Triangle

Course overview

All the food we eat stems from plants and crops. As the human population grows and our climate changes, we need to improve crop productivity. Plant and crop scientists have a vital role in the future of food.

Our plant biology degree teaches you how to experiment with and investigate plant growth. You'll understand how plants develop, reproduce and how they evolve to respond to their environment.

  • Benefit from our international reputation for research in plant biology. You'll be taught by experts across different aspects of plant science. 
  • Explore many exciting aspects of modern plant science, including:
    • cell and molecular biology
    • genetic engineering
    • plant-pathogen interactions
    • environmental physiology
    • ecology
  • You'll apply plant biology to uses in the agricultural, horticultural, biotechnology and food industries.
  • Access resources such as the Hounsfield Facility where the Hidden Half of Plants is revealed by CT-Scanners.

Why choose this course?

Teaching expertise

You will be taught by experienced and passionate plant scientists who are experts in their field.

One of the largest

plant and crop science divisions in the UK

Flexible module choice

allows you to study what you find most interesting.

Specialist facilities

You will have access to glasshouses and controlled environment growth rooms.

Research centres

Our research centres have an international reputation in plant science. These include Wheat Research Centre, and Nottingham Arabidopsis Stock Centre.

Study Abroad

You'll have the opportunity to apply to study abroad and gain a global perspective of plant biology


Entry requirements

All candidates are considered on an individual basis and we accept a broad range of qualifications. The entrance requirements below apply to 2023 entry.

UK entry requirements
A level ABB, biology required

Please note: Applicants whose backgrounds or personal circumstances have impacted their academic performance may receive a reduced offer. Please see our contextual admissions policy for more information.

Required subjects

A levels: biology required

IB score 32 (including 5 in biology at Higher Level)

A levels

ABB, biology required.

General studies, critical thinking, citizenship studies and leisure studies are not accepted.

GCSEs

GCSE mathematics and english at grade 4 (C) are required. 

Foundation progression options

Science with Foundation Year

If you have achieved high grades in your A levels (or equivalent qualifications) but do not meet the current subject entry requirements for direct entry to your chosen undergraduate course, you may be interested in our science foundation programme.

There is a course for UK students and one for EU/international students.

Applicants must also demonstrate good grades in previous relevant science subjects to apply. You are guaranteed a place on selected undergraduate courses if all progression requirements are met.

Mature Students

At the University of Nottingham, we have a valuable community of mature students and we appreciate their contribution to the wider student population. You can find lots of useful information on the mature students webpage.

Learning and assessment

How you will learn

Teaching methods

  • Computer labs
  • Lab sessions
  • Lectures
  • Seminars
  • Tutorials
  • Workshops
  • Problem-based learning

How you will be assessed

We use a range of assessment methods, including exams, essays, verbal presentations and practicals. You will receive a copy of our marking criteria which provides guidance on how we will assess your work. Your work will be marked on time and you will receive regular feedback.

Your final degree classification will be based on marks gained in your second and third years of study.

You must pass each year to progress. This typically means that you will need to achieve marks of at least 40% in each module. Full details on our marking criteria and structure will be provided at your induction.

To study abroad as part of your degree, you must meet minimum academic requirements in year one.

Assessment methods

  • Coursework
  • Group project
  • Lab reports
  • Oral exam
  • Poster presentation
  • Research project
  • Written exam

Contact time and study hours

In your first year, you will take 120 credits in core modules. As a guide, one credit equals approximately 10 hours of work. You will spend around half of your time in lectures, seminars and practicals. The remaining time will be independent study.

Core modules are typically taught by professors or associate professors. PhD students may support teaching on some modules.

Study abroad

There are a number of options to apply to study abroad during your time at Nottingham. We offer designated support to guide you through the entire process. You can apply to: 

  • study at University of Nottingham Malaysia in your second year for a semester or a whole year
  • study in Australia, Canada or the USA. We'll help you apply to spend a semester of your second year at one of our highly ranked international partner universities
  • study in France, Austria or Spain for an additional year between years two and three
  • a wide range of summer schools across a variety of countries

Year in industry

There’s a wide range of possible year in industry placements on offer. We have good links with companies, and our dedicated placement team is available to support you in finding the right placement. 

Our students have been on placement with:

  • National Botanic Garden of Wales
  • John Innes Centre
  • NIAB – National Institute of Agricultural Botany

The industry placement takes place between years two and three of your degree. You can apply during year two of your degree, subject to meeting minimum academic requirements.

Study Abroad and the Year in Industry are subject to students meeting minimum academic requirements. Opportunities may change at any time for a number of reasons, including curriculum developments, changes to arrangements with partner universities, travel restrictions or other circumstances outside of the university’s control. Every effort will be made to update information as quickly as possible should a change occur.

Modules

You will be introduced to key concepts in plant biology, as well as essential topics in ecology, genetics and molecular biology.

Core modules

Introduction to Plant Science

How can mutant plants be used to improve crop yield? In this module you’ll be introduced to plant evolution and the cellular structure of plants, in particular seeds, leaves, flowers and roots, and how these multicellular tissues are constructed. You’ll become familiar with the techniques used to study plant science, including genetics and the use of mutants. Using model plants, such as Arabidopsis, you’ll look at the development of modern plant biology and genetics and then explore the applications of biotechnology in plant science. You’ll also examine the importance of plant nutrition and how the interaction with pathogens is crucial to plant growth and production. You’ll have a mix of lectures and practical laboratory sessions to apply your learning.

Environmental Science and Society

This module introduces you to the role and limitations of environmental science within the context practical environmental decision-making. During this module, we will look at how the degradation of our natural environment is creating unprecedented challenges for humans and society around the world. Science has a key role to play in helping us to understand and protect our environment. Public opinion of environmental issues and science is key to this, not least because the public funds 80% of scientific research. In this module, we will look at issues around scientific ethics, trust in science, denial, scepticism and science communication. Environmental problems are now very much part of the political agenda. We will look at the history of the environmental movement, environmental activism and environmental ethics. We will explore how and why we try to protect the environment through policy, legislation, international agreements and economic strategies.

Genes, Molecules and Cells

This module combines lectures and laboratory classes and introduces you to the structure and function of significant molecules in cells, and the important metabolic processes which occur inside them. You will study, amongst other topics, protein and enzyme structure and function, the biosynthesis of cell components, and the role of cell membranes in barrier and transport processes. You'll examine how information in DNA is used to determine the structure of gene products. Topics include DNA structure, transcription and translation and mutation and recombinant DNA technology.

Plant Science Research Tutorials

In this 10 credit module you'll learn about our latest plant and crop research. Each week different academics will explain and demonstrate the research being carried out by their group.

You’ll be able to:

  • find out how research is contributing to our understanding of plant function and society’s needs
  • discover what area of plant science you find most interesting
Principles of Ecology

Pollinator species are hugely important for natural systems and for managed systems like agriculture, but there is concern that numbers are declining. This module introduces you to the principles of ecology and looks at how organisms have evolved to interact with their environment.

You’ll cover:

  • population and community ecology
  • the various definitions of biodiversity
  • the loss of species and habitats

You’ll have lectures from current researchers in the field and the opportunity to apply your learning in the laboratory and through field visits. 

Academic Skills

This module is compulsory for environmental science, environmental biology and plant science undergraduates. It is spread across the autumn and spring semester of year one. It is taught using a mixture of lectures, laboratory and computer practical sessions, alongside tutorials. The module is structured around the production of a scientific paper. Therefore, the module’s topics include scientific writing, data analysis, data presentation and referencing skills

The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on Monday 15 August 2022.

As you progress through the second year, you will develop and consolidate your professional abilities as a scientist. In Applied Plant Physiology you'll look at crop species in the UK and worldwide. You'll examine the physiological basis of resource capture and utilisation in crop growth and development. 

Core modules

Applied Plant Physiology: from cell to crop

In this module you will gain a comprehensive understanding of plant physiology. We’ll take an applied approach – right from the molecular level to the field – to understand what it means for growers in the UK and worldwide. We’ll examine:

  • the mechanisms that plants use to capture and utilise physical resources: i.e. solar energy, water and nutrients
  • the physiological basis of resource capture and utilisation in growth and development
  • physical aspects of the plant environment combining these key processes

The module also considers contemporary issues and future developments in agronomy and the role of the agronomist in successful crop management. You will learn through lectures, practical classes and tutorials.

Research and Professional Skills

In this module you will develop and consolidate your professional and research abilities as a scientist. You’ll improve your core skills that will enable you carry out scientifically-sound research, including:

  • the scientific method and experimentation
  • measurement techniques
  • literature searches
  • data collection and statistical analysis.

You’ll also cover discipline-specific topics according to your interests in animal, crop or management science. There will be a mix of lectures, workshops and group activity sessions for you to work on your skills.

Optional modules

Soils

Soils are the most complex biomaterial on earth. An understanding of the basic concepts concerning the form and function of soils is important for future management strategies such as mitigating the effects of climate change and providing safe and sustainable food. This module focuses on the important soil properties from physical, chemical and biological perspectives including soil organic matter, soil chemical reactions, soil fauna and flora, and soil-water relations.

Ecosystem Processes

The course will focus on the processes that govern terrestrial ecosystem function. We will identify key ecosystem drivers and processes and explore how these have shaped the biosphere. Students will gain an understanding of the mechanisms that control changes in the physiochemical environment and their impact upon communities. Particular topics will include primary productivity, decomposition, herbivory, biodiversity and human impact on ecosystems. Classes comprise a mix of lectures, laboratory practicals, a computer practical, a seminar and fieldwork

Molecular Biology and the Dynamic Cell

This module offers a detailed study of the core molecular processes that enable cells to function such as DNA biochemistry, gene expression, protein synthesis and degradation. You will learn about the basic molecular processes that underpin the function of eukaryotic cells and to describe how different organelles within the cell function, with an emphasis on the dynamic nature of cell biology. You will have lectures, practical classes, a poster presentation and tutorials.

Forest Ecology and Management

This module will introduce you to some key ecological processes in forest ecosystems and provides an overview of forest biodiversity and its assessment. You will develop practical skills in tree species identification and survey techniques during fieldwork and site visits. We will look at the scale, rates, distribution and causes of deforestation and forest degradation and the implications of this for global and local ecosystem services. We will examine different management objectives including timber production, environmental services, amenity and conservation.

Ecological Surveying

This module will introduce students to a range of skills for environmental monitoring and ecological assessment; students will develop key practical skills and gain valuable experience in planning and conducting fieldwork.

There will be a strong focus on developing practical skills and enhancing employability in the environmental job sector. Topics covered will include Plant identification and NVC - Phase 1 habitat surveys, surveying species, which have specific protections under law – bats and birds and terrestrial invertebrate survey techniques.

Biological Photography and Imaging I

Through practical sessions, you will learn the techniques of biological image production and manipulation, including the ability to generate biological images of the highest technical quality and scientific value. You will build an understanding of the principles behind photography and how to get the most out of state of the art photographic and imaging equipment.

Economic Analysis for Agricultural and Environmental Sciences

Economic analysis can help you answer important management questions:

  • How much fertiliser should I apply to my wheat?
  • If demand for beer is going up, how will that affect the price I receive for my barley?

Through this module you’ll gain an understanding of economic ideas and principles and be able to apply them to a range of problems of interest to agricultural and environmental scientists and managers. You’ll also examine the arguments for government intervention to correct ‘market failures’ with reference to the latest government environmental schemes. 

Enterprise Management Challenge

This module aims to introduce you to agricultural management decision making in practice through team-based activity, integrating science, business and economics. Working in small teams and supported by teaching staff and industry consultants, you will be responsible for making management (science and business) decisions relating to the production of a crop or livestock enterprise for commercial purposes. The challenge will be based on the University Farm. Your team’s decisions – in the roles of both professional consultant and farm manager - will be implemented by technical staff.

For this module you will have lectures plus significant ‘field time’, including formal field site visits and informal field observation visits.  

Computer Modelling in Science: Introduction
The aim of this module is to introduce the use of computing programming and modelling in the biological and environmental sciences for model simulation and image processing.
Plant Pests and Diseases

Sugarbeet root aphids feed on the sap in the roots, causing damage and production losses. But how does this pest work and what can be done? In this module, you’ll explore how microbes and insects cause disease in plants and the effect of interactions between plants, microbes and insects. Looking globally, you’ll be able to explain the importance and the nature of the organisms that are pests and diseases of plants, including population dynamics and epidemiology. You’ll also assess the main approaches for control and management of pests and diseases, including chemical interventions, resistance breeding in plants and biological control. You’ll have lectures complemented by practical laboratory sessions, videos and demonstrations.

Molecular Pharming and Biotechnology

The creation of genetically modified organisms (GMOs) is having a major impact on modern agriculture. Transgenic research and “synthetic biology” approaches have the potential to enable plants to be used as “green factories” for the production of novel products. Through this module, you’ll gain both theoretical and practical knowledge as to how transgenic organisms are engineered. You’ll also learn about the production of traditional plant products and their uses in biotechnological industries, and the use of marker assisted breeding techniques. You’ll have lectures and practical laboratory sessions to really get into the analysis of the applications of these technologies, but you’ll also get to look out into industry and broader. There will be industrial field trips to see what you’ve learnt in practice and experts in the field will be invited to lecture and give some thought-provoking debate about the ethical, commercial and environmental concerns around GMO technology.

The Green Planet
This module explores the evolution of key plant systems through deep time, and the significance of this process for understanding modern ecology and food security. You will learn about the challenges that plants faced when moving onto land and evolutionary innovations within the early spermatophytes. You will also gain an understanding of the power of natural selection in producing plant diversity over deep time.
The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on

You will undertake a research project in plant science which may be either laboratory, field-based or data driven. The research project encourages critical thinking and involves independent study and teamwork. You'll work on a literature survey, data handling, analysis and interpretation.

Core modules

Plant Science Research Project

Your research project will run throughout the final year. It may be laboratory or field-based and provides you with an opportunity to undertake an original research project under the supervision of an individual member of academic staff.

This project encourages critical thinking and involves independent research in a supportive environment, a literature survey, and data handling, analysis and interpretation. Examples of recent projects include: 

  • use of PCR to monitor transposons in petunia
  • enzymes involved in taxol biosynthesis in transgenic plants
  • photosynthesis acclimation in Arabidopsis ecotypes
  • agrobacterium-mediated transformation of chicory
  • use of a fern for the phytoremediation of soil contaminated with arsenic
  • use of UV-C radiation to inhibit post-harvest fungal pathogens of fruit
  • LAMP PCR diagnostics for fungal pathogens
  • algal phosphorescence and its use in street lighting

Optional modules

Molecular Plant Pathology
Covers the molecular techniques being used to develop an understanding of plant/pathogen interactions. You will consider the molecular biology of plant pathogens, how these cause disease, and the mechanisms used by plants to defend themselves against such pathogens. You will spend around three hours per week in lectures studying this module.
Plants and the Light Environment

How does light cause variation in crop yields? In this module, you’ll study the influence of the light environment on the physiology of native and crop species, extending from the cellular to community level. You’ll learn how to differentiate between different light signalling pathways in plants and demonstrate how these pathways function in plants. You’ll be able to explain how light is absorbed by plants to initiate energy transfer systems and to stimulate development and ultimately plant yield. You’ll then be able to apply your knowledge in understanding the causes of variations in crop yields and how these may be used to assist in the search for improved varieties and increased productivity in agricultural systems. You’ll have a mix of lectures, demonstrations and field trips to see what you’ve learnt in practice.

Basic Introduction to Omic Technologies

Over the past few years major developments have been made regarding the study of genomes. Sequencing programmes now mean that the complete DNA sequence is now known for many species. Such information is revealing the high degree of similarity and conservation between different species and organisms, revolutionising the way in which gene function analysis is carried out. This module will provide a basic overview of recent research in the field of post-genomic technologies known as “omics” with emphasis on genomics, proteomics and metabolomics. Case studies will show how different approaches have been used to study genomes and how such developments are influencing the way genetic analysis and biotechnological improvement can be made. You will study by hands-on experience with problem-based lab and computer training sessions.

Genetic Improvement of Crop Plants

The genetic improvement of crop plants is critical to address issues of food security for a growing world population and in the face of a changing climate. It is also the key to tackling environmental degradation and to meeting the increasing strict regulations on agricultural pollution which are coming into force in many Western countries. While these issues are not identical, they are linked and efficient plant breeding can be part of the solution to both. In this module, you’ll develop an understanding of crop genetic improvement through lectures, case and literature studies, research plan presentations, external expert seminars and practical exposure to crop breeding and molecular techniques. You’ll examine how modern and technological approaches can enhance crop breeding programmes and be able to assess the limitations of these approaches. The emphasis is on the application of biotechnology to conventional breeding, but you’ll also learn about genetic modification in the genetic improvement of crops. You’ll cover temperate and tropical, annual and perennial, and in-breeding and out-breeding crops.

Sex, Flowers and Biotechnology

The processes of floral development and reproduction are some of the most critical stages occurring during plant growth and development. They are fundamental for plant breeding, crop productivity and horticulture. The significance of plant reproduction is particularly pertinent to issues of food security and the future development of high yielding crops. In this module, you’ll focus on recent developments that have been made in the understanding of floral development, reproduction and seed production, including the current goals, methods and achievements in the genetic engineering of crop and horticultural plants. With an emphasis on reproductive biology or fruit production, you’ll learn how such processes can be manipulated for commercial exploitation and to facilitate crop improvement. Through a mix of lectures and seminars, you’ll gain a detailed knowledge on the developmental and molecular processes associated with flowering, seed production and fruit development.

Current Issues in Crop Science

In this integrative module you’ll consider the future options and possible strategies for maintaining or increasing crop production in the UK and world agriculture. You’ll learn about the latest trends and developments within crop science, and the philosophical, ethical and policy issues associated with them. The topics covered will vary to reflect the most recent issues, but have included: the future of genetically modified crops, impact of crop production on biodiversity and prospects for organic crop production. Using your subject knowledge and research skills, you’ll be in a position to critically analyse the advantages and disadvantages of developments in crop science, both for the module and in your future career.

Plants and the Soil Environment

What happens below the ground that affects the water and nutrient uptake by plants? In this module, you’ll examine the acquisition of water and nutrients by plants in both agricultural and natural systems, and how plants interact with the soil environment. You’ll learn about the evolution of root adaptations which enable plants to thrive in environments with limited or excess water and nutrients. In an agricultural setting, you’ll explore how water and nutrient uptake by plants can be used to improve crop productivity and resource management, and use the practical study component to investigate new methods and technologies for below-ground phenotyping of roots. You’ll have a mix of lectures and computer-based practicals to gain a fundamental understanding of how water and nutrients are acquired by plants from the soil environment, and their influence on plant growth and development.

Plant Cell Signalling

How does a plant know when it is being attacked? In this module you’ll learn about plant signalling molecules and the ways in which these signals are integrated to ensure appropriate responses to environmental conditions or plant pathogen attack. You’ll gain a detailed knowledge of how plants use intercellular and intracellular signalling strategies to provide information about their environment, with particular emphasis on the use of molecular genetics in enabling us to determine the nature of the signals and the cross-talk that takes place between them. You’ll have lectures and demonstrations, as well as laboratory sessions to gain practical experience of the techniques for studying plant hormone signalling.

Plant Disease Control
Discusses applied aspects of plant disease control, comprising transmission, epidemiology, detection and diagnosis, and control options. You will cover control strategies based on application of fungicides, biological control, deployment of disease resistant varieties and biotechnological approaches. You will also consider the relative strengths and weaknesses of the different approaches. This module consists of a four-hour lecture once per week.
Field Crops Cereals

A highly applied module, you’ll learn how to optimise the management of different cereal crops to meet the requirements of specific environments and end-uses. To do this, you’ll learn about the production strategies for the major grain cereals, with particular emphasis on factors controlling yield and quality. You’ll also examine the importance of plant structure and function (for example, the importance of the 'flag leaf' in wheat) of and the influence of the environment and management practices on crop growth and development. You’ll have a mix of lectures, seminars, in-class exercises and field work to develop and apply your understanding.

Palaeobiology

The module will focus on the processes that govern the interplay between the biosphere and geosphere. It will identify key events and processes in geological time which demonstrate the geological consequences of evolution. Students will gain understanding of the mechanisms that control changes in the physiochemical environmental and their impact upon evolution and in turn how life has impacted on the physiochemical environment.

The above is a sample of the typical modules we offer but is not intended to be construed and/or relied upon as a definitive list of the modules that will be available in any given year. Modules (including methods of assessment) may change or be updated, or modules may be cancelled, over the duration of the course due to a number of reasons such as curriculum developments or staffing changes. Please refer to the module catalogue for information on available modules. This content was last updated on

You can choose to add this optional additional year when you start your degree. It takes place between your second and third years. You'll learn how to work across other science disciplines and develop your computational skills. This is increasingly important to help solve some of the biggest challenges we face. Module topics will cover:

  • Programming
  • Software Development
  • Modelling
  • Databases
  • Problem Solving
  • Image Processing

You'll study at our Jubilee Campus, taught by experts from the School of Computer Science. If you choose this option, your degree certificate will change to ‘…with a Year in Computer Science'.

Fees and funding

UK students

£9,250
Per year

International students

To be confirmed in 2022*
Keep checking back for more information

*For full details including fees for part-time students and reduced fees during your time studying abroad or on placement (where applicable), see our fees page.

If you are a student from the EU, EEA or Switzerland, you may be asked to complete a fee status questionnaire and your answers will be assessed using guidance issued by the UK Council for International Student Affairs (UKCISA) .

Additional costs

All students will need at least one device to approve security access requests via Multi-Factor Authentication (MFA). We also recommend students have a suitable laptop to work both on and off-campus. For more information, please check the equipment advice.

As a student on this course, you should factor some additional costs into your budget, alongside your tuition fees and living expenses.

You should be able to access most of the books you’ll need through our libraries, though you may wish to purchase your own copies. If you do these would cost around £40.

Due to our commitment to sustainability, we don’t print lecture notes but these are available digitally. You will be given £5 worth of printer credits a year. You are welcome to buy more credits if you need them. It costs 4p to print one black and white page.

If you do a work placement, you need to consider the travel and living costs associated with this.

Personal laptops are not compulsory as we have computer labs that are open 24 hours a day but you may want to consider one if you wish to work at home.

Scholarships and bursaries

Home students*

Over one third of our UK students receive our means-tested core bursary, worth up to £1,000 a year. Full details can be found on our financial support pages.

* A 'home' student is one who meets certain UK residence criteria. These are the same criteria as apply to eligibility for home funding from Student Finance.

International students

We offer a range of international undergraduate scholarships for high-achieving international scholars who can put their Nottingham degree to great use in their careers.

International scholarships

Careers

Plant biologists can work in crop production, plant biotechnology, food industries, environmental management. Other routes include publishing, commerce and teaching.

You can also continue study to PhD level, or work in government research institutes such as Rothamsted Research and John Innes Centre.

Recent graduates roles include:

  • plant propagators and tissue culturists
  • horticulturists at Kew Gardens, other botanic gardens and in industry
  • research scientists in the plant science industry and institutes
  • plant quarantine/quality inspectors
  • plant breeders
  • journalists

Average starting salary and career progression

85.3% of undergraduates from the School of Biosciences secured employment or further study within 15 months of graduation. The average annual salary for these graduates was £24,418.*

*Data from UoN graduates, 2017-2019. HESA Graduate Outcomes. Sample sizes vary.

Studying for a degree at the University of Nottingham will provide you with the type of skills and experiences that will prove invaluable in any career, whichever direction you decide to take.

Throughout your time with us, our Careers and Employability Service can work with you to improve your employability skills even further; assisting with job or course applications, searching for appropriate work experience placements and hosting events to bring you closer to a wide range of prospective employers.

Have a look at our careers page for an overview of all the employability support and opportunities that we provide to current students.

The University of Nottingham is consistently named as one of the most targeted universities by Britain’s leading graduate employers (Ranked in the top ten in The Graduate Market in 2013-2020, High Fliers Research).

Dummy placeholder image
" I chose Nottingham as this is the largest community of plant and crop researchers in the UK with access to amazing resources such as the Hounsfield facility where the ‘hidden half’ of plants is revealed by CT-Scanners. I’ve covered everything from molecular biology and how plants sense their environment to plant pathology, all of which I’ve loved. "

Related courses

Important information

This online prospectus has been drafted in advance of the academic year to which it applies. Every effort has been made to ensure that the information is accurate at the time of publishing, but changes (for example to course content) are likely to occur given the interval between publishing and commencement of the course. It is therefore very important to check this website for any updates before you apply for the course where there has been an interval between you reading this website and applying.