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Abstract

A nonparametric likelihood ratio test for the exponential series density es-

timator is employed as a goodness-of—fit test in the presence of nuisance para-

meters. These tests are designed to address the perceived weaknesses of those

based on the empirical distribution function, such as the Kolmogorov-Smirnov,

Cramer-von Mises and Anderson Darling tests. These tests are often criticized

for not being asymptotically pivotal, having low power and offering no direction

if the null hypothesis is rejected. Instead the tests of this paper are proven to

be asymptotically pivotal and numerical experiments illustrate this. Further

experiments suggest the tests are generally more powerful in a variety of test-

ing problems whether bootstrap critical values are used or not. Finally, in the

event of rejection, the proposed procedures involve density estimators which

can be used directly and accurately to estimate quantiles.

Keywords: Goodness-of-fit, series density estimator, likelihood ratio, nui-

sance parameters, parametric bootstrap.
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1 Introduction

As well as generating an important literature in its own right the goodness-of-fit

problem is fundamental to many diagnostic procedures in Statistics and Econometrics.

Primarily this involves checking the adequacy or predictive ability of a fitted model,

see Corradi and Swanson (2006) for a comprehensive review. The most commonly

used tests are extensions of those based upon the empirical distribution function

(edf), such as the Kolmogorov-Smirnov (KS), Cramér-von Mises (CM) and Anderson-

Darling (AD) procedures (see Conover (1999)).

Such tests, however, suffer from three shortcomings. First, when nuisance para-

meters must be estimated, tests based on the edf are not asymptotically pivotal, even

in the simplistic testing circumstances considered by, for example, Stephens (1974,

1976) and Babu and Rao (2004). In the diagnostic applications in Corradi and Swan-

son (2006) the analysis swiftly becomes impractical to implement. Second, in simple

testing situations, they lack power when compared to appropriate parametric tests.

Thirdly, and perhaps most importantly, if we do reject the null of correct specification,

edf based procedures are not particularly helpful in suggesting how to proceed.

This paper instead extends the nonparametric likelihood ratio goodness-of-fit tests

developed in Claeskens and Hjort (2004) and Marsh (2007, 2010) to the case where

nuisance parameters must be estimated. Similar to those papers we apply the test of

Portnoy (1988) via application of the exponential series density estimator of Barron

and Sheu (1991).

To address the three shortcomings of edf based procedures, first we prove that the

tests derived here have standard asymptotic distributions and are therefore asymp-

totically pivotal. They are also consistent against fixed alternatives.

Second, it is already known that in standard goodness-of-fit applications tests

based on nonparametric likelihood are significantly more powerful than those based

on the edf, see Marsh (2007, 2010). This paper offers further evidence to this, although

the advantage is lessened when parameters are estimated. The small advantage main-

tains for testing problems both where the distribution itself is different under the

alternative and also when the specification of the moments is different, specifically

for breaks in the mean, autoregressions and conditional heteroskedasticity.

Third, the tests of this paper are based on a consistent nonparametric density
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estimator, with consistency established through convergence of the Kullback-Leibler

divergence. As a consequence we are able to consistently estimate the quantile func-

tion of the random variable generating the data, whether the null hypothesis of correct

specification is true or not.

Given that tests based on the edf are generally not asymptotically pivotal recent

attention has been given to providing approximate critical values via bootstrap based

procedures. Babu and Rao (2004) prove that the parametric bootstrap provides

asymptotically valid critical values under the null hypothesis. Genest and Rémillard

(2008) generalize to semi-parametric models, Villaseñor and González-Estrada (2009)

consider the special case of the generalized Pareto distribution and Kojadinovic and

Yan (2012) provide a more efficient bootstrap.

Since the tests here are asymptotically pivotal then it is trivial to establish asymp-

totic validity of the bootstrap under the null and consistently under the alternative.

Moreover, numerical comparisons reaffirm the theoretical advantages the proposed

test has over edf based tests. Under various null hypotheses all tests are shown to

be well behaved, as should be expected. The proposed test is not dominated by any

other and offers a stable and conservative test for goodness-of-fit.

The plan for the rest of the paper is as follows. The next section first briefly de-

tails the exponential series density estimator and its application to the goodness-of-fit

problem and then extends to the more problematic case involving nuisance parame-

ters. The asymptotic properties of the test are derived in Section 3. Specifically,

under the null hypothesis of correct specification, we establish asymptotic standard

normality of the test and its consistency under fixed alternatives. Section 4 imple-

ments the procedures in a number of experiments and provides clear comparisons

with the edf based tests in cases where the limit theory of the latter is established.

Here we also examine the accuracy of the density estimator itself under both null

and alternative. Section 5 concludes while all proofs and the tables for the numerical

comparisons are placed in the Appendix.
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2 Preliminaries

2.1 No Estimated Parameters

The tests developed in this paper derive from those of Marsh (2007). Suppose that

our sample y= {Yi}ni=1 consists of independent copies of a random variable Y having

distribution, G (y) = Pr[Y ≤ y], and we wish to test the goodness-of-fit hypothesis,

H0 : G (y) = F (y; β), (1)

where both F (., .) and β, for now, are fully specified.

To proceed let Xi = F (Yi; β) so that, whether H0 is true or not, the Xi are iid

copies of the variable X, having distribution and density,

U(x) = Pr [X < x] & u (x) =
dU (x)

dx
for x ∈ (0, 1) .

We first approximate u (x) using the exponential family,

px(θ) = exp

{
m∑

k=1

θkφk(x)− ψm (θ)

}

, ψm (θ) = ln

∫ 1

0

exp

{
m∑

k=1

θkφk(x)

}

dx, (2)

where the φk(x) are linearly independent functions spanning Rm.

Application requires a choice of basis. Marsh (2007) chose a polynomial basis,

i.e. φk (x) = xk. Here we will investigate this but also, for m even, the trigonometric

basis, φk (x) = {cos [2kπx] , sin [2kπx]}m/2k=1 .

To continue, suppose that log[u(x)] has r−1 absolutely continuous derivatives and

that its rth derivative, drlp(x)/dxr is square integrable, i.e. so that log[u(x)] ∈ W r
2 ,

the Sobolev space of functions on (0, 1) . According to Crain (1974) and Barron and

Sheu (1991) there then exists a unique θ(m) = (θ1, .., θm)′ satisfying

∫ 1

0

φk(x)px
(
θ(m)

)
dx =

∫ 1

0

φk(x)u (x) dx for k = 1, 2, ...,m, (3)

and, as m→∞, px
(
θ(m)

)
and u (x) converge in relative entropy, with

EU

[

ln

(
u (x)

px
(
θ(m)

)

)]

=

∫ 1

0

ln

(
u (x)

px
(
θ(m)

)

)

u (x) dx = O
(
m−2r) .

Since θ(m) is unique any hypothesis test on the distribution of X can be tested

via a simple hypothesis on θ(m),

H0 : Pr [X < x] = U0 (x) ↔ H0 : θ(m) = θ0(m), (4)
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where θ0(m) solves (3) with u (x) = u0 (x) = dU0 (x) /dx.

Notice that in the goodness-of-fit problem u0 (x) will be fully specified. Claeskens

and Hjort (2004) chose u0 (x) = 1, i.e. they test uniformity, which implies that

θ0(m) = 0(m), the m-vector of zeros. Here, for simplicity, we will also follow this

approach, rather than that of Marsh (2007) which effectively applied the test to the

square of Xi.

Following Portnoy (1988) H0 can be tested via a likelihood ratio test in the expo-

nential family (2),

λm = 2
n∑

i=1

ln

[
pXi

(
θ̄(m)

)

pXi
(
0(m)

)

]

= 2
n∑

i=1

ln pXi
(
θ̄(m)

)
,

where θ̄(m) is the unique maximum likelihood estimator for θ(m) satisfying

∫ 1

0

φk (x) px
(
θ̄(m)

)
dx =

∑n
i=1 φk (Xi)

n
for k = 1, 2, ...,m. (5)

From Barron and Sheu (1991, Theorem 1), if m3/n→ 0 then, with either choice

of basis, px
(
θ̄(m)

)
converges in relative entropy to u (x) ,

EU

[

ln

(
u (x)

px
(
θ̄(m)

)

)]

=

∫ 1

0

ln

(
u (x)

px
(
θ̄(m)

)

)

u (x) dx = Op

(m
n

+ m−2r
)
.

Applying the results of Portnoy (1988) for tests on infinite dimensional parameters,

Marsh (2007, Theorem 1) proves that as n→∞ with m3/n→ 0, then

Λm =
λm −m√

2m
→d N (0, 1) . (6)

In addition it is shown that Λm diverges under any fixed alternative (i.e. the test is

consistent) and it has power against local alternatives parametrized by θ1(m)− 0(m) =

c
√√

m
n
with c′c = 1 and θ1(m) satisfies (3) but with u (x) = u1 (x) , the density under

the alternative.

2.2 Estimated Parameters

Now assume β in (1) is unknown and must be estimated as a preliminary step prior

to application of the likelihood ratio test described above. Let β̂n denote the (quasi)

maximum likelihood estimator of β obtained from the sample {Y1, .., Yn} using the
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specified likelihood L =
∏n

i=1 f (Yi; β) . Typically the alternative will be the (unspec-

ified) negation of H0, as in

H1 : G(y) �= F (y;β).

We require the following assumptions on both F (y; β), G (y) and the respective

densities f (y; β) and g (y) , to ensure the existence of β̂n and under which the as-

ymptotic distribution of the proposed test will be derived.

Assumption 1 :

(i) The density f (y; β) is measurable in y for every β in a compact subset of

p−dimensional Euclidean space, and are continuous in β for every y.

(ii) G (y) is an absolutely continuous distribution function, E [log[g (y)] exists

and |log f (y, β)| < v (y) for all β where v (.) is integrable with respect to G (.) .

(iii) Let

I (β) = E

[
ln

[
g (y)

f (y, β)

]]
=

∫

y

ln

[
g (y)

f (y, β)

]
g (y) ,

then I (β) has a unique minimum at β∗.

(iv) H (β) = dF (Yi, β) /dβ is finite for all β in a closed ball of radius n−1/2

around β∗.

(v) Both log [g (y)] and log [f (y;β)] have r ≥ 2 derivatives in y which are

absolutely continuous and square integrable.

Immediate fromWhite (1982, Theorems 2.1, 2.2 and 3.2) is that under Assumption

1(i-iii) β̂n exists and

β̂n = β∗ + O(n−1/2).

That is β̂n is a
√
n consistent Quasi maximum likelihood estimator for the pseudo-true

value β∗. Note that under H0 we have β∗ = β.

To derive the test, first denote X̂i = F
(
Yi, β̂n

)
with the mean value expansion,

X̂i = F (Yi, β∗) +
(
β̂n − β∗

)′ dh
dF

H
(
β+

)
,

where β+ lies on a line segment joining β̂n and β∗. As a consequence we can write

X̂i = Xi + ei, (7)
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where Xi is exactly as above, i.e. they are IID copies of X with distribution U(x). In

addition, by construction and as a consequence of Assumption 1 (iv),

ei ∈ (−1, 1) & ei = Op

(
n−1/2

)
, (8)

that is ei is both bounded and degenerate.

The modification required to deal with the fact that β must be estimated is as

follows. We are still testing on the distribution U(x), however we do not observe out-

comes on Xi but instead those on X̂i. Notice that under Assumption 1(v) the density

u (x) = dU (x) /dx satisfies log [u (x)] ∈ W r
2 . The maximum likelihood estimator

for the parameter in the exponential family (2), say θ̂(m), based on the likelihood

L̂
(
θ(m)

)
=

∏n
i=1 pX̂i

(
θ(m)

)
satisfies

∫ 1

0

φk (x) px

(
θ̂(m)

)
dx =

∑n
i=1 φk (Xi)

n
for k = 1, 2, ...,m. (9)

In the presence of nuisance parameters we must therefore test the null hypothesis

H0 : X ∼ U0 (x) (i.e. H0 : θ(m) = 0(m)) using the likelihood ratio

λ̂m = 2
n∑

i=1

ln




pX̂i

(
θ̂(m)

)

pX̂i
(
0(m)

)



 = 2
n∑

i=1

ln pX̂i
(
θ̄(m)

)
.

In the following section we will detail the asymptotic properties of λ̂m. It is, upon

standardization, asymptotically standard normal - and therefore crucially asymptot-

ically pivotal. In addition it will be shown that tests based on λ̂m remain consistent

against fixed alternatives under Assumption 1.

3 Asymptotic Properties

3.1 Density Estimation with estimated parameters

Above, the non-parametric likelihood ratio test for goodness-of-fit with estimated

parameters was contrasted with that of the simpler case. Key is that, in (7), we do

not observe directly a sample from the random variable upon which the hypothesis

is being tested, unlike in the standard goodness-of-fit case. If we did know the true

value of β we could observe Xi directly and obtain the maximum likelihood estimator

7



θ̄(m)via (5). Instead, in the nuisance parameter case, we only observe X̂i and obtain

θ̂(m) via (9) and apply Portnoy’s (1988) test using that.

For a given m, this test is just an application of a likelihood-ratio test in a linear

exponential family. For a given choice of basis

φ(m) (x) = (φ1 (x) , φ2 (x) , ..., φm (x))′ ,

we construct the m dimensional sufficient statistics,

x̄(m) =

(∑n
i=1 φk (Xi)

n

)m

k=1

,

in the standard goodness-of-fit case and

x̂(m) =





∑n
i=1 φk

(
X̂i

)

n





m

k=1

,

in the nuisance parameter case. The respective maximum likelihood estimators, θ̄(m)

and θ̂(m) then satisfy

∫ 1

0

φ(m) (x) px
(
θ̄(m)

)
dx = x̄φ(m) and

∫ 1

0

φ(m) (x) px

(
θ̂(m)

)
dx = x̂φ(m). (10)

These will produce a consistent nonparametric density estimator as m → ∞. This

follows in the standard case immediately from the analysis of Barron and Sheu (1991)

and is proved below in the nuisance parameter case.

Standard properties of the linear exponential family still apply, specifically the

duality between the (sufficient statistic) sample space, say Ωm, and the parameter

space, say Θm. As in Barndorff-Nielsen (1978), consider arbitrary points in both Ωm

and Ωm, ω(m) = {ω1, .., ωm}′ ∈ Ωm and θ(m) = (θ1, .., θm) ∈ Θm then the system of m

equations ∫ 1

0

φk (x) px
(
θ(m)

)
dx = ωk, k = 1, ..,m, (11)

has a unique solution. That is solving (11), and therefore either equation in (10),

generates a one-to-one mapping between Ωm and Θm.

Here we will be interested in three points in each space,

θ(m) ∈ Θm ↔ µ(m) = (EU [φ1 (x)] , EU [φ2 (x)] , ..., EU [φm (x)])′ ∈ Ωm
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θ̄(m) ∈ Θm ↔ x̄(m) =

(∑n
i=1 φ1 (Xi)

n
,

∑n
i=1 φ2 (Xi)

n
, ...,

∑n
i=1 φm (Xi)

n

)′
∈ Ωm

θ̂(m) ∈ Θm ↔ x̂(m) =





∑n
i=1 φ1

(
X̂i

)

n
,

∑n
i=1 φ2

(
X̂i

)

n
, ...,

∑n
i=1 φm

(
X̂i

)

n





′

∈ Ωm.

(12)

Note that although these points also depend on the choice of basis φ here we will

suppress the dependence for notational brevity. In summary, θ(m) in Θm maps to

the mean of the (unobserved) sufficient statistic x̄(m), µ(m) = E
[
x̄(m)

]
. The mle

for θ(m) based on x̄(m) is θ̄(m), while for the observed sufficient statistic x̂(m), it is

θ̂(m). By exploiting this duality, we are first able to show that the estimated density

px
(
θ̂(m)

)
converges in relative entropy at exactly the same rate as px

(
θ̄(m)

)
does in

the following theorem, which is proved in the Appendix.

Theorem 1 Let θ̂(m) denote the estimated exponential parameter determined by (9)

then under Assumption 1 and for m,n→∞ with m3/n→ 0,

EU



ln



 u (x)

px
(
θ̂(m)

)







 =

∫ 1

0

ln



 u (x)

px
(
θ̂(m)

)



u (x) dx = Op

(m
n

+ m−2r
)
.

According to Theorem 1, in terms of the density estimator, at least, the effect

of observing
{
X̂1, .., X̂n

}
rather than {X1, .., Xn} is asymptotically negligible under

Assumption 1 and for either choice of basis. Moreover, if the goal were only nonpara-

metric estimation of the density, then the optimal choice of the dimension m is the

same as when no parameters are estimated, i.e. mopt ∝ n
1

1+2r (with a mini-max rate

of m∗
n = O

(
n−1/5

)
, since r ≥ 2 by assumption). The optimal rate the rate of conver-

gence of the estimator remains of order Op

(
n−

2r
1+2r

)
. It should not be surprising that

the rate of convergence is unaffected when parameters are replaced by
√
n consistent

estimators.

3.2 Properties of the Likelihood Ratio Test

Full implementation of the non-parametric likelihood ratio test for goodness-of-fit

with estimated parameters proceeds as follows. Given the sample {Y1, .., Yn} consist-
ing of IID copies of Y having distribution G(y) we wish to test H0 : G(y) = F (y, β) ,

as above.
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Letting X̂i = F
(
Yi, β̂n

)
and Xi = F (Yi, β) where Xi has uniform distribution

and density u (x) = 1, then testing H0 is equivalent to testing

H0 : θ(m) = 0(m),

in the exponential family (2). The likelihood ratio test of Portnoy (1988) applied via

the density estimator of Crain (1974) and Barron and Sheu (1991) obtained from the

sample
{
X̂1, .., X̂n

}
is

λ̂m = 2
n∑

i=1

log




pX̂i

(
θ̂(m)

)

pX̂i
(
0(m)

)



 = 2n
[
θ̂
′
(m)x̂(m) − ψm

(
θ̂(m)

)]
,

where θ̂(m) solves (9). The null hypothesis is rejected for large values of λ̂m.

Under any fixed alternative H1 : G (y) �= F (y;β) the distribution of Xi =

Fi (Yi;β∗) will not be uniform. For every fixed alternative distribution for Y there is

a unique alternative distribution for X on (0, 1) and associated with that distribu-

tion will be another consistent density estimator given by say, px(θ
1
(m)). In practice,

of course, θ1(m) will be neither specified nor known. The following Theorem, again

proved in the Appendix, gives the asymptotic distribution of the likelihood ratio test

statistic both under the null hypothesis (4) and also demonstrates consistency against

any such fixed alternative.

Theorem 2 Suppose that we construct
{
X̂i

}n

i=1
as described above, that the condi-

tions required in Assumption 1 are met and that m,n→∞ with m3/n→ 0, then:

(i) Under the null hypothesis, H0 : G (y) = F (y;β) ,

Λ̂m =
λ̂m −m√

2m
→d N(0, 1).

(ii) Under any fixed alternative H1 : G (y) �= F (y; β) and for any finite κ,

Pr
[
Λ̂m ≥ κ

]
→ 1.

4 Implementation and Numerical Properties

The purpose of this section is to illustrate the properties of the nonparametric like-

lihood tests and estimators described above. First, in the context of Exponentiality
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and Normality testing, we examine the size properties of tests based on both trigono-

metric and polynomial bases using asymptotic critical values and as both m and n

increase. We then compare the powers of two particular variants against the stan-

dard tests in this field, the Kolmogorov-Smirnov (KS), Cramer-von Mises (CM) and

Anderson Darling (AD) tests. Results are provided for cases where we do and also

do not estimate unknown parameters.

Although the tests of this paper are pivotal, outside of testing for Exponentiality

and Normality, the competitor tests are feasible only when bootstrapped. We there-

fore also compare the finite sample performance of bootstrap critical values for the

tests of this paper, repeating experiments of Kojadinovic and Yan (2012).

The last set of experiments concern what we may do if the test rejects the null

hypothesis. The tests of this paper are based on a consistent (see Theorem 1) density

estimator. Therefore we simulate mean-square errors for the estimators of the quan-

tiles of the distribution, when we mis-specify that distribution. All experiments were

performed using Mathematica 8 and are based on 2500 Monte Carlo replications.

4.1 Numerical properties when testing for Exponentiality

and Normality

Theorem 2 proves that, for either choice of basis, the likelihood ratio tests Λ̂m are

asymptotically pivotal, specifically standard normal, and consistent against fixed al-

ternatives. Competitor tests, such as KS, CM and AD (these tests are mathematically

detailed in Stephens (1976) or Conover (1999)) are not pivotal, although asymptotic

critical values are readily available for all cases of testing for Exponentiality and

Normality.

First we will demonstrate that indeed asymptotic critical values for nonparametric

likelihood tests do have close to nominal size for large values of n and m. We are

interested in testing the null hypotheses

HE
0 : Y ∼ Exp (1) & HN

0 : Y ∼ N (0, 1) ,

with nominal significance levels 10%, 5% and 1% and based on sample sizes n =

25, 50, 100 and 200. Letting ȳ and σ̂2 be the estimated mean and variance (i.e. β̂n = ȳ

for HE
0 and β̂n =

(
ȳ, σ̂2

)′
for HN

0 ) then the tests are constructed from the mapping
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to (0, 1) ;

X̂i = 1− e−Yi/ȳn, (13)

to test HE
0 , and

X̂i =
1

2

[
1 + erf

(
Yi − ȳn
σ̂n

)]
, (14)

to test HN
0 .

Table 1a in the appendix provides rejection frequencies for tests constructed using

the trigonometric basis for m = 2, 4, 6, 8, 10 and 12. The left hand panel of numbers

correspond to testing HE
0 and the right to H

N
0 . Similarly Table 1b provides rejection

frequencies for tests based on the polynomial basis for m = 3, 5, 7, 9, 13 and 17.

The finite sample performance of the tests clearly improves as both n and m

increase. We have deliberately chosen three different significance levels because al-

though there are cases with particular values of m and n where finite sample size is

acceptable at a particular chosen significance level its only when all three are close

to nominal when the procedure is actually justified. This happens for significantly

smaller values of m for the trigonometric basis than the polynomial.

Table 2 compares the 5% size corrected powers of two variants of the tests with

the three direct competitors for a single sample size of n = 100. For m = 3 we denote

the test constructed from the polynomial basis by Λ̂P
3 and for m = 10 denote the

test constructed using the trigonometric basis by Λ̂T
10. Tables 2a through 2b present

rejection frequencies for these tests and the KS, CM and AD tests for testing HN
0

under alternatives that the data is instead drawn from,

Ha
1 : Y ∼ t(v), Hb

1 : Y ∼ χ2(v) − v.

Tables 2b, 2c and 2e, consider alternatives where the moments of the data are not

correctly specified, i.e.

Hc
1 : Yi|Yi−1 ∼ N (vYi−1, 1) ,

Hd
1 : Yi|Yi−1 ∼ N

(
0, 1 + vY 2

i−1
)
,

He
1 : Yi ∼ N (v × 1 (i > �n/2�) , 1) ,

where 1 (.) denotes the indicator function. These latter three alternatives represent

simplistic variants of common types of mis-specification in econometric or financial
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data, i.e. mis-specification of a conditional mean, variance or the possibility of a break

in the mean (here half way through the sample). Note that these models trivially

satisfy Assumption 1, but Xi as defined in (7) will not be IID on (0, 1) . Finally,

table 2f considers instead testing HE
0 against the alternative

Hf
1 : Y ∼ Γ (1, v) .

In each table the left hand panel corresponds to the case where we construct the

test imposing the parameter values specified in the null rather than estimating them

(i.e. using the test in (6)). The right hand panel has the rejection frequencies for

tests based on estimated values, i.e. using (14) and (13), respectively.

The outcomes in Table 2 imply the following broad conclusions. The nonpara-

metric likelihood test based Λ̂P
3 is the most powerful almost uniformly, across all

alternatives and whether parameters are estimated or not. The observed lack of

power of the most commonly used test, KS, is particularly evident, it is consistently

the poorest performing test. The other edf based tests and Λ̂T
10 are broadly compara-

ble in terms of their rejection frequencies, although AD is perhaps on average slightly

more powerful and CM less powerful.

From Tables 1 and 2 we can thus conclude that Λ̂T
10 has size close to nominal and

power comparable with the best edf based tests. Its advantage, however, is that it

is based on an asymptotically pivotal procedure. It is the same set of critical values

being used in Table 1a, equivalent experiments for edf based tests would require

different sets of critical values.

Despite this, that test is outperformed both in terms of power and computationally

by Λ̂P
3 . But, of course, this test does not have adequate finite sample size. This

inadequacy will be addressed in the next sub-section.

4.2 Bootstrap Critical Values

Here we will compare the performance of bootstrap critical values for Λ̂P
3 with those

of CM and AD by repeating many of the experiments of Kojadinovic and Yan (2012).

Asymptotic justification for the bootstrap is automatic given that Λ̂m →d N (0, 1)

giving the following corollary to Theorem 2.
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Corollary 1 Under Assumption 1 and if n,m→∞ with m3/n→ 0, then

i) Pr
[
ÎΛB = 1 |H0

]
→ α,

ii) Pr
[
ÎΛB = 1 |H1

]
→ 1.

For just the Λ̂3 test, the bootstrap procedure is as follows: On obtaining the mle

β̂n and calculating Λ̂3, as described above;

1. Generate bootstrap samples Y b
i ∼ IID F

(
y; β̂n

)
for i = 1, .., n.

2. Estimate, via mle, β̂
b

n and construct X̂
b
i = F

(
Y b
i ; β̂

b

n

)
for i = 1, .., n.

3. Repeat 1 and 2 B times, obtaining bootsrap versions of the test Λ̂b
3.

4. Order the Λ̂b
3 so the bootstrap critical value at size α is κB = Λ̂

�(1−α)B/100�
3 .

5. Denote the indicator function ÎΛB =





1 if Λ̂3 > κBα

0 if Λ̂3 ≤ κBα





.

We then reject H0 if Î
Λ
B = 1.

In this sub-section all experiments described in this sub-section are performed

on the basis of B = 200 bootstrap replications. All nuisance parameters were esti-

mated via maximum likelihood using Mathematica 8’s own numerical optimization

algorithm.

The first set of experiments mimic those presented in Kojadinovic and Yan (2012,

Table 1). Specifically we define the following Normal, Logistic, Gamma and Weibull

Distributions;

N ∗ ∼ N (10, 1) , L∗ ∼ L (10, 0.572) ,

Γ∗ ∼ Γ (98.671, 1/9.866) & W ∗ ∼W (10.618, 10.452) . (15)

The specific parameter values for L∗,Γ∗ and W ∗ are chosen to minimize relative

entropy for each family to the distribution of N∗. Sample sizes of n = 25, 50, 100, 200

are used in the experiments described below.

Table 3a contains the finite sample size of each test. It is clear that, under H0, the

parametric bootstrap provides highly accurate critical values for all of the tests. On

size alone there is nothing to choose between them. It is however, worth reporting,

the computational time of each bootstrap critical value. For the Λ̂3 test critical values

were obtained after 2.0 and 3.2 seconds for sample sizes n = 100 and 200, respectively.
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The times for the other tests were similar to each other, taking around 0.9 and 2.9

seconds, respectively.

Table 3a and 3b contain the finite sample rejection frequencies under various

alternative hypotheses, covering all pairwise permutations of the distributions in (15).

As with the finite sample sizes it is not possible to pick a clear winner, moreover where

they overlap the results are in line with those of Kojadinovic and Yan (2012). There

is, of course, no uniformly most powerful test of goodness-of-fit so it is not surprising

that the power of Λ̂3 is not always the largest. However its performance over this

range of nulls and alternatives is far less volatile and in no circumstance is the test

dominated by any of the other two.

4.3 What if the null hypothesis is rejected?

The final criticism of edf based tests of goodness-of-fit, and diagnostics in general, is

that rejection of the null hypothesis is not indicative of how the specification could

or should be changed. The tests of this paper, however, are based on the consistent

nonparametric density estimator of Barron and Sheu (1991). This consistency can

readily be extended to the current context of the presence of nuisance parameters, as

in the following corollary.

Corollary 2 Let T̂n,m ∈ (0, 1) be a random variable having density function pt
(
θ̂(m)

)

and let Xi = F (Yi;β∗) ∼ iid.X, as defined under (7), then

T̂n,m →L X,

as n,m → ∞,m3/n → 0. I.e. T̂n,m converges in law to the random variable

X.

Proof of corollary 2 follows immediately from Theorem 1, i.e. convergence of

Kullback-Leibler implies convergence in law. Thus the quantiles associated with Tn,m

converge to those of Y, i.e. letting qA (π) , for 0 < π < 1, denote the quantile function

of the random variable A, we have

qF−1(T̂n,m;β̂n) (π) = qY (π) + op (1) . (16)

The final set of experiments compare the Mean Square Errors of estimators for

the quantiles of Y based on T̂n,m for n = 25, 50, 100 and 200 and for m = 3 (with the
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polynomial basis) as well as m = 10 (with the trigonometric basis) and for quantiles

calculated at the probabilities, π = .05, .25, .50, .75, .95. We also consider cases where

nuisance parameters are, and are not, estimated.

First suppose that Y a
i ∼ iidY a := t(4), then define

X̂i =
1

2

[
1 + erf

(
Yi − ȳn
σ̂n

)]
& X∗

i =
1

2
[1 + erf (Yi)] , i = 1, .., n,

i.e. we proceed as if we are testing for Normality. Following the development in

Section 2 and 3, as well as that of Barron and Sheu (1991) let θ̂(m) and θ
∗
(m) denote

the estimated parameters for the exponential series density estimators for the samples{
X̂i

}n

1
and {X∗

i }n1 , respectively. Let T̂n,m have density pt
(
θ̂(m)

)
, as in corollary 2,

and also T ∗n,m having density pt
(
θ∗(m)

)
(note that this is simply the original set-up of

Barron and Sheu (1991), i.e. no parameters are estimated). The estimated quantiles

for Y a are then constructed as in

q̂Y a (π) = ȳ+σ̂n
√

2 erf −1
(

2qT̂n,m (π)− 1
)

and q∗Y a (π) =
√

2 erf −1
(
2qT ∗n,m (π)− 1

)
.

The mean square error of these quantiles, for each probability π, are presented in

Tables 5a (for m = 3 and the polynomial basis) and Table 5b (for m = 10 and the

trigonometric basis).

Next suppose that Y b
i ∼ iidY b := Γ (1.2, 1) and define

X̂i = 1− e−Yi/ȳn & X∗
i = 1− e−Yi, i = 1, .., n,

i.e. as if we were testing exponentiality. Analogous to above let T̂n,m and T
∗
n,m have

densities pt

(
θ̂(m)

)
and pt

(
θ∗(m)

)
and so estimated quantiles for Y b are constructed as

in,

q̂Y b (π) = −ȳn ln
(

1− qT̂n,m (π)
)

and q∗Y b (π) = − ln
(
1− qT∗n,m (π)

)
.

The mean square error of these quantiles, for each probability π, are presented in

Tables 5c (for m = 3 and the polynomial basis) and Table 5d (for m = 10 and the

trigonometric basis).

Two general conclusions can be drawn from the results presented in Tables 5a

through 5d. First there is no advantage, at any sample size, of using a larger value of

m. Although not reported, additional experiments show no advantage for one basis

16



over another. On the other hand there is a slight advantage of estimating the mean

(and variance) prior mapping to the interval (0, 1) to construct the density estimator.

This is particularly the case when m is large and the quantile is in the extreme right

tail of a positively skewed random variable - see the last row of results in Table 5d.

4.4 Application Recommendation

The nonparametric likelihood based tests and estimators described above come in a

variety of specifications. These depend on whether m is large, to achieve accuracy

of critical values under the null, or small, to achieve higher power under a variety of

alternatives, and also upon the choice of basis, whether polynomial or trigonometric.

The results of this section, taken together, offer the possibility of a clear procedure.

The computational cost of a large value of m (for a given sample size) overrides the

improved numerical performance under the null. Since the tests are asymptotically

pivotal the bootstrap for such tests is rigorously justified, simple to implement and

offers good size and power properties.

Although the theoretical results demand m→∞ as n→∞, in practice we want

m to grow slowly, e.g. implementing the procedures with the mini-max rate, with

m = m∗
n = 1 +

⌊
n1/5

⌋
,

where �.� denotes the integer part, in conjunction with the polynomial basis. Note
that this simple rule implies m = 3 for sample sizes of n = 25 through 200, exactly

as in the experiments described above.

5 Conclusions

This paper has extended the nonparametric likelihood ratio based tests of Marsh

(2007) to cover specifications involving estimated parameters. Having to estimate

unknown parameters affects neither the rate of convergence of the density estimator

of Barron and Sheu (1991) nor the asymptotic distribution of the associated likelihood

ratio test of Portnoy (1988).

The general aim has been to provide a test procedure which overcomes the three

main criticisms of edf based tests, i.e. that they are not pivotal, have low power, and
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offer no direction in case of rejection. Instead the tests of this paper are shown to be

asymptotically standard normal, they have power advantages generally, and are often

considerably more powerful than the most commonly used Kolmogorov-Smirnov test.

Finally, in case of rejection, they offer a quantile approximation which is numerically

superior to that obtained from the original set-up of Barron and Sheu (1991).

In a thorough set of experiments, the test applied with the polynomial basis a

small value of m, consistent with a mini-max rule, demonstrates both numerical and

computational superiority (even when bootstrapped) over competitor edf based tests,

and also those based on the same estimator but applied with a trigonometric basis

and much larger m.
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Appendix I: Proofs
In order to avoid any ambiguity throughout this appendix the order of magnitude

symbol O(.) is defined by,

an,m = O (bn,m) ⇐⇒ lim
m,n→∞ ; m3/n→0

an,m
bn,m

≤ c1 <∞,

and analogously for the probabilistic versions Op(.) and op(.). If the quantity un-

der scrutiny does not depend upon the dimension m then the condition m3/n → 0

becomes redundant.

Proof of Theorem 1:

We will consider the two choices of basis separately using a superscript P or T to

denote the polynomial or trigonometric basis. First consider the polynomial basis,

φk (x) = xk and denote ,

x̂P(m) =

(∑n
i=1 X̂

k
i

n

)m

k=1

, x̄P(m) =

(∑n
i=1X

k
i

n

)′
and µP(m) = E

[
x̄P(m)

]
.

The Euclidean distance between the two polynomial sufficient statistics is,

∣∣x̂P(m) − x̄P(m)
∣∣ =

∣∣∣∣∣
1

n

(
n∑

i=1

(
X̂i −Xi

)
, ...,

n∑

i=1

(
X̂m
i −Xm

i

))′∣∣∣∣∣

≤
m∑

j=1

∣∣∣∣∣
1

n

n∑

i=1

(
X̂j
i −Xj

i

)
∣∣∣∣∣
.

Taking the jth element and noting X̂i = Xi + ei,then

1

n

n∑

i=1

(
X̂j
i −Xj

i

)
=

1

n

n∑

i=1

(
(Xi + ei)

j −Xj
i

)
=

1

n

n∑

i=1

j∑

s=0

(
j!

s!(j − s!)
Xj−s
i esi −Xj

i

)

=
1

n

n∑

i=1

j∑

s=1

j!

s!(j − s)!
Xj−s
i esi .

Since Xi ∈ (0, 1) while, as in (8), ei = Op(n
−1/2) and ei ∈ (−1, 1) then,

j!

s!(j − s)!
Xj−s
i esi ≤

js

s!
cj−s1 esi =

js

s!
cj−sOp

(
n−s/2

)
, (17)

where c1 < 1. For finite j (17) is Op

(
n−s/2

)
while as j → ∞ (17) is o (1)Op

(
n−s/2

)

and so,

sup
j∈N

j!

s!(j − s)!
Xj−s
i esi = Op

(
n−s/2

)
,
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implying that
j∑

s=1

j!

s!(j − s)!
Xj−s
i esi = Op(n

−1/2),

uniformly in j, and hence,

1

n

n∑

i=1

(
X̂j
i −Xj

i

)
=

1

n

n∑

i=1

(
j∑

s=1

j!

s!(j − s!)
Xj−s
i esi

)

= Op(n
−1/2).

Consequently, and also from the definition of Euclidean distance, we have,

∣∣x̂P(m) − x̄P(m)
∣∣ =

√√√√
m∑

j=1

(
1

n

n∑

i=1

(
X̂j
i −Xj

i

))2

= Op

(√
m

n

)
. (18)

Consider now µ(m) = (EUo [x] , EU0 [x2] , ..., EU0 [xm])
′
, then from the triangle in-

equality,

∣∣x̂P(m) − µP(m)
∣∣ ≤

∣∣x̄P(m) − µP(m)
∣∣ +

∣∣x̂P(m) − x̄P(m)
∣∣ = Op

(√
m

n

)
, (19)

which follows from (18) and noting the same order of magnitude applies for the first

distance, as in Barron and Sheu (1991, eq. 6.5), which represents the distance in the

case that the sequence
(
Xj
i

)n
1
were observed directly.

The trigonometric basis case is more straight forward. The relevant Euclidean

distance satisfies

∣∣x̂T(m) − x̄T(m)
∣∣ ≤

∣∣x̂T(m) − µT(m)
∣∣ +

∣∣x̄T(m) − µT(m)
∣∣

=

√√√√√
m/2∑

k=1





∑n
i=1

(
cos

[
2πkX̂i

])

n
− µTk,c





2

+





∑n
i=1 sin

[
2πkX̂i

]

n
− µTk,s





2

+

√√√√
m/2∑

k=1

(∑n
i=1 cos [2πkXi]

n
− µTk,c

)2
+

(∑n
i=1 sin [2πkXi]

n
− µTk,s

)2
,

(20)

where

EU (cos [2πkXi]) = µTk,c and EU (sin [2πkXi]) = µTk,s.

Since, for any k,
∑n

i=1 (cos [2πkXi])

n
−µTk,c = Op

(
n−1/2

)
&

∑n
i=1 (sin [2πkXi])

n
−µTk,s = Op

(
n−1/2

)
,
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and that cos [.] and sin [.] are bounded and differentiable then from Assumption 1

∑n
i=1

(
cos

[
2πkX̂i

])

n
−µTk,c = Op

(
n−1/2

)
&

∑n
i=1

(
sin

[
2πkX̂i

])

n
−µTk,s = Op

(
n−1/2

)
,

also. Consequently,

∣∣x̂T(m) − x̄T(m)
∣∣ ≤ 2

√√√√
m/2∑

k=1

(d∗)2 = Op

(√
m

n

)
,

where d∗ = Op

(
n−1/2

)
is

d∗ = max
k

{∑n
i=1 (cos [2πkXi])

n
− µTk,c,

∑n
i=1 (sin [2πkXi])

n
− µTk,s

,

∑n
i=1

(
cos

[
2πkX̂i

])

n
− µTk,c,

∑n
i=1

(
sin

[
2πkX̂i

])

n
− µTk,s





.

Generally, i.e. for either basis, we thus have
∣∣x̂(m) − x̄(m)

∣∣ = Op

(√
m
n

)
and

∣∣x̂(m) − µ(m)
∣∣ = Op

(√
m
n

)
, so that utilizing the respective mles and extending the

decomposition of the Kullback-Leibler divergence of Barron and Sheu (1991, eq. 6.9)

we obtain,

EU

[

ln

(
u(x)

px(θ̂(m))

)]

= EU

[
ln

(
u(x)

px(θ(m))

)]
+ EU

[
ln

(
px(θ(m))

px(θ̄(m))

)]

+EU

[

ln

(
px(θ̄(m))

px(θ̂(m))

)]

. (21)

Given that Assumption 1(v) implies that u (x) ∈ W r
2 then from Barron and Sheu

(1991, Theorem 1) the first two terms in (21) are, respectively, O(m−2r) andOp(m/n),

noting that under Assumption 1, log[u(x)] ∈ W r
2 . Application of Barron and Sheu

(1991, Lemma 5), which holds for any two values in Ωm ⊂ Rm, here uniquely defined
by equations (5) and (9), implies that

O

(

EU

[

ln

(
px(θ̄(m))

px(θ̂(m))

)])

= Op

(∣∣x̂(m) − x̄(m)
∣∣2
)

= Op

(m
n

)
,

and hence

EU

[

ln

(
u(x)

px(θ̂(m))

)]

= O(m−2r) + Op

(m
n

)
+ Op

(m
n

)

= Op

(
m−2r +

m

n

)
,
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as required.

Proof of Theorem 2:

Consider the problem of testing H0 : θ(m) = 0(m) against the alternative H1 :

θ(m) �= 0(m) when n,m→∞, but m3/n→ 0.

Part (i): To proceed we have defined,

λ̂m = 2n

[(
θ̂(m) − 0(m)

)′
x̂(m) −

(
ψm

(
θ̂(m)

)
− ψm

(
0(m)

))]
= 2nθ̂

′
(m)x̂(m),

where θ̂(m) solves (9), or equivalently,

ψ′m

(
θ̂(m)

)
=

∂ψm
(
θ(m)

)

∂θ(m)

∣∣∣∣∣
θ(m)=θ̂(m)

= x̂(m).

Similarly the value θ0(m) is defined by,

ψ′m
(
θ0(m)

)
= µ(m) = E(x̄(m)).

Since the exponential log-likelihood is strictly convex then the mapping,

θ(m)(η) : ψ′m (θ) = µ(m)

is one-to-one between the parameter space Θm ⊂ R
m and sample space Ωm ⊂ R

m

and application of Barron and Sheu (1991, eq. 5.6) and also (19) gives,

Op

(∣∣∣θ̂(m) − 0(m)

∣∣∣
)

= Op

(∣∣x̂(m) − µ(m)
∣∣) = Op

(√
m

n

)
. (22)

As a consequence of both (22) and (19) we have that,

Op

(∣∣∣θ̂(m) − 0(m)

∣∣∣
)

= Op

(∣∣θ̄(m) − 0(m)
∣∣) & Op

(∣∣x̂(m) − µ(m)
∣∣) = Op

(∣∣x̄(m) − µ(m)
∣∣) ,

and note that the expansions provided in the provided in the proofs of Theorems

3.1 and 3.2 of Portnoy (1988) apply for any two pairs of values, i.e.
(
θ̄(m), 0(m)

)
and

(
x̄(m), µ(m)

)
.

To continue, noting expectations under the null hypothesis can be written here

as EU0 [.] since U0 is the uniform distribution with density p0(m) (x) − 1, we have

expansions analogous to Portnoy (1988, eq. 3.5 and 3.6),

|θ̂(m) − 0(m)|2 =
(
θ̂(m) − 0(m)

)′
x̂(m) −

1

2
EU0

[(
θ̂(m) − 0(m)

)′
U

]2
+ Op

(
m2

n2

)
,
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and (23)
(
θ̂(m) − 0(m)

)′
x̂(m) = |x̂(m)|2 −

1

2
EU0

[((
θ̂(m) − 0(m)

)′
U

)2
x̂′(m)U

]

+ Op

(
m2

n2

)
.

(24)

Subtracting (24) from (23) and applying arguments identical to those given below

Portnoy (1988, Theorem 3.1, eq. 3.7) yields,

|θ̂(m) − θ(m) − x̂(m)| = Op

(m
n

)
.

From the definition of the likelihood ratio test we therefore have,

λ̂m = 2n

[(
θ̂(m) − 0(m)

)′
x̂(m) −

(
ψm

(
θ̂(m)

)
− ψm

(
θ0(m)

))]

= n

[

|x̂(m)|2 − |θ̂(m) − θ0(m) − x̂(m)|2 +
1

6
Eθ0

((
θ̂(m) − θ0(m)

)′
U

)3]

+ Op

(
m2

n

)
,

(25)

as in Portnoy (1988, eq. 3.12). Let ē = x̂(m) − x̄(m) then from the proof of Theorem

1, we have

|x̂(m)|2 = |x̄(m) + ē|2 = |x̄(m)|2 + Op

(m
n

)
. (26)

Now define the m× 1 random variable Vm = ψ
′′

m

(
0(m)

)−1/2 (
x̄− ψ′m

(
0(m)

))
, hav-

ing density pV
(
θV(m)

)
, so that E [V ] = 0(m) and V ar[Vm] = Im. Since the likelihood

ratio statistic is parameterization invariant the likelihood ratio test based on obser-

vations on Vm will be identical to that based on x̄(m). Rather than defining a new

triple of values, analogous to those in (12), in both the parameter space Θm (note

that in particular the hypothesized value would no longer satisfy θ0(m) = 0(m)) and

sample space Ωm we will instead, and without any loss of generality assume a para-

meterization in which both E
[
x̄(m)

]
= 0 and V

[
x̄(m)

]
= Im. Note, however, that it

is the unobserved x̄(m) which is assumed to be standardized not the observed x̂(m).

In this parameterization the asymptotic distribution of first |x̄(m)|2 and hence
|x̂(m)|2 (via (26)) and then via (25) for Λ̂m = λ̂m−m√

2m
follows exactly as in Portnoy

(1988, Theorem 4.1).

Part (ii): Under any fixed alternative the density of Xi = F (Yi;β∗) is

u1 (x) =
g (F−1 (x; β∗))

f (F−1 (x; β∗))
,
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and so let θ1(m) be the unique solution to,

∫ 1

0

xj ph
(
θ1(m)

)
dx =

∫ 1

0

hj u1 (x) dx ; j = 1, ..,m. (27)

The uniqueness of solutions to (27) imply θ1(m) �= 0(m).

To take the least favorable case, define

θ1(m) =
(
θ11, .θ

1
2, .., θ

1
m

)′

and suppose that θ1k �= 0 for some finite k but that θ1j = 0 for all j �= k. The series

density estimator is consistent for θ1(m), under H1, in that
∣∣∣θ̂(m) − θ1(m)

∣∣∣ = Op

(√
m
n

)
,

analogous to (22) above, and so we can write,

n
(
θ̂(m) − 0(m)

)′
x̂(m) = n

[(
θ̂(m) − θ1(m)

)′
x̂(m) +

(
θ1k
) 1

n

n∑

i=1

φk

(
X̂i

)]

.

We can therefore write the likelihood ratio as

λ̂m = 2n

[(
θ̂(m) − 0(m)

)′
x̂(m) −

(
ψm

(
θ̂(m)

)
− ψm

(
0(m)

))]

= 2n

[(
θ̂(m) − θ1(m)

)′
x̂(m) −

(
ψm

(
θ̂(m)

)
− ψm

(
θ1(m)

))]

+2n

[
(
θ1k − θ0k

) 1

n

n∑

i=1

φk

(
X̂i

)
−

(
ψm

(
θ1(m)

)
− ψm

(
θ0(m)

))
]

= λ̂
1

m + 2n

[
(
θ1k − θ0k

) 1

n

n∑

i=1

φk

(
X̂i

)
−

(
ψm

(
θ1(m)

)
− ψm

(
θ0(m)

))
]

,

where λ̂
1

m is the likelihood ratio for testing H1 : θ(m) = θ1(m).

Thus, under H1, we can write

Λ̂m =
λ̂m −m√

2m
=
λ̂
1

m −m√
2m

+
2n

[(
θ1k − θ0k

)
1
n

∑n
i=1 φk

(
X̂i

)
−

(
ψm

(
θ1(m)

)
− ψm

(
θ0(m)

))]

√
2m

.

Immediate from Part (i) of this theorem is that as m,n→∞, with m3/n→ 0,

λ̂
1

m −m√
2m

→d N (0, 1) ,

i.e.
(
λ̂
1

m −m
)
/
√

2m is Op (1) . However, since ψm (.) is a uniquely defined cumulant

function then

ψm
(
θ1(m)

)
− ψm

(
θ0(m)

)
�= 0,
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and since 0 < X̂i < 1 then 1
n

∑n
i=1 X̂

k
i = Op (1) and positive. Consequently,

Λ̂m = Op (1) +Op

(
n√
m

)
→∞,

since m3/n→ 0 and hence Pr
[
Λ̂m > κ

]
→ 1, as required.
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Appendix II Tables
Table 1a: Sizes of tests for both HE

0 and H
N
0 for

different m and n using the trigonometric basis.

n = 25

HE
0 HN

0

α

m
.10 .05 .01 .10 .05 .01

2 .053 .033 .017 .012 .007 .002

4 .071 .042 .020 .039 .023 .011

6 .073 .037 .007 .046 .026 .011

8 .081 .056 .020 .054 .027 .004

10 .092 .057 .018 .058 .030 .005

12 .091 .055 .014 .065 .034 .005

n = 50

HE
0 HN

0

α

m
.10 .05 .01 .10 .05 .01

2 .059 .040 .017 .012 .005 .001

4 .067 .044 .021 .042 .029 .009

6 .072 .045 .016 .045 .027 .009

8 .077 .047 .020 .056 .031 .008

10 .096 .055 .020 .065 .037 .009

12 .094 .055 .018 .063 .038 .007

n = 100

HE
0 NHN

0

α

m
.10 .05 .01 .10 .05 .01

2 .055 .037 .017 .013 .006 .001

4 .070 .042 .008 .050 .035 .009

6 .088 .051 .016 .063 .041 .011

8 .093 .055 .016 .078 .045 .013

10 .098 .054 .014 .080 .047 .015

12 .096 .053 .014 .092 .045 .018

n = 200

HE
0 HN

0

α

m
.10 .05 .01 .10 .05 .01

2 .065 .038 .020 .012 .006 .002

4 .070 .041 .015 .049 .031 .010

6 .085 .047 .017 .065 .041 .011

8 .093 .048 .016 .077 .043 .010

10 .098 .055 .012 .085 .045 .017

12 .096 .052 .013 .094 .046 .016
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Table 1b: Sizes of tests for both HE
0 and H

N
0 for

different m and n using the polynomial basis.

n = 25

HE
0 HN

0

α

m
.10 .05 .01 .10 .05 .01

3 .035 .016 .003 .030 .013 .003

5 .050 .025 .004 .041 .019 .002

7 .062 .033 .006 .049 .024 .004

9 .064 .034 .006 .051 .023 .004

13 .069 .037 .006 .050 .028 .009

17 .063 .031 .005 .055 .023 .003

n = 50

HE
0 HN

0

α

m
.10 .05 .01 .10 .05 .01

3 .044 .019 .003 .034 .017 .005

5 .047 .023 .005 .041 .023 .004

7 .063 .030 .005 .051 .027 .004

9 .067 .032 .006 .059 .028 .004

13 .074 .035 .004 .065 .031 .005

17 .069 .029 .006 .066 .029 .006

n = 100

HE
0 HN

0

α

m
.10 .05 .01 .10 .05 .01

3 .051 .026 .004 .035 .019 .003

5 .056 .028 .006 .043 .021 .004

7 .068 .035 .008 .056 .028 .005

9 .073 .040 .007 .065 .031 .005

13 .085 .047 .008 .075 .038 .007

17 .091 .043 .009 .081 .041 .009

n = 200

HE
0 HN

0

α

m
.10 .05 .01 .10 .05 .01

3 .051 .023 .005 .045 .021 .004

5 .061 .037 .006 .053 .029 .007

7 .071 .043 .008 .063 .031 .006

9 .081 .045 .011 .078 .040 .006

13 .095 .047 .009 .086 .045 .009

17 .097 .048 .011 .095 .049 .011
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Table 2: Rejection frequencies under various alternatives. The left hand panels

corresponds to cases where unknown parameters are not estimated, while for the right

had panels parameters are estimated.

Table 2a: Power H0 : Y ∼ N (0, 1) vs. H1 : Y ∼ t(v).

v 4 6 8 10 12 4 6 8 10 12

Λ̂P
3 .935 .705 .386 .267 .114 .605 .294 .166 .127 .097

ΛT
10 .856 .563 .254 .159 .087 .494 .241 .133 .111 .081

KS .614 .206 .091 .055 .049 .217 .114 .075 .059 .052

CM .722 .309 .165 .092 .061 .296 .132 .087 .075 .066

AD .767 .361 .182 .115 .065 .530 .240 .139 .103 .090

Table 2b: Power H0 : Yi ∼ N (0, 1) vs. H1 : Yi ∼ χ2(v) − v.

v 12 20 28 36 44 12 20 28 36 44

Λ̂P
3 .859 .660 .577 .476 .422 .572 .274 .189 .146 .114

ΛT
10 .796 .641 .546 .427 .377 .388 .189 .158 .111 .096

KS .717 .568 .443 .388 .350 .238 .151 .106 .093 .075

CM .837 .663 .563 .463 .403 .274 .176 .131 .100 .091

AD .843 .647 .529 .439 .388 .286 .165 .117 .098 .083

Table 2c: Power H0 : Yi ∼ N (0, 1) vs. H1 : Yi ∼ N (vYi−1, 1) .

v 0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1

Λ̂P
3 .694 .592 .386 .161 .093 .902 .736 .510 .271 .101

ΛT
10 .688 .483 .351 .141 .071 .847 .683 .461 .235 .091

KS .592 .458 .254 .091 .053 .579 .359 .207 .122 .058

CM .690 .585 .362 .140 .066 .648 .448 .273 .162 .083

AD .691 .580 .371 .138 .057 .866 .704 .471 .242 .089

Table 2d: Power H0 : Yi ∼ N (0, 1) vs. H1 : Yi ∼ N
(
0, 1 + vY 2

i−1
)
.

v 0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1

Λ̂P
3 .722 .514 .276 .116 .079 .869 .729 .493 .225 .106

ΛT
10 .704 .503 .263 .113 .074 .864 .740 .460 .225 .094

KS .568 .361 .161 .063 .052 .509 .350 .201 .112 .080

CM .709 .497 .255 .109 .075 .511 .352 .185 .115 .073

AD .708 .494 .246 .088 .054 .849 .721 .451 .215 .088
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Table 2e: Power H0 : Yi ∼ N (0, 1) vs. H1 : Yi ∼ N
(
v1t>�T/2�, 1

)
.

v 0.9 0.7 0.5 0.3 0.1 0.9 0.7 0.5 0.3 0.1

Λ̂P
3 .754 .563 .349 .196 .079 .653 .495 .274 .141 .080

ΛT
10 .738 .525 .311 .173 .064 .592 .442 .256 .139 .066

KS .256 .189 .127 .088 .052 .542 .349 .185 .078 .059

CM .362 .291 .164 .103 .066 .601 .445 .260 .130 .078

AD .750 .539 .321 .185 .075 .625 .467 .258 .111 .067

Table 2f: Power H0 : Yi ∼ Exp [1] vs. H1 : Yi ∼ Γ (v, 1) .

v 1.10 1.15 1.20 1.25 1.30 1.10 1.15 1.20 1.25 1.30

Λ̂P
3 .115 .121 .238 .305 .428 .191 .298 .585 .769 .866

ΛT
10 .103 .106 .179 .277 .398 .177 .285 .550 .712 .825

KS .066 .069 .136 .200 .252 .096 .193 .404 .616 .747

CM .094 .099 .179 .237 .343 .174 .280 .551 .732 .853

AD .097 .109 .227 .303 .419 .182 .299 .589 .770 .884

Table 3a: Rejection Frequencies at 5% level under

the respective null hypotheses

i) HN
0 : Y ∼ N ∗

n 25 50 100 200

Λ̂m .064 .065 .058 .044

CM .064 .058 .057 .054

AD .060 .059 .062 .058

ii) HΓ
0 : Y ∼ Γ∗

n 25 50 100 200

Λ̂m .062 .056 .049 .046

CM .068 .060 .065 .061

AD .065 .055 .052 .061

iii) HW
0 : Y ∼W ∗

n 25 50 100 200

Λ̂m .067 .055 .055 .047

CM .063 .058 .056 .058

AD .055 .066 .065 .057

iv) HL
0 ∼ L∗

n 25 50 100 200

Λ̂m .065 .062 .050 .042

CM .071 .066 .059 .055

AD .062 .054 .055 .055
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Table 3b: Rejection Frequencies at 5% level under various alternatives

i) H0 : Y ∼ N ∗ vs. H1 : Y ∼ Γ∗

n 25 50 100 200

Λ̂m .069 .088 .116 .175

CM .078 .094 .123 .185

AD .069 .090 .108 .161

ii) H0 : Y ∼ Γ∗ vs. H1 : Y ∼ N∗

n 25 50 100 200

Λ̂m .068 .085 .099 .129

CM .055 .066 .079 .088

AD .076 .085 .092 .113

iii) H0 : Y ∼ N ∗ vs. H1 : Y ∼W ∗

n 25 50 100 200

Λ̂m .196 .364 .584 .897

CM .094 .192 .465 .776

AD .183 .315 .550 .806

iv) H0 : Y ∼W ∗ vs. H1 : Y ∼ N ∗

n 25 50 100 200

Λ̂m .101 .164 .351 .690

CM .107 .233 .388 .580

AD .098 .164 .334 .602

v) H0 : Y ∼ N∗ vs. H1 : Y ∼ L∗

n 25 50 100 200

Λ̂m .173 .249 .393 .458

CM .111 .152 .212 .358

AD .131 .190 .246 .417

vi) H0 : Y ∼ L∗ vs. H1 : Y ∼ N∗

n 25 50 100 200

Λ̂m .046 .055 .065 .101

CM .036 .054 .073 .109

AD .041 .046 .070 .108
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Table 3c: Rejection Frequencies at 5% level under various alternatives

i) H0 : Y ∼ Γ∗ vs. H1 : Y ∼ L∗

n 25 50 100 200

Λ̂m .091 .122 .188 .253

CM .078 .081 .122 .193

AD .105 .128 .174 .257

ii) H0 : Y ∼ Γ∗ vs. H1 : Y ∼W ∗

n 25 50 100 200

Λ̂m .285 .448 .709 .937

CM .320 .476 .781 .970

AD .155 .306 .638 .938

iii) H0 : Y ∼W ∗ vs. H1 : Y ∼ Γ∗

n 25 50 100 200

Λ̂m .197 .355 .719 .945

CM .200 .315 .534 .836

AD .117 .219 .482 .851

iv) H0 : Y ∼W ∗ vs. H1 : Y ∼ L∗

n 25 50 100 200

Λ̂m .172 .327 .620 .867

CM .215 .343 .542 .797

AD .159 .277 .500 .816

v) H0 : Y ∼ L∗ vs. H1 : Y ∼ Γ∗

n 25 50 100 200

Λ̂m .059 .082 .120 .152

CM .059 .081 .130 .161

AD .051 .059 .101 .148

vi) H0 : Y ∼ L∗ vs. H1 : Y ∼ W ∗

n 25 50 100 200

Λ̂m .243 .343 .592 .892

CM .124 .241 .519 .882

AD .204 .325 .583 .912
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Table 5a: MSE of estimated quantiles for Y ∼ t(4),

polynomial basis, m = 3.

q∗Y T q∗Y T q∗Y T q∗Y T q̂Y T q̂Y T q̂Y T q̂Y T

n

π
25 50 100 200 25 50 100 200

0.05 .1266 .0906 .0774 .0718 .1309 .0731 .0506 .0389

0.25 .0450 .0227 .0127 .0066 .0446 .0218 .0119 .0058

0.50 .0397 .0183 .0101 .0049 .0348 .0159 .0087 .0042

0.75 .0442 .0222 .0126 .0074 .0445 .0215 .0117 .0066

0.95 .1293 .0976 .0768 .0693 .1333 .0806 .0505 .0375

Table 5b: MSE of estimated quantiles for Y ∼ t(4),

trigonometric basis, m = 10.

q∗Y T q∗Y T q∗Y T q∗Y T q̂Y T q̂Y T q̂Y T q̂Y T

n

π
25 50 100 200 25 50 100 200

0.05 .1408 .1270 .1179 .1159 .1060 .0551 .0354 .0240

0.25 .0308 .0187 .0139 .0116 .0513 .0244 .0138 .0064

0.50 .0175 .0089 .0053 .0023 .0411 .0182 .0105 .0052

0.75 .0313 .0194 .0138 .0113 .0512 .0253 .0123 .0065

0.95 .1441 .1271 .1186 .1155 .1077 .0599 .0344 .0228

Table 5c: MSE of estimated quantiles for Y ∼ Γ (1.2, 1),

polynomial basis, m = 3.

q∗Y Γ q∗Y Γ q∗Y Γ q∗Y Γ q̂Y Γ q̂Y Γ q̂Y Γ q̂Y Γ

n

π
25 50 100 200 25 50 100 200

0.05 .0002 .0001 .0001 .0000 .0002 .0001 .0001 .0000

0.25 .0022 .0011 .0006 .0003 .0022 .0012 .0006 .0003

0.50 .0113 .0057 .0028 .0014 .0115 .0059 .0029 .0015

0.75 .0379 .0175 .0090 .0047 .0368 .0172 .0091 .0049

0.95 .2007 .1045 .0529 .0286 .2069 .1137 .0637 .0423
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Table 5d: MSE of estimated quantiles for Y ∼ Γ (1.2, 1),

polynomial basis, m = 10.

q∗Y Γ q∗Y Γ q∗Y Γ q∗Y Γ q̂Y Γ q̂Y Γ q̂Y Γ q̂Y Γ

n

π
25 50 100 200 25 50 100 200

0.05 .0006 .0004 .0003 .0003 .0002 .0001 .0001 .0000

0.25 .0094 .0065 .0051 .0042 .0033 .0017 .0009 .0004

0.50 .0494 .0375 .0335 .0310 .0156 .0073 .0037 .0019

0.75 .2085 .1676 .1583 .1532 .0626 .0276 .0146 .0078

0.95 .7456 .7352 .7380 .7395 .2180 .1093 .0527 .0267
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