplex was then constructed and
five cakes were baked corresponding to the emulsifier levels at the vertices. The
worst cake as judged by total score was eliminated and a new formulation pre-
dicted. Clearly at this stage each additional experimental run consisted of baking
one cake alone since data for four of the simplex points were known. An optimum
formulation was arrived at after eight experimental trials.

34 8. Nakai, J. Food Sci., 1982, 47, 144.
3% S Nakai, K. Koidei, and K. Eugster, J. Food Sci., 1984, 49, 1143,
¢ 1. A. MacDonald and D. A. Bly, Cereal Chem., 1966, 43, 571.
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Appendix: An Example of the Determination of the Optimum Parameters from the
Response Surface Model Using Standard Numerical Algorithms

A number of standard numerical packages are now available for the minimization
or maximization of a non-linear function involving several variables, with con-
straints (Saguy er al.'*). One such routine which appears particularly well suited to
the problem is the NAG (FORTRAN) routine EO4UAF.3” In this study this rou-
tine is used to optimize a dry mix formulation.

The NAG routine EO4UAF employs a method using sequential augmented
Lagrangian multipliers*®*® which are successively iterated with the aid of a
‘penalty parameter’ until a minimum is found. The gradient of the augmented
Lagrangian functions is estimated by finite differences during the iterations.

Mather*® used a conventional central composite design to model a commercial
dry cake mix. In addition to volume (which was measured as an averaged height),
air cell size, air cell size consistency, colour, and firmness were evaluated ona 1—5
scale. The results were expressed in terms of second-order pelynomial models,
non-significant terms being eliminated. The optimization approach used was to
maximize one response within constraints placed on the coded levels of the ingredi-
ent variables and the other responses. The question considered was: what is the
formulation for the sponge mix that gives the greatest volume for the same total
ingredient cost as the current formulation? The appearance and texture of the
sponge must be satisfactory. We now seek to obtain the optimum formulation
using the standard package EO4UAF.

The constraints

—1<X,<1(i=1-6) (A1)

(where X, X,, X,, X, X,, and X¢ are the coded levels of flour, sugar, fat, dextrose,
salt, and cornflour respectively) confine the six ingredient variables to a range
where the second-order polynomial might be expected to give a reasonable rep-
resentation of the true response. The centre point of the design (X, =0), . ,_,
corresponds to the currently used formulation.

Cost will be a linear function of the coded ingredient levels and the condition
that the cost of the new optimum formulation is the same as the original formula-
tion is given by

0.375X, + 0.88X, + 0.52X, + 0.0277X, + 0.0017X, + 0.040X, = 0 (A2)

37 NAG Fortran Library Manual, 1978. Numerical Algorithms Group, Banbury Road, Oxford, UK.

3 P.E. Gilland W. Murray, *Numerical Methods for Constrained Minimisation’, Academic Press, New
York, 1974,

>* W. Murray, in ‘Optimisation in Action’, ed. L. C. W. Dixon, Academic Press, New York, 1976,
Chapter 12.

“®S. Mather, ‘Optimisation of a Sponge Mix Formulation’, BSc. Thesis, University of Nottingham,
Faculty of Agricultural Science, 1985.
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It was decided that the product would be satisfactory if the following conditions
held:

air cell size > 3.0

3.0< air cell size consistency < 4.5
firmness > 3.0

colour > 3.0

In terms of the response surface model these conditions can be expressed respecti-
vely by equations (A3)—(A6):

0.056 + 0.27X, + 0.42X, —0.34X, X, > 0 (A3)
3.0 < 4.01 —0.32X,7 —0.23X,2 —0.32X,2 —0.41X,X, + 0.34X,X, < 4.5 (A9)
0.22 + 0.72X, —0.39X, > 0 (AS)
0.17 + 0.22X, + 0.23X, —0.28X,X, > 0 (A6)

The volume response y, (measured as an averaged height) is given by

¥y = 1.057 + 0.098.X, + 0.053X, —0.092X,? —0.067X,2
+0.113X, X, —0.052X,X, (A7)

The problem is thus defined as maximizing y, subject to the conditions A1—AG.

For the NAG routine EO4UAF, equation (A1) for i = 1—6 is supplied as the
fixed bounds, (A2) as an equality constraint, equations (A3), (A5), and (A6) as
inequality constraints and (A4) as a range constraint. Equation (A7) has to be
rearranged slightly since EO4UAF minimizes rather than maximizes a function
FC; this is simply done by changing positive coefficients for negative (and vice
versa):

FC = —1.057 — 0.098X, — 0.053.X, + 0.092X,2 + 0.067 X, — 0.113X, X, + 0.052X,X,

The user has to supply standard workspace parameters etc., a starting point (for
this case a value for the X, of 0 was chosen, corresponding to the original formula-
tion), and also has to specify the accuracy in the variables X, to which the solution
is required (for this example, to two decimal places).

A satisfactory minimization was obtained after less than 2 seconds CPU time on
the Cambridge University IBM 3081 Model B. The following values for the para-
meters were obtained:

yy (volume) = 1112
X, (lour) = 0.044
X, (sugar) = —0.588
X, (fat) = 0893
X, (dextrose) = —0.145
X (salt) = 1.000
X, (cornflour) = 1000

where the value for y, corresponds to an increase in volume (averaged height) of
ca. 5.2% as compared with the original formulation.
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Although we have used a numerical package (EO4UAF) originally designed for
mainframe computers, it is to be expected that such routines will be available on
popular microcomputers in the near future: indeed many NAG routines arc
aiready available for the IBM Personal Computer. This availability will no doubt
enhance the general application of such procedures to similar optimization prob-
lems in the food industry.
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The Way Ahead: Wheat Breeding for Quality Improvement

By P. R. Day, J. Bingham, P. I. Payne, and R. D. Thompson
PLANT BREEDING INSTITUTE, MARIS LANE, TRUMPINGTON, CAMBRIDGE
CB22LQ, UK

1 Introduction

At a time of cereal surplus in the UK, wheat producers face the challenge of
increasing efficiency and reducing costs, and of providing a product finely tuned to
the needs of the marketplace and the end user. Quality wheat is used principally by
the breadmaking industry, which sets the standards that plant breeders strive to
meet. Breadmaking currently uses 3.8 mt, biscuits 0.6 mt, and other 1.0 mt of grain
per year. Millers and bakers require a stable, assured supply of inexpensive grain
of high specific weight and good milling texture that is low in a-amylase. This grain
must have a high content of endosperm proteins that give bread doughs the crucial
visco-elastic properties that bakers depend on. At the same time, breeders have to
attend to the producers’ need for high grain yield, resistance to lodging, and ability
to resist the depredation of pests, diseases, and climatic extremes. Until fairly
recently, UK breadmaking grists were very dependent on imports of high quality
North American hard red wheat. For example, in 1970 home-produced wheat
made up less than 30% of the grists. Progress in breeding and growing better UK
wheat varieties,' and improvements in breadmaking technology, have reduced im-
ports so that in 1984 they made up only 20% of UK grists, and several bakeries are
regularly producing white bread from 100% home-grown flour. North American
wheat is now used principally to make wholemeal bread, although even the need
for this may be reduced by gluten supplementation. In this paper, we review the
major problems faced by breeders whose objective is to increase the quality of
home-produced grain. We discuss work in progress to find solutions and speculate
on the likely shape of the developments to come.

2 The Basis of Quality

Milling Texture.—For breadmaking, millers require wheat with a hard endosperm
which resists fracturing across the dehydrated protoplasm because of strong
adhesion between protein and starch. When cleavage occurs mainly along the lines
of the cell walls, large, regular shaped particles are formed which make for a free-
running flour. During milling, the starch granules tend to remain embedded in
the protein matrix, and so become damaged, more so than in a soft milling wheat.

! J. Bingham, J. A. Blackman, and R. A. Newman, ‘Wheat. A guide to varieties from the Plant Breeding
Institute,’” National Seeds Development Organisation, 1985, 80 pp.
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