Predatory bacteria that engineer portholes and paint frescoes in harmful bacteria

   
   
445x124
02 Oct 2017 15:30:00.000

PA225/17

A microbiological mystery of how one bacterium could invade another and grow inside it without breaking the other bacterium instantly has been illuminated by scientists at the University of Nottingham and Indiana University in the USA.

The Nottingham scientists are investigating the invasive predatory bacteria Bdellovibrio bacteriovorus as a potential therapeutic to kill antibiotic-resistant pathogenic bacteria. The Indiana scientists are investigating what bacterial cell structures are made of and how they are built. To do this they have developed and used fluorescent D amino-acids (FDAAs) – coloured substitutes for natural substances found in bacterial cell walls. This was combined with super-resolution microscopy to great effect in a new paper published today in Nature Microbiology.

The teams have joined forces and discovered that the invading Bdellovibrio bacterium forms a tiny reinforced molecular ‘porthole’ in the wall of the host bacterium, squeezes through this and then seals it up from the inside. This process is like cutting and welding a porthole on a ship but on a molecular-scale.

Click here for full story

Professor Liz Sockett from the University of Nottingham said: “The bacteria being invaded are 100 million times shorter than a ship like the Queen Mary 2, and the invading bacteria are 500 million times narrower. The materials used for the welding aren’t metal of course, but are natural D-amino-acids. These are mirror image forms of the ‘L’ amino-acids found in the proteins of foods and of our bodies. 

“We discovered a second process where the invading bacteria effectively ‘plaster’ the inside of the bacterium they are invading, again using the D amino-acids. This makes the inside of the bacterium a more reinforced home for the Bdellovibrio to live inside. This is important as a previous paper showed that the invaded bacterial walls are initially rounded-up and weakened early in the invasion process.” 

Erkin Kuru, a PhD student at the time, suggested to Liz during a lecture visit to Indiana, that she use coloured FDAAs to label the two different bacteria as the predators attacked. Adding a new colour just as invasion was beginning and later as it progressed, replaced the natural amino-acids being used and shone a new coloured light on how predation works. 

FDAAs showed what was happening at each stage and gave the team a ‘eureka moment’ when they saw that the predatory bacteria make a ‘porthole’ with a central pore surrounded by a reinforcing ring containing D amino-acids. Bdellovibrio squeeze through this pore and fill it in with more D-amino-acid containing material so the invaded bacteria don’t burst and all their internal cell contents can be privately eaten by the predators without leaking away to the outside.

As this is happening the predatory bacteria go on to add more FDAAs in all around the wall of the invaded bacterium, not just at the porthole ring. In the experimental conditions the predatory bacteria ‘painted’ this coloured FDAA, rather like a molecular scale ‘fresco’, to the walls of the invaded bacterium in a process which reinforces the wall of invaded bacterium so it doesn’t collapse before the predator has eaten the nutritional contents inside. Dr Carey Lambert from Nottingham joined the project and was able to find some of the ‘tools’ that apply the frescos – these are a group of enzymes that have been little studied until recently.

Professor Sockett concludes: “It is remarkable to see this in action at such a tiny scale and also useful. Knowing more about the mechanisms used by the invading predatory bacteria could help design new ways of killing pathogens.  Now that the invasion processes have been defined it should be possible to gather all the tools needed to invade and consume pathogenic bacteria without releasing large amounts of their pathogenic cell materials by them bursting.” 

The project was funded by grants and fellowships to the researchers from the Leverhulme Trust, the BBSRC, EMBO, The Wellcome Trust and National Institutes of Health. 

It is a truly multinational effort with Turkish, English and American scientists working with help from French and German colleagues to understand processes that could help in the development of future effective antibiotics on a truly tiny molecular scale.

Image: © Indiana University

1. Red FDAA-labelled predatory Bdellovibrio bacteria invade initially unlabelled rod shaped E Coli bacteria making a blue FDAA labelled reinforced porthole in their cell wall on a tiny scale.

2. The red Bdellovibrio invade the E Coli through this porthole and while doing so round them up and apply blue FDAAs 'fresco-like' around the now spherical E Coli wall, reinforcing it.

— Ends —

Our academics can now be interviewed for broadcast via our Media Hub, which offers a Globelynx fixed camera and ISDN line facilities at University Park campus. For further information please contact a member of the Communications team on +44 (0)115 951 5798, email mediahub@nottingham.ac.uk or see the Globelynx website for how to register for this service.

For up to the minute media alerts, follow us on Twitter

Notes to editors: 

The University of Nottingham is a research-intensive university with a proud heritage, consistently ranked among the world's top 100. Studying at the University of Nottingham is a life-changing experience and we pride ourselves on unlocking the potential of our 44,000 students - Nottingham was named University of the Year for Graduate Employment in the 2017 Times and Sunday Times Good University Guide, was awarded gold in the TEF 2017 and features in the top 20 of all three major UK rankings. We have a pioneering spirit, expressed in the vision of our founder Sir Jesse Boot, which has seen us lead the way in establishing campuses in China and Malaysia - part of a globally connected network of education, research and industrial engagement. We are ranked eighth for research power in the UK according to REF 2014. We have six beacons of research excellence helping to transform lives and change the world; we are also a major employer and industry partner - locally and globally.

Impact: The Nottingham Campaign, its biggest-ever fundraising campaign, is delivering the University’s vision to change lives, tackle global issues and shape the future. More news…

Story credits

More information is available from Professor Liz Sockett, School of Life Sciences, Faculty of Medicine and Health Sciences on +44 0115 823 0338 liz.sockett@nottingham.ac.uk
EmmaRayner2

Emma Rayner - Media Relations Manager

Email: emma.rayner@nottingham.ac.uk Phone: +44 (0)115 951 5793 Location: University Park
 

Additional resources

View fullsize Bdellovibrio fluorescence image.

Related articles

Media Relations - External Relations

The University of Nottingham
C Floor, Pope Building (Room C4)
University Park
Nottingham, NG7 2RD

telephone: +44 (0) 115 951 5798
email: communications@nottingham.ac.uk