4th Year Group Development Project

Light-weight, Low-cost, Wood-fired Bread Oven

Introduction (1)

Bakery needed in Soroti

- Lack of bakery in Soroti
- Main supply from Kampala is expensive for some people in Soroti

Introduction (2)

- Suggested by Agape Education Trust
- Organised and will be run by: Job, Robert and Anne

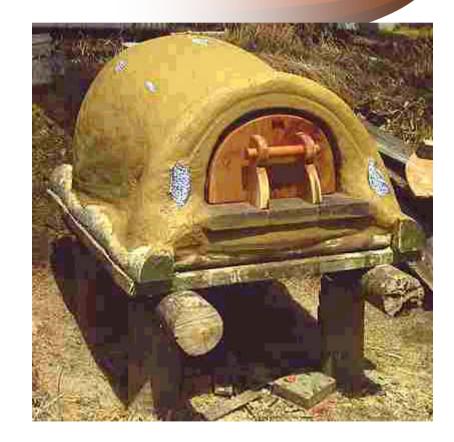
Specifications (1)

- Must hold 30 1 lb loaves to bake 300 loaves per day
- Achieve a working temperature of 250°C to bake bread
- Use locally harvested wood as fuel
- Portability
- Simple design

Specifications (2)

- Reproduced from CAD and instructions
- Low cost
- Basic workshop facilities

Specifications (3)


Need for Portability

- The bakery will be in rented property
- Traditional ovens are permanent fixtures
- The landlord will raise rent
- If mobile then the bakery can move location if rent becomes excessive

Traditional Batch Ovens (1)

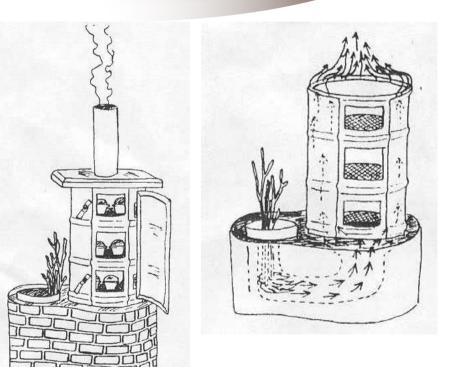
- Clay or brick for insulation
- Fire inside heats insulation
- Embers removed and replaced by bread
- cook with heat retained by insulation

Traditional Batch Ovens (2)

Problems

- Oven must be reheated after each batch
- Small capacity
- Permanent fixture

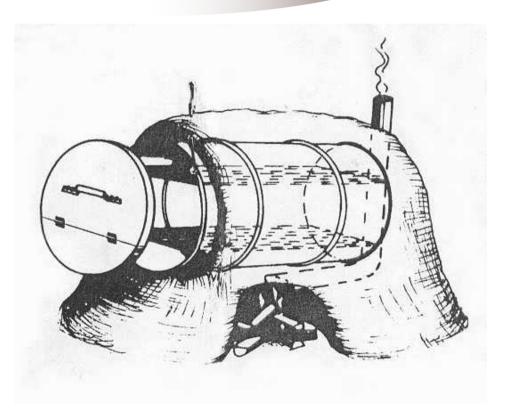
Alternative Designs (1)


- Oil Drum Casing Oven
- Insulated Oil Drum Oven
- Steel Box Oven
- Double Skinned Steel Oven

Alternative Designs (2)

Oil Drum Casing Oven

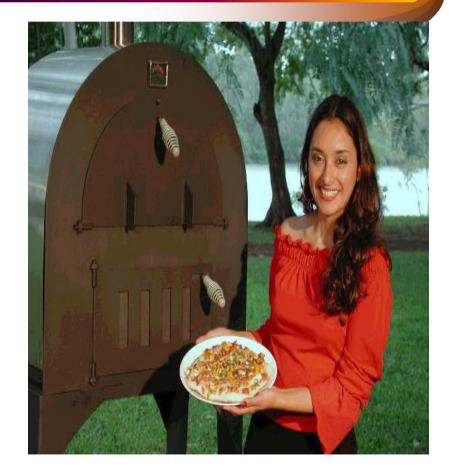
- One oil drum inside another
- Heated from sides and underneath
- Low cost
- Small Capacity



Alternative Designs (3)

Insulated Oil Drum Oven

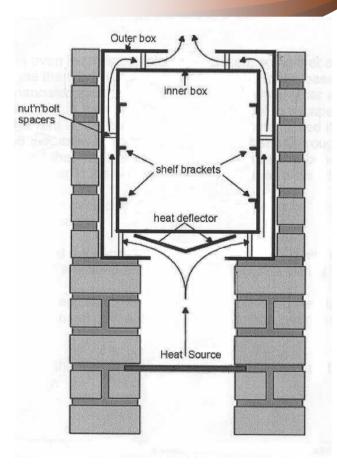
- Oil Drum is insulated
- Fire underneath
- Cheap
- Easy
- Small capacity
- Permanent fixture



Alternative Designs (4)

Cast Iron Oven

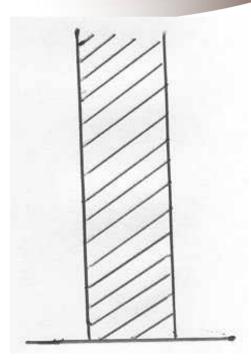
- Separate oven and firebox
- Cast iron used
- Heavy therefore not portable
- Expensive to manufacture



Altenative Designs (5)

Double Skin Oven

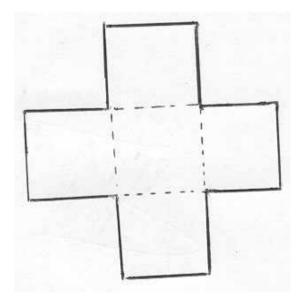
- Brick insulation
- Flue gases flow around sides and over top of oven
- large capacity



Initial Development (1)

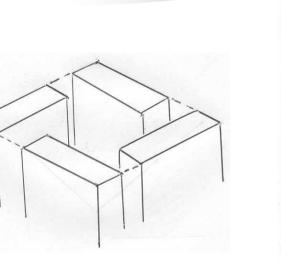
Design Concept

- Brick insulation
- Sand Insulation
 - Thermal Properties
 - Filling/Emptying
 - Availability

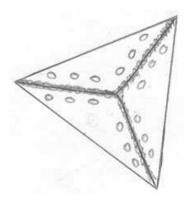


Initial Development (2)

Basic Fabrication


• 'Net' design

- Box sections
 - Folding & Riveting
 - Flat Packing
- L-sections & Sheet steel



L-sections & Sheet steel

- Dexion
- Thermal Expansion
 - Oversize holes on sheet
 - Frequency of bolts
- Access for manufacture
 - Square head bolts
- Corners

Oven Heating

- Uniform heat requirement
- Fan oven
 - Driven by flue gases
- Duct Flue Gases
 - Through oven chamber
 - Across oven ceiling
 - Up sides
 - Up back

- Corrosion
 - UK testing
 - Damp sand
 - African climate
 - Long term use
- Stainless steel prototype
 - Except welded panels

- Primary and Secondary air
- Primary air
 - Burns wood
 - Under fire grate
- Secondary air
 - Burns gas
 - Above fire grate
- Control of oven temperature using sliding barriers

- Importance of location
- Long bolts through both walls
- Cross braces
 - Multiple
 - Single
 - Welded nuts

Dimensions

- Oven Chamber
 - Dictated by baking requirements
- Insulation thickness
 - Manufacturing requirements
- Spreadsheet
 - Flue gas channel depth
 - Primary & Secondary air flow rates
 - Wood combustion rates
 - Chimney length

Calculations (1)

Objective:

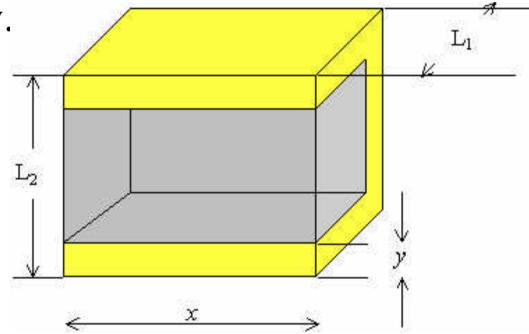
• "Calculate critical dimensions that will enhance combustion and yield maximum theoretical efficiency."

Calculations (2)

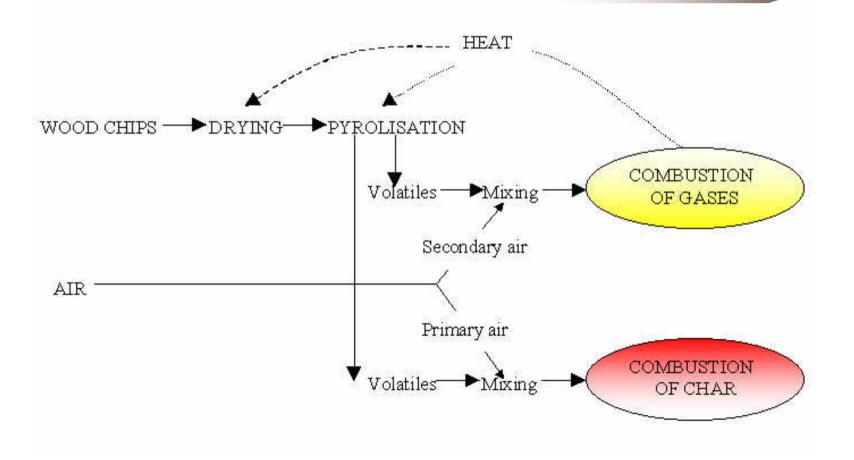
The Objective Was Achieved Through Calculating:

- Amount of Wood required /s for a steady state oven temperature of 250°C
- Primary and Secondary airflow required for complete combustion
- Required length of chimney
- Conduction losses in the structure

Calculations (3)

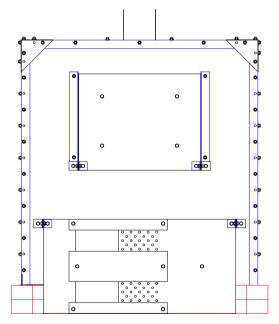

Assumptions

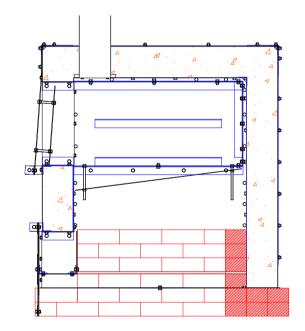
- Required Oven Temperature: 250°C
- Moisture in Wood: 30 %
- Excess air required for complete combustion: 100%
- G.C.V of Wood: 11000 KJ/Kg


Calculations (4)

- Flue gas channel dimensions; x, y.
- Height L₁
- Length L₂

Calculations (5)


Calculations (6)


Dimensions / Combustion analysis

Inner Oven Dimensions		
Length, L ₁	800	mm
Height, L ₂	400	mm
Width, x	800	mm
Air gap, y	15	mm
Oven Dimensions		
Stainless Steel Thickness	1.5	mm
Door Thickness, α	1.5	mm
Sand Thickness, β	150	mm
Roof Thickness, γ	150	mm
Length of chimney	400	mm
Combustion Analysis		
Mass of wood/s	0.0007	Kg/s
Primary air/s	0.0027	m ³ /s
Secondary air/s	0.0027	m ³ /s
Flue gas Temperature	400	oC
Conduction losses	3.84	KJ/s

Final Design

Objective

• "Adjust the variables to maximise combustion efficiency and create a uniform temperature throughout the oven."

Testing (2)

Test 1 – Investigate alterations to primary and secondary airflow

- Investigate by opening and closing primary and secondary air vents
- Are they effective in controlling the oven temperature

Testing (3)

Test 2 – Is the oven capable of baking 30 loaves at a time?

Monitor:

- Baking time,
- amount of wood used
- maximum and minimum temperature of the oven.

Testing (4)

Test 3 – Altering angle of deflector plate

• Adjust angle to induce/reduce eddies at the base of the oven .

Test 4 – Altering the path of the flue gases

- Alter the size and shape of the air gap; y
- Monitor the effect it has on the oven's temperature.

Testing (6)

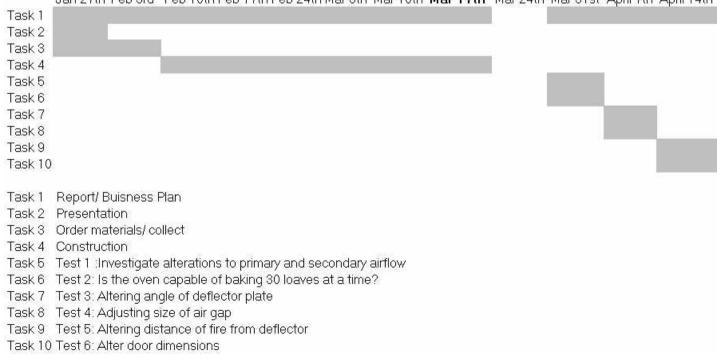
Test 5 – Altering distance of fire from deflector

- Raise fire by increasing the number of bricks supporting grating
- Monitor the effect on the oven's temperature

Testing (7)

Test 6 – Alter door dimensions

- Alter door's thickness
- Monitor the conduction losses.



Timetable (1)

H34GDP Group Development Project Light Weight Low Cost Bread Oven Dr Clifford

Project starting date : 3/10/02

Project finishing date: 9/5/03

Jan 27th Feb 3rd Feb 10th Feb 17th Feb 24th Mar 3th Mar 10th Mar 17th Mar 24th Mar 31st April 7th April 14th

Timetable (2)

H34GDP Group Development Project Design and Build a Wood Fired Portable Bread Oven Dr Clifford

Project starting date : 3/10/02

Project finishing date: 9/5/03

April 23rd April 30th May 7th Task 11

Task 11 Final Report