
Abstract Single-valued hydrodynamic coefficients of a
rigid particle can be calculated from existing theories and
computer programs for either bead models or ellipsoids.
Starting from these coefficients, we review the procedures
for the calculation of complex solution properties depend-
ing on rotational diffusion, such as the decays of electric
birefringence and fluorescence anisotropy. We also de-
scribe the calculation of the scattering form factor of bead
models. The hydrodynamic coefficients and solution prop-
erties can be combined to give universal, shape-dependent
functions, which were initially intended for ellipsoidal par-
ticles, and are extended here for the most general case. We
have implemented all these developments in a new com-
puter program, SOLPRO, for calculation of SOLution
PROperties, which can be linked to existing software for
bead models or ellipsoids.

Key words Hydrodynamics programs · Bead modelling ·
Fluorescence · Birefringence · Scattering

1 Introduction

The solution properties of macromolecules have tradition-
ally been valuable sources of information on the size and
shape of biological macromolecules, and interest in them
has been increasing over the years (Harding 1995). The
1970’s and 80’s saw the development of optical and electro-
optical techniques that yield properties quite sensitive to
macromolecular size and conformation, and more recently
in the 90’s, the classical technique of ultracentrifugation is

showing a renaissance owing to emerging, new instrumen-
tation.

Theories and computational tools are required for the
analysis or prediction of solution properties. For the large
family of hydrodynamic properties, bead modelling was
proposed as an approach enabling the representation of
rigid shapes of arbitrary complexity (Bloomfield et al.
1967). Then, rigorous theories and computational proce-
dures for the hydrodynamics of bead models were devel-
oped (García de la Torre and Bloomfield 1977, 1981;
García de la Torre 1989, 1992) and recently the computer
software HYDRO for the calculation of the hydrodynamic
coefficients has been published (García de la Torre et al.
1994a).

An alternative theoretical and computational approach
for rigid particles is based on the representation of the mac-
romolecular shape by a triaxial ellipsoid with three distinct
semiaxes (Harding and Row 1982, 1983; Harding 1989,
1994). Although the models that can be represented by 
this “whole body” approach are much simpler compared
with the bead approach, unique structures could be pre-
dicted by combination of three measurements together 
to (i) avoid the problems of assignment of a value for the
“molecular hydration” (i.e. the proportion of associated
solvent) (ii) to provide a unique pair of semi-axial ratios
which define an ellipsoid. A suite of four FORTRAN 
based software algorithms (ELLIPS1, 2, 3 & 4) has also
been developed for this type of modelling (Harding et al.
1996).

In connection mainly with the hydrodynamic theory of
ellipsoids, it has been shown that some combinations of
hydrodynamic properties can thus be formulated in such a
way that they are explicit functions only of the shape of
the particle: we now call these “Universal shape func-
tions”. These include the viscosity increment ν (Simha
1940), the Perrin “frictional ratio due to shape” function P
(Perrin 1936; Rowe 1977; Squire and Himmel 1979), flu-
orescence depolarization anisotropy relaxation time ratios
(Small and Isenberg 1977), the so-called harmonic mean
rotational relaxation time ratio (see e.g., Squire 1970) and
the “reduced” radius of gyration function G (Harding
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1987). For their experimental measurement these parame-
ters still require knowledge of the volume (or equivalent
parameters) of the macromolecule (V ) and hence the de-
gree of solvent association or “hydration” of the macro-
molecule. However by combining two hydrodynamic
properties together, additional Universal shape functions
can be generated in which the volume (and hence hydra-
tion) requirement is removed. A well know example is the
Scheraga-Mandelkern (1953) parameter, and various other
combined which are more sensitive to shape have subse-
quently been formulated, the most sensitive of which gen-
erally involve combination of intrinsic viscosity measure-
ments with rotational hydrodynamic parameters, although
the latter can be more difficult to measure.

Some modern optical or electro-optical techniques,
such as transient electric birefringence or fluorescence po-
larization anisotropy decay, monitor the rotational hydro-
dynamics or Brownian dynamics of the macromolecular
particle in a somehow complex way. The rotational coef-
ficients or relaxation times provided by bead or ellipsoidal
models are necessary but not sufficient for the prediction
of the time-dependence of properties observed by those
techniques. The theory relating those techniques and the
rotational quantities was first available for ellipsoids
(Ridgeway 1966, 1968; Small and Isenberg 1977), and 
also for the most general case of an arbitrary shape (We-
gener et al. 1979; Belford et al. 1972). In our opinion, how-
ever, the various theories are scattered in the literature and
are not well connected to each other. Furthermore, com-
puter programs such as HYDRO calculate rotational dif-
fusion coefficients and relaxation times, but not the full de-
cays.

Thus, one of the main purposes of this paper is to sum-
marize in a comparative review the theories for rotational
diffusion as observed in time-dependent birefringence or
anisotropy, and also to provide the experimentalist or
practically-minded user with a new computer program,
SOLPRO (named after ‘SOLution PROperties’). This pro-
gram allows the prediction of the time-dependent proper-
ties. The rotation-containing shape-dependent functions
have also been generalized for the various types of rota-
tional coefficients and relaxation times. By the way, we 
include in SOLPRO a most important non-hydrodynamic
solution property, namely the form factor in radiation scat-
tering, which gives the angular dependence of light or 
x-rays scattered by the macromolecule in solution.

As the second purpose of this paper, we have expressed
and programmed “Universal” functions which are explicit
functions of shape alone (as opposed to size and shape),
which can be obtained for bead models in the same way as
done for ellipsoids. In this way the two different ap-
proaches for modelling the conformations of rigid bodies
in solution – beads and ellipsoids – become completely
complementary and compatible.

Actually SOLPRO is a FORTRAN subroutine that ac-
cepts output from HYDRO and can be linked with it and
with user-supplied subprograms, but is has been pro-
grammed independently from HYDRO, and is distributed
separately.

2 Theory

2.1 Relaxation times of a general particle

The rotational Brownian dynamics of a rigid body is gov-
erned by its rotational diffusion tensor, Dr , (García de la
Torre 1981), which is a 3 × 3 symmetric matrix whose com-
ponents can be calculated using bead modelling (García de
la Torre and Bloomfield 1981).

From the fundamental work of Favro (1960), it is known
that the observable properties related to rotational motion
will involve up to five relaxation times, given by

τ1 = (6D − 2∆)–1 (1)

τ2 = (3 (D + D1))–1 (2)

τ3 = (3 (D + D2))–1 (3)

τ4 = (3 (D + D3))–1 (4)

τ5 = (6D + 2∆)–1 (5)

where D1, D2, D3 are the eigenvalues of Dr in ascending
order, and

D = (1/3) Tr (Dr) (6)

∆ = (D1
2 + D2

2 + D2
3 − D1 D2 − D1 D3 − D2 D3)1/2 (7)

Tr indicates the trace of a matrix, i.e., the sum of its diag-
onal components. Thus, τ5 is the shortest relaxation time,
and τ1 is the longest one.

As specified later for particular cases, the time-
dependencies, p (t), of observable properties are multiex-
ponential functions containing up to five components:

(8)

It is common to normalize properties to the zero-time
value, expressing

(9)

where

(10)

with ∑k ak = 1. The extraction of the five relaxation times, τk,
and their corresponding amplitudes ak or ck from an experi-
mentally measured p (t) or p*(t) decay is nearly impossible
owing to the well-known ill-conditioned nature of multiex-
ponential fitting. However, it is possible to characterize the
decay in terms of other relaxation times that can be more pre-
cisely determined (Carrasco et al. 1996). The most signifi-
cant one is the mean relaxation time, defined in general as:

(11)

and for the present case of a multiexponential function,
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Note, that τmean is actually a weighted arithmetic mean of
the five relaxation times with weights ak . Another charac-
teristic time is the initial relaxation time, defined as

(13)

which gives the initial slope of the p*(t) curve. In the ter-
minology of light scattering, τini is the reciprocal of the
first cumulant. For multiexponential decays,

(14)

Thus, τini is a weighted harmonic mean of the relaxation
times. It should be noted that, although the five relaxation
times τk are fixed for a given particle, τini and τmean depend
on the amplitudes, which in a turn are specific for each
property and depend on electric or optical properties. Thus,
in general, τini and τmean will be different for the various
observable properties; the mean relaxation time will not
necessarily be the same for say, electric birefringence and
fluorescence anistropy or polarization.

For a sphere with radius a and volume V, all the τk re-
laxation times (including τini and τmean) reduce to a single
value, denoted as τ0, and given by

(15)

For the sphere, Dr, 0 = kT /8π η0 a3, where kT is Boltz-
mann’s factor, and η0 is the solvent viscosity, so that τ0 is
proportional to the volume,

(16)

The rotational relaxation times described so far are ap-
plicable to the relaxation of properties related to second-
rank tensors or second Legendre Polynomials. These in-
clude transient birefringence or dichroism, fluorescence
anisotropy decay and depolarized dynamic light scatter-
ing. Some years ago, the technique of dielectric dispersion
was used for characterization of rotational motion. This
technique is related to the orientational relaxation of the
first Legendre polynomial of the angle. Brownianly trav-
elled by the dipole moment. Thus, it involves only three
relaxation times, ρl , which differ from the τi’s. They are
given by

ρl = (3Dr − Dl)
–1 l = 1, 2, 3 (17)

As the dielectric dispersion technique is not commonly
used nowadays, we shall make no further developments on
the ρi’s. Now we just mention that in the case of a spher-
ical particle the three values coincide and are equal to

(18)

so that

ρ0 = 3τ0 (19)

ρ η
0
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(Small and Isenberg 1977). It is worth noting that histori-
cally workers have referred to these relaxation times (ρl
and ρ0) as just “rotational relaxation times”) (see Small
and Isenberg 1977, Van Holde 1985 and Harding 1995 and
references cited herein) although the definitions according
to Eqs. (1)–(5) and (15) are actually more general.

2.2 Harmonic mean relaxation time

Owing to convention or historical reasons, rotational dy-
namics have often been characterized in terms of a single
value, the “harmonic relaxation mean time”. For a triaxial
ellipsoid (in general, for a triaxial body) there are three
main axes (a, b, c) which coincide with the principal axes
of rotational diffusion. The corresponding rotational dif-
fusion coefficients Da , Db , Dc coincide with the eigenval-
ues D1, D2, D3. Relaxation times for each of these axes
may be defined by analogy with the τ − D relationship for
spheres or axysymmetric particles:

(20)

and the same holds for b and c. Then, the harmonic mean
relaxation time, τh , is defined as

(21)

These definitions can be elaborated further in terms of the
quantities presented in the preceding section. It is evident
that

(22)

or, more compactly,

(23)

where Dr is, simply speaking, the mean rotational diffu-
sion coefficients or, more precisely, the mean value of the
eigenvalues of Dr , as defined in Eq. (1). It is interesting to
note that as the trace of a tensor is an invariant, τh can be
obtained from the diagonal components of Dr in any system
of axes, without previous calculation of eigenvalues.

Owing to the peculiar symmetry shown by the five τk’s,
it is easily seen that

(24)

so that τh is actually an unweighted harmonic mean of the
τk’s. It will be different in general from the τini (Eq. (14))
relaxation time which is experimentally accessible for the
various time-dependent properties: this is because the lat-
ter is actually weighted by the component amplitudes (ak
or ck). Nonetheless, τh can be used as an approximation 
for τini or even it might coincide with it in some special
cases.
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Looking again at the expressions for the τk’s, we fur-
ther find an alternative and even simpler relationship: 
τh is the harmonic mean of the longest and shortest relax-
ation times:

(25)

2.3 Electric birefringence and dichroism decays

For many years, the decay of electric birefringence or 
dichroism had been interpreted in terms of the theoretical
results for revolution or asymmetric, triaxial ellipsoids
(Ridgeway 1966, 1968). The problem for a general rigid
body of arbitrary shape was solved by Wegener et al.
(1979) who obtained for the birefringence decay, ∆n (t), an
expression of the type

(26)

with amplitudes

c1 = (3/4) (c/M)2 (α11 − α22) (χ11 − χ22) − (√–
3/4) (bc/M2)

· [(α11 − α22) (3χ33 − Tr χ) + (χ11 − χ22) (3α33 − Trα)]
+ (1/4) (b/M)2 (3χ33 − Tr χ) (3α33 − Trα) (27)

c2 = 3α23 χ23 (28)

c3 = 3α13 χ13 (29)

c4 = 3α12 χ12 (30)

c5 = (3/4) (c/M)2 (α11 − α22) (χ11 − χ22) + (√–
3/4) (bc/M2)

· [(α11 − α22) (3χ33 − Tr χ) + (χ11 − χ22) (3α33 − Trα)]
+ (1/4) (b/M)2 (3χ33 − Tr χ) (3α33 − Trα) (31)

where

χ lm = µl µm /(kT )2 + εlm /kT (32)

εlm and αlm being, respectively, the l, m component
(l, m = 1, 2, 3) of the electrical and optical polarizability
tensors, ε and α, respectively, and µk are the component
of the electric dipole moment, µ. In Eqs. (27)–(31), 3 is
the direction in which the electric field is applied. The com-
ponents of ε and α must be expressed in the system of axes
defined by the eigenvectors of the rotational diffusion ten-
sor, Dr . In the above equations,

b = 3 (D3 − D) + 2 ∆ (33)

c = √–
3 (D1 − D2) (34)

M = 2 (∆ b)1/2 (35)

For the case of electric dichroism, the theoretical result
is exactly the same, with the only particularity that α de-
notes the intrinsic optical absorption tensor.

We particularize now for the case when the particle is
(or is approximately assumed to be) a triaxial body. Then
the main axes of rotational diffusion (Dr), optical polariz-
ability (α), electric polarizability and electric alignment
(χ) should coincide. In the axes of Dr , all the other tensors

∆n t c t
k

k k( ) exp( / )∝ −
=
∑

1

5
τ

1 1
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1 1
1 5τ τ τh

= +





have no off-diagonal components. As a consequence

c2 = c4 = c4 = 0 (αlm = χlm = 0 for l = m) (36)

and thus only two relaxation terms are involved in the 
birefringence decays

(37)

with a1 = c1/(c1 + c5), a5 = c5/(c1 + c5), c1 and c5 being given
by Eqs. (27) and (31). This biexponential result was pre-
dicted in the work by Ridgeway (1968) although its rigor-
ous validity was not rigorously stated in that work.

Finally we note that, as a computational trick, it is valid
to replace αlm and χlm in Eqs. (27)–(31) by the relative
traceless quantities α̂ lm and χ̂ lm defined by

α̂ lm = (αlm − δlm Trα) /Trα (38)

χ̂ lm = (χlm − δlm Trχ) /Trχ (39)

2.4 Time-dependent fluorescence polarization anistropy

The historic development of the theory for this property is
similar to that of electric birefringence. While theoretical
results were available for a long time for the particular case
of ellipsoids (Weber 1952, 1953) it was not until the work
of Belford et al. (1972) that the problem was solved for the
general, arbitrary particle. According to these authors, the
decay of polarization anisotropy is again a sum of five ex-
ponentials

(40)

where

c1 = (6/5) (F + G) /4 (41)

c2 = (6/5) φ2 φ3 ω2 ω3 (42)

c3 = (6/5) φ3 φ1 ω3 ω1 (43)

c4 = (6/5) φ1 φ2 ω1 ω2 (44)

c5 = (6/5) (F − G) /4 (45)

In the above equations, φl and ωl are the direction co-
sines of the absorbing and emitting dipoles, respectively,
with respect to the principal axes of rotational diffusion, and

(46)

(47)

These results are valid for a chromophore or fluorescent
probe rigidly attached to the macromolecular particle and
with the specific orientation given by the vectors ω and φ.
If the attachment is not rigid, but instead the probe expe-
riences local motion, the above results are not valid. One
case of some interest is that when the chromophore is rig-
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idly attached, but with an orientation that varies at random
from molecule to molecule. Then the amplitudes should be
averaged over all the possible orientations of the dipoles
ω and φ, keeping the condition that the angle between them,
δ, must be constant. The result (Chuang and Eisenthal
1972; Ehrenberg and Rigler 1972) is that the 5ck’s are iden-
tical, so that

(48)

with ak = 1/5, and therefore

(49)

(50)

Thus, for random orientation of the probe, the initial rate
in the decay gives the harmonic mean relaxation time,
(τini = τh for this case) while the area under the decay curve
gives the arithmetic mean, τmean.

2.5 Steady-state fluorescence depolarization

The steady-state anisotropy, r–, is calculated from the an-
isotropy decay function, r (t), as (Yguerabide 1972)

(51)

where i (t) is the time-dependent total fluorescence inten-
sity. In the case of a fluorophore with an homogeneous en-
vironment, this intensity decays monoexponentially,

i (t) = i0 exp (− t /τF) (52)

τF being the fluorescence life-time. Now, if r (t) is, in gen-
eral, a sum of exponential as in Eq. (8), then we have

(53)

with ak = ck /∑ ck . We define a reduced relaxation time,
τk* = (T /η0) τk , which depend only on the size and shape of
the molecule but not on the solvent viscosity, η0, nor the
temperature, T. In the Perrin-Weber plot, the reciprocal of
r– is plotted vs. T /η0. This function is:

(54)

For low values of the combined quantity T /η0 we express
1/r– as a Taylor expansion at T /η0 → 0
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One easily finds

(56)

where τ*ini = (T /η0)τini is the reduced initial relaxation time
(see Eq. (14)). Then, substitution of Eq. (56) into Eq. (55)
leads to

(57)

In the plot of 1/r– (or 1/p–−1/3, where p– is the steady-state
polarization) vs. T /η0, the initial slope, followed at suffi-
ciently low T /η0, gives τF /τ*ini . Alternatively, Eq. (57) can
be rewritten as

(58)

Thus, an extrapolation of the experimental value of the
quantity in the right hand side of Eq. (58) to T /η0 → 0
yields τini . It is interesting to note that the steady-state
measurement gives essentially the same information as the
initial decay in the dynamic, time-dependent experiment.
As indicated above, for a random distribution of the probe
chromophore, τini is the same as the harmonic mean relax-
ation time, τh , which is the result of the steady-state meas-
urement in such case.

Some care however needs to be used in terms of the 
experimental evaluation of τini or τh as noted above. For
historical reasons, representations for steady state fluores-
cence depolarization often refer to the “rotational relaxa-
tion time” (see end of section 2.1) i.e. the traditional equiv-
alent dielectric dispersion relaxation time,

ρh = 3τh (59)

Owing to this, the equation for anisotropy decay (with ran-
dom orientation) was written years ago as

r (t) = r0 exp (−3 t /ρh) (60)

as we read for instance in Van Holde (1971). Authors con-
cerned with properties other than dielectric relaxation for-
mulated

r (t) = r0 exp (− t /τh) (61)

(see, for instance Jablonsky 1961). It is interesting to note
that in the 1985 edition of the Van Holde’s book, the form
given in Eq. (61) has been adopted.

2.6 Static radiation scattering

In addition to the above quantities, we have included in the
bead model calculation a non-dynamic property, namely,
the form factor for scattering of light, X-rays or other elec-
tromagnetic radiation.

The angular dependence of radiation scattered by a system
of N scattering elements is given by the Debye equation
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where h is the angular variable,

h = (4π /λ) sin (θ /2) (63)

θ is the scattering angle, λ is the wavelength of the radia-
tion in the scattering medium. Fi (h) is the amplitude of the
radiation emitted by element i, and rij is the distance
between the elements i and j.

For a model composed of spherical scatterers, with ra-
dii σi , i =1, …, N, it has been shown that the form fac-
tor, defined as P (h) = I (h)/I (0) is given by (Diaz et al.
1993)

(64)
where

Pi (h) = [3 (sin (hσi) − hσi cos (hσi)) / (hσi)
3]2 (65)

and

Qij (h) = [Pi (h) Pj (h)]1/2 (sin (hrij) /hrij) (66)

σi being the radius of the i-th bead. Equations (64)–(66)
can be readily evaluated from the coordinates and radii of
the beads.

2.7 Universal shape functions

Physico-chemical parameters such as the intrinsic viscos-
ity [η] (ml/g), the sedimentation coefficient, s (s), the
translational diffusion coefficient, D (cm2/s), the radius of
gyration, Rg (cm) or rotational relaxation times τk (s) from
electro-optical properties or fluorescence depolarization
anisotropy (time dependent or steady state) are by them-
selves ambiguous functions of shape – that is they also de-
pend on the volume V of a macromolecule, and as noted in
Section 1 above this has led to the formulation of a num-
ber of Universal shape functions such as ν, P, G and the
rotational relaxation time ratios, τk /τ0 which are explicit
functions of shape only. For experimentally measuring
these, one still needs an estimate of V. Although for the 
G function from radius of gyration measurements, V can
be approximated by the anhydrous volume under certain
conditions (depending on the macromolecule, the density
of bound compared to free solvent and the nature of the
scattering radiation), there will be a considerable contri-
bution to V from molecular hydration or amount of solvent
associated with the macromolecule (chemically bound or
physically entrained). The volume V is actually more con-
veniently expressed by experimentalists as a specific vol-
ume vs (ml/g), where vs = v–+δ ρ0. v– is the partial specific 
volume (which refers to the anhydrous particle), δ is the
so-called “hydration” parameter expressed as “grams of
water (solvent) bound per gram of dry macromolecule”
(Tanford 1961). The symbol “w” is often used for δ (Squire
and Himmel 1979). ρ0 is the density of the hydrating 
solvent. v– can generally be measured accurately using 
densimetry (the limiting factor now being concentration
measurement) (Kratky et al. 1973), or can be estimated
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from the chemical composition (Perkins 1986). Typically
v– ∼ 0.73 ml/g for a protein and ∼ between 0.5–0.6 ml/g for
a saccharide. As is well known, δ is notoriously difficult
to measure with any precision at all and seems to be a strong
function of the measurement technique applied (Kuntz and
Kauzmann 1974). Values of between 0.2–0.35 have been
used as “typical” for proteins, although ∼ 0.5 has been sug-
gested as more representative (Squire and Himmel 1979).
This spectrum of possible values severely limits the preci-
sion with which a hydrodynamic model can be applied, and
has inspired the generation of compound Universal shape
functions (principally β, R, Ψk and Λk) where the experi-
mental requirement for V (or δ ) has been removed by com-
bining two hydrodynamic parameters together. The as-
sumption is made of course that V is the same for the par-
ticle in both types of measurement (sedimentation, viscos-
ity, fluorescence depolarization etc.).

With the Universal shape functions, we can therefore
distinguish two or three categories, whose main character-
istic is whether they depend or not (for their calculation
from experimental data) on the degree of hydration.

Firstly, there are some shape functions depending on
one solution property and the particle’s volume (ambigu-
ous; hydration-dependent).

• Viscosity increment, ν (Simha 1940; Saito 1951)

(67)

• Perrin function, P (Perrin 1936; Rowe 1977; Squire
and Himmel 1979)

(68)

• Rotational relaxation time ratios (Small and Isenberg
1977)

(69)

• G ratio for the square radius of gyration

(70)

Actually P in Eq. (68) is equal to the ratio of the friction
coefficient of the bead model to the friction coefficient of
a sphere having the same volume, given by 6π η0 a where
the radius of the equivalent sphere is a = (3V/4π)1/3. The
relation of P with the frictional ratio is discussed elsewhere
in this volume (Harding et al. 1996). In Eq. (69) τ0 is the
rotational relaxation time for birefringence or anisotropy
decay of a sphere with the same volume given by Eq. (16).
This definition can be applied also to the initial and mean
relaxation times specific of anisotropy or birefringence de-
cay (Eqs. (11) and (14)), and to the general, harmonic-
mean relaxation time (Eq. (24) or (25)).

Then, there are other shape functions involving two 
hydrodynamics properties (unambiguous, hydration-in-
dependent)
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• Translation + viscosity
– Scheraga-Mandelkern (1953) parameter

– Wales-Van Holde (1954; Rowe 1977) parameter

(72)

• Translation + rotation

(73)

• Rotation + viscosity

(74)

In previous work, Eq. (73) for Ψ (Squire 1970) and 
Eq. (74) for Λ (Harding 1980a; Harding and Rowe 1982)
were defined specifically for τh . A formally identical com-
bination has been formulated for the τk’s k =1− 5, and de-
noted as κi (Harding 1980b; Harding 1995). Now we in-
clude all the cases under the common notation Λk , includ-
ing the h, mean and ini values. Similarly, Ψ was previously
defined for τh exclusively. Later, functions ξk = (τ0/τk) P3

were introduced (Harding 1980b; Harding 1995). Using
the common notation Ψk , we see that ξk =Ψk

3.
Note there is a slight difference between the formula-

tions in terms of experimental parameters for the Ψk and
Λk given here and those from previous work referring spe-
cifically to Ψh and Λh (see e.g., Harding and Rowe 1982)
in that a factor of 3 in earlier representations is no longer
necessary. As noted in the above description of relaxation
times, for purely historical reasons previous work used
“traditional” rotational relaxation times (i.e. dielectric-
dispersion relaxation times), given in the case of a sphere
by Eq. (18), while to achieve compatibility with time re-
solved representations τh along with the other τk in Eqs.
(73) and (74), now refers to birefringence or fluorescence
relaxation times decays directly which for a sphere is 3
time smaller (Eq. (19)). The values of Ψh and Λh are of
course unaffected by the adoption of this new convention
(e.g. for a sphere Ψh =1, Λh = 2.5, as before). We propose
that this convention and convenient form of notation be
now adopted universally.

There is also a third, or intermediate, class of Univer-
sal shape function which are particularly useful for the 
representation of linear classes of macromolecule (e.g., nu-
cleic acids, polysaccharides, synthetic polymers) of vary-
ing degrees of flexibility. These shape functions depend on
one hydrodynamic property and the radius of gyration.
Therefore, for rigid, hydrated particles their use can be am-
biguous, depending on whether or not hydration is included
in the radius of gyration. We formulate these functions here
for the sake of completeness.
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• Flory (1953) P0 function (P in Flory’s notation)

(75)

• Flory (1953) Φ function

(76)

• Kτr function, previously used by Navarro et al. (1995)
for birefringence decay

(77)

For flexible, linear chain macromolecules, the best 
estimates for these Universal functions are P0 = 6.0,
Φ = 2.5 × 1023 (García de la Torre et al. 1984, and reference
cited herein for experimental results), and Kτr =1.51×1024.
For rigid macromolecules, these functions can be used as
shape indicators with the mentioned caution about hydra-
tion. For the simple case of a sphere, with Rg = (√–––

3/5) a, we
easily find P0 = 9.93, Φ = 9.23 ×1023 and Kτr = 5.42 ×1024.

3 Methods

3.1 Calling HYDRO: bead model, solution data 
and hydrodynamic coefficients

As a preliminary step, the user has to build a bead model
(Bloomfield et al. 1967; García de la Torre and Bloomfield
1977, 1981; García de la Torre 1989; García de la Torre
et al. 1994a) of the rigid structure of the particle. In prin-
ciple, the number of beads can be as large as desired. Ac-
tually, a large number of beads can be convenient to model
every detail in the particle shape; however it must be re-
called the CPU time grows roughly as N3. The bead model
will be described simply as a list of Cartesian coordinates
of the beads and their radii. The conventional working of
HYDRO predicts hydrodynamic parameters depending on
the shape AND size of the model, and so the bead model
has to reflect the shape AND size of the macromolecule:
absolute coordinates and radii are required. If however the
user is simply interested in the simpler case of the shape
of the molecule, and hence just the evaluation of the Uni-
versal shape functions via SOLPRO, only an arbitrarily
sized or scaled bead model is required, having just the de-
sired shape. In this case arbitrary units for the bead coor-
dinates and radii suffice.

HYDRO requests other solution data such as tempera-
ture and solvent viscosity, as well as the partial specific
volume of the macromolecule and its molecular weight.
Again, if only evaluation of the Universal shape functions
is required via SOLPRO, these additional data are not re-
quired, and dummy values should be given. Of course,
since SOLPRO also provides the option of evaluation of
all the rotational decays times, if the user wants these in
addition, this information is necessary along with absolute
bead coordinates and radii (in cm).
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A main program, written by the user, will either calcu-
late the coordinates and radii, or read them from a file,
along with the other solution data. All these values will be
placed in the FORTRAN data variables listed in the COM-
MON/DATA of subroutine HYDRO (García de la Torre
et al. 1994a). The statement CALL HYDRO will carry out
all the HYDRO calculations, with the result for the hydro-
dynamic coefficient placed in COMMON/PROPERTIES.
Nothing is new up to this point; this is instead the standard
use of HYDRO, which has not been modified for the
present work. For more details, consult the HYDRO 
Users Manual (García de la Torre 1994b).

3.2 Calling SOLPRO: time-dependent properties, 
form factor and shape-dependent functions

In the second step, the statement CALL SOLPRO in the
user’s main program will execute the calculation of time-
dependent properties, solution scattering and shape-
dependent functions. The transfer of data and results are
made by means of the following COMMON blocks, which
should be declared in the main program:

COMMON/BIREF/ALF(3,3), CHI(3,3), CB(5), SCB,
AB(5), TINIB, TMEANB, NTB, TB(500), BIR(500),
BIRN(500)
COMMON/FLUOR/PHI(3), OME(3), CF(5), SCF,
AF(5), TINIF, TMEANF, NTF, TF(500), ANI(500),
ANIN(500)
COMMON/SCATTER/NH, H(500), P(500)
COMMON/SHAPEFUN1/T0, TH, PERRIN, SIMHA,
TIT0(5), THT0, TINBT0, TMEBT0, TINFT0, TMEFT0
COMMON/SHAPEFUN2/G, PFLORY, PHIFLORY, 
BETASM, RR, TR(5), TRH, TRINB, TRMEB, TRINF,
TRMEF
COMMON/SHAPEFUN3/PSII(5), PSIH, PSIINB, 
PSIMEB, PSIINF, PSIMEF, RLAI(5), RLAH, RLAINB,
RLAMEB, RLAINF, RLAMEF

In COMMON/BIREF, the data for the birefringence cal-
culations are:

ALF, the optical anisotropy tensor, α in Eq. (27)
CHI, the electric alignment tensor, χ in Eq. (27)
NTB, is the number of values of time
TB, contains the values of time

and the results are:

CB(K), absolute amplitudes, ck in Eq. (26)
SCB, sum of absolute amplitudes
AB(K), normalized amplitudes, ak in Eq. (10)
BIREF, is the absolute birefringence for each time
BIREFN, is the birefringence for each time normalized to
the initial value, ∆n (t)/∆n (0)
TINIB, initial relaxation time, τini
TMEANB, mean relaxation time, τmean

In COMMON/FLUOR, the data for anisotropy calcula-
tions are:

PHI, the absorbing dipole moment, φ in Eq. (42)
OME, the emitting dipole moment, ω in Eq. (42)

and NTF and TF has the same meaning for fluorescence as
NTB and TB for birefringence, although they do not have
necessarily the same values.

The results are:

CF(K), absolute amplitudes, ck in Eq. (40)
SCF, sum of absolute amplitudes
AF(K), normalized amplitudes, ak in Eq. (10)
ANI, anisotropy decay, r (t)
ANIN, normalized anisotropy decay, r (t)/r (0)

TINIF and TMEANF are τini and τmean, the initial and mean
relaxation time for fluorescence, which in general will be
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Fig. 1 Two views of the bead model for human immunoglobulin
IgG3

Fig. 2 Input file with the data for the SOLPRO calculation. The 
upper part is the input for standard HYDRO, and the lower part is
specific for SOLPRO



essentially different from those measured in electric bire-
fringence or dichroism.

COMMON/SCATTER contains the data and results
from scattering calculations:

NH, number of values of h
H, array with the h values
P, array with the resulting P values

SOLPRO provides an ‘automatic’ mode for filling the val-
ues of time in the decays and the values of h in the scatter-
ing. If the user gives NTF = −1, the program will calculate
the fluorescence anisotropy decay for 101 values of time
from t = 0 through a maximum value tmax = 4τ1 where τ1 is
the longest relaxation time. This ensures that the normal-
ized decay covers nearly three decades. For birefringence
decay, setting NTB = −1 has the same effect. For scatter-
ing calculation, if the author gives NH = −1 or −2, the 
program will take 101 values of h between 0 y hmax. If
NH = −1, hmax = 5/Rg , useful for light scattering or low-
angle x-ray scattering, while if NH = −2, hmax = 2/σmin,
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where σmin is the radius of the smallest bead, that covers
the wide-angle scattering region.

In COMMON/SHAPEFUN1, COMMON/SHAPEFUN2
and COMMON/SHAPEFUN3 we have the results for
shape-dependent functions and other properties:

T0 is the relaxation time of the equivalent sphere, τ0 in
Eq. (15)
TH is the harmonic mean relaxation time, τh in Eq. (21)
SIMHA is the ν function in Eq. (67)
PERRIN is the P function in Eq. (68)
TIT0(K) is the τk /τ0 ratio in Eq. (69)
THT0 is the similar τh /τ0 ratio
TINBT0, TMEBT0, TINFT0 and TMEFT0 are the similar
τini /τ0 and τmean/τ0 ratios for birefringence and fluores-
cence
G is the G function in Eq. (70)
PFLORY is the P0 function in Eq. (75)
PHIFLORY is the Φ function in Eq. (76)
BETASM is the Scheraga-Mandelkern parameter β in
Eq. (71)
RR is the Wales-Van Holde R function in Eq. (72)

TR(K), TRH, TRINB, TRMEB, TRINF, TRMEF are the
Kτr functions in Eq. (77), based, respectively, on τk , τh ,
τini , τmean, the latter two for birefringence and fluorescence

Fig. 3 Edited output from SOLPRO. The three parts are the 
HYDRO output, the shape-dependent quantities and the decay and
scattering functions



PSI(K), PSIH, PSIINB, PSIMEB, PSIINF, PSIMEF are the
Ψ functions in Eq. (73), based, respectively, on τk , τh , τini ,
τmean, the latter two for birefringence and fluorescence.

RLA(K), RLAH, RLAINB, RLAMEB, RLAINF, 
RLAMEF are the Λ functions in Eq. (74), based, respec-
tively, on τk , τh , τini , τmean, the latter two for birefringence
and fluorescence.

4 Results

We present here an example of the use of SOLPRO, where
we calculate the properties of a bead model for immuno-
globulin IgG3 (Gregory et al. 1987). This model has been
used as an example of bead modelling in previous reviews
(García de la Torre et al. 1989, 1992). The model is dis-
played in Fig. 1. The input data for the calculations of this
model are presented in Fig. 2. In addition to the data re-
quired for HYDRO, we supply the additional values for 
birefringence, fluorescence and scattering as required by
SOLPRO, (we recall that all these data can be omitted if
one just wants the SOLPRO calculation of universal func-
tions). As this is just a computational example, we have
given arbitrary values to the spectroscopic and electro-
optic quantities, φ, ω, α and χ. Nonetheless, the model di-
mension and other solution quantities are real properties
of IgG3. In this example we have used the ‘automatic’
mode for t and h. The user supplied main program or the
sample supplied with SOLPRO will read the input file be-
fore calling HYDRO and SOLPRO.

The output file obtained from SOLPRO is shown in
Fig. 3. We note first the standard output for HYDRO, fol-

lowed by the values for the shape-dependent functions, and
finally we see the results for the fluorescence and birefrin-
gence decays and for the scattering functions. Actually, Fig.
3 is an edited form of the long SOLPRO output: for the sake
of brevity we have omitted in Fig. 3 the results derived from
the intermediate relaxation times, (τ2, τ3 and τ4) and we
have cut the tables of ∆n (t)/∆n (0), r (t)/r (0) and P (h).

The decays for birefringence and fluorescence of the
IgG3 model are shown in Fig. 4. The decay functions are
clearly multiexponential. The fluorescence anisotropy de-
cay shows the possibility of a change of sign in r (t) dur-
ing the decay to zero. The scattering diagrams are presented
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Fig. 4 Normalized decays of fluorescence, r (t)/r (0) (continuous 
line) and birefringence, ∆n (t)/∆n (0) (dashed line)

Fig. 5a, b Scattering function calculated for the bead model of
IgG3. a Low angle scattering. b Wide angle-scattering



in Fig. 5. The light-scattering or low-angle x-ray scatter-
ing diagram is in Fig. 5a, while Fig. 5b displays the 
wide-angle x-ray scattering diagram, showing the typical
minima and maxima in intensities observed at wider an-
gles.

5 Discussion

From the case example presented in the preceeding sec-
tion, it is clear that the combination of the new subroutine,
SOLPRO, with the existing HYDRO program, enables the
calculation of a great variety of solution properties. Using
just the geometrical data of the bead model (coordinates
and radii) it is possible now to calculate with SOLPRO not
only the simple properties supplied by HYDRO, but also
the various combination of properties and shape-dependent
quantities, and the scattering diagram. If the spectroscopic
and electro-optic quantities that determine electric bire-
fringence or dichroism, and fluorescence anisotropy are
also given, SOLPRO can be used to predict the time-decay
of these properties.

More details on the use of SOLPRO will be found in
the comments intercalated in the FORTRAN code. An 
ASCII computer file containing the SOLPRO subroutine
plus a typical main program, along with sample input 
and output data files will be freely available. The 
latest versions of both SOLPRO and HYDRO can be 
freely downloaded from the INTERNET Web page 
http://leonardo.fcu.um.es/macromol.
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