Cutting off the oxygen supply to serious diseases

A cancer cell
30 Jan 2012 11:43:45.997
A new family of proteins which regulate the human body’s ‘hypoxic response’ to low levels of oxygen has been discovered by scientists at Barts Cancer Institute at Queen Mary, University of London and The University of Nottingham.

The discovery has been published in the international journal Nature Cell Biology. It marks a significant step towards understanding the complex processes involved in the hypoxic response which, when it malfunctions, can cause and affect the progress of many types of serious disease, including cancer.

The researchers have uncovered a previously unknown level of hypoxic regulation at a molecular level in human cells which could provide a novel pathway for the development of new drug therapeutics to fight disease. The cutting-edge work was funded by the Biotechnology and Biological Sciences Research Council (BBSRC).
Click here for full story

Proteins are biochemical compounds which carry out specific duties within the living cell. Every cell in our body has the ability to recognise and respond to changes in the availability of oxygen. The best example of this is when we climb to high altitudes where the air contains less oxygen. The cells recognise the decrease in oxygen via the bloodstream and are able to react, using the ‘hypoxic response’, to produce a protein called EPO. This protein in turn stimulates the body to produce more red blood cells to absorb as much of the reduced levels of oxygen as possible.

New drugs to fight cancer

 
This response is essential for a normal healthy physiology but when the hypoxic response in cells malfunctions, diseases like cancer can develop and spread. Cancer cells have a faulty hypoxic response which means that as the cells multiply they highjack the response to create their own rogue blood supply. In this way the cells can form large tumours. The new blood supply also helps the cancer cells spread to other parts of the body, called ‘metastasis’, which is how ultimately cancer kills patients.

The scientists have identified a new family of hypoxic regulator proteins called ‘LIM domain containing proteins’ which function as molecular scaffolds or ‘adapters’ bringing together or bridging two key enzymes in the hypoxic response pathway, namely PHD2 and VHL. Both of these are involved in down-regulating the master regulator protein called Hypoxia-inducible factors (HIF1). The research has shown that loss of LIMD1 breaks down the bridge it creates between PHD2 and VHL and this then enables the master regulator to function out of control and thus contribute to cancer formation.

Molecular Oncologist, Dr Tyson Sharp, who carried out research for the project at The University of Nottingham’s School of Biomedical Sciences, said: “The results from this research represent a significant advancement in our understanding of precisely how the hypoxic response works. It will help researchers develop better drugs to fight cancer and also other human diseases that are caused by low levels of oxygen within our body such as anaemia, myocardial infarction (heart attack), stroke and peripheral arterial disease. Further work in this fascinating area is now continuing at Barts Cancer Institute at Queen Mary University of London and will form the basis of a whole new additional research theme for my group.”

The research is published in a paper entitled The LIMD1 protein bridges an association between the prolyl hydroxylases and VHL to repress HIF-1 activity.

 

— Ends —

Notes to editors: The University of Nottingham, described by The Sunday Times University Guide 2011 as ‘the embodiment of the modern international university’, has award-winning campuses in the United Kingdom, China and Malaysia. It is ranked in the UK's Top 10 and the World's Top 75 universities by the Shanghai Jiao Tong (SJTU) and the QS World University Rankings. It was named ‘the world’s greenest university’ in the UI GreenMetric World University Ranking 2011, a league table of the most environmentally-friendly higher education institutions.

The University is committed to providing a truly international education for its 40,000 students, producing world-leading research and benefiting the communities around its campuses in the UK and Asia. Impact: The Nottingham Campaign, its biggest ever fund-raising campaign, will deliver the University’s vision to change lives, tackle global issues and shape the future. For more details, visit: www.nottingham.ac.uk/impactcampaign

 More than 90 per cent of research at The University of Nottingham is of international quality, according to the most recent Research Assessment Exercise, with almost 60 per cent of all research defined as ‘world-leading’ or ‘internationally excellent’. Research Fortnight analysis of RAE 2008 ranked the University 7th in the UK by research power.

The University’s vision is to be recognised around the world for its signature contributions, especially in global food security, energy & sustainability, and health. The University won a Queen’s Award for Higher and Further Education in 2011, for its research on global food security. More news from the University at: www.nottingham.ac.uk/news

Story credits

More information is available from Dr Tyson Sharp, Barts Cancer Institute, Queen Mary University of London : +44 (0)20 7882 3848 t.sharp@qmul.ac.uk or Kerry Noble, Communications Manager at Queen Mary, University of London, on +44 (0)20 7882 7943, k.noble@qmul.ac.uk 

 

Additional resources

No additional resources for this article

Related articles

Revolutionising the early detection of cancer

Published Date
Monday 23rd January 2012

Bowel cancer screening proven to save lives

Published Date
Friday 9th December 2011

University scientist wins major cancer research award

Published Date
Friday 15th July 2011

Scientists bring cancer cells back under control

Published Date
Thursday 13th January 2011

Fighting bacteria's strength in numbers

Published Date
Thursday 17th May 2012

Media Relations - External Relations

The University of Nottingham
YANG Fujia Building
Jubilee Campus
Wollaton Road
Nottingham, NG8 1BB

telephone: +44 (0) 115 951 5798
email: pressoffice@nottingham.ac.uk