

Logix Insulated Concrete Forms

The Role of a Modern Method of Construction in meeting the Stern Review

C-60 Industrial Partner Seminar Series

Presented by: Jonathon Barnett General Manager of Logix UK

Assisted by:

Corte Ray-Illife Ben Clayton *M.D. of Alternative Construction KTP Associate*

An Overview of the Stern Review

Implications for the Builder / Developer

Introduction to Logix Insulated Concrete Forms

Questions and Answer Session

What is the Stern Review?

The Stern Review is a Government funded review into the economic effects of Climate Change.

- □ 576 pages of economic complexity.
- It examines the scientific evidence for climate change.
- It then considers economic implications

The Economics of Climate Change

- □ The Stern Review asks some basic questions.
- □ Option 1: Continue as we are.
 - 1. What would be the effects of option 1?
 - 2. What would be the economic implications option 1?
- Option 2: We take strong action to reduce emissions.
 - 3. Can we make a difference at this stage?
 - 4. What level of change would be required to make a difference?
 - 5. What would be the cost of this option?

The Scientific Evidence for Climate Change

Option 1

□ Nature's Evidence

- The earth has warmed 0.7°C since 1900
- All of the ten warmest years on record have occurred in since 1990
- Many plants have been moving northward at a rate of 6Km / decade.
- In temperate Europe plant flowering, and egg laying are occurring 2-3 days earlier each decade.

Natural or manmade change?

Option 1

- Is climate change simply part of the natural variation of the earth's atmosphere?
- Natural factors can account for much of the temperature rise in the first half of the 20th Century.
- But natural causes alone cannot account for the levels of change we are now seeing.

Option 1

- Greenhouses gases, C02
- □ 1750: 280 ppm
- **2**005:

380 ppm (up 35%)

(currently higher than any point in the last 650,000 years)

□ Total C0₂e: 430 ppm (up 53%)

2050:

550 ppm

» (at current levels of emissions)

What does this mean in practise?

Option 1

- At <u>current</u> emission levels, global average temperatures would rise by between 2-5°C, or more.
- □ More heat waves:
 - for a 1°C average temperature rise, and 1 in a 100 event becomes a 1 in 10!
 - At higher latitudes and in continental regions temperature increases will be significantly greater than the average.

Changing Weather Patterns.

Option 1

□ Erratic rainfall:

- Reductions in rain and increased droughts for the Mediterranean regions and N. Africa.
- Severe Droughts for much of S. America and Asia
- Increased rainfall at high latitudes.
- End of the THC (North Atlantic Thermohaline Circulation)?
 - Gulf Steam and N. Atlantic Drift Already reduced by 30%.
 - Increasing cooling, but offsetting a proportion of regional warming.

Accelerating Change

Option 1

□ Positive feed back caused by natural effects:

- As temperatures rise plants absorb less carbon.
- As permafrost melts potentially release large quantities of Methane.
- As the sea warms it absorbs less CO_{2} .
- Positive feed back could add an additional 1-2°C to global temperatures by 2100.

Increased Flooding

Option 1

□ Sea Levels will continue to rise.

- Currently rising at 3mm year, this will accelerate as the glacial and polar ice melts.
- During the last interglacial period (125,000) years ago, the melting of the artic contributed several metres to sea level rise.
- SE England is sinking, combined with increased storm surges= greater flood risk.
- 17 million people, in the UK, live within 10km of the coast.

Option 1

- Using current formal models the review estimates that if we continue as we are the overall cost will be equivalent to losing 5% of global GDP.
 That 5% of everything you earn, and 5% of everything every business earns,
 - each year, forever.
- □ If a wider range of risks are taken into account the cost could rise to 20%

Can we make a difference at this stage?

Option 2

□ Some level of change is already built in.

The seas have taken up around 84% of the total heating of the earth's system in the last 40 years.

□ If emissions stopped today, it would still result in 0.5-1°C of warming.

Can we make a difference at this stage?

Option 2

□ YES, action taken now can help avoid the worst case scenario.

□ It requires wide spread and urgent action

- □ Can we afford not to?
 - Without intervention we could well reach 1000ppm $C0_2e$ by 2100, resulting in a 3-10°C temperature rise.

What level of change is required?

Option 2

□ The level of temperature change will depend on the level of global emissions going forward.

Stabilisation level (ppm CO ₂ equivalent)	Temperature increase at equilibrium relative to pre-industrial (°C)		
	IPCC TAR 2001 (Wigley and Raper)	Hadley Centre Ensemble	Eleven Studies
400	0.8 - 2.4	1.3 – 2.8	0.6 – 4.9
450	1.0 – 3.1	1.7 – 3.7	0.8 - 6.4
500	1.3 – 3.8	2.0 - 4.5	1.0 – 7.9
550	1.5 – 4.4	2.4 - 5.3	1.2 – 9.1
650	1.8 – 5.5	2.9 – 6.6	1.5 – 11.4
750	2.2 - 6.4	3.4 – 7.7	1.7 – 13.3
1000	2.8 - 8.3	4.4 – 9.9	2.2 – 17.1

What level of change is required?

Option 2

- ❑ Stabilising C0₂e levels at 440-460ppm, (about current levels) means reducing global emissions by:
- □ 25% when compared to 1990 levels, or
- \Box 60-70% compared to business as usual.

What is the Economic Cost of Stabilising CO2e

Option 2

Climate change will effect a range of industries:

- Agriculture,
- Care and Nursing,
- Manufacturing,
- Transport,
- and our individual energy related habits
- □ The cost of action can be limited to around 1% of global GDP each year.

What will drive emissions lower?

Option 2

- □ Consumer Choice?
 - Consumer demand for more environmentally friendly products?
- □ Regulation:
 - Forced measures to implement changes
- □ Taxation Policy:
 - Tax will be increasing used to change our habits.
 - London Congestion Charge.
 - Climate Change Levy,
 - Carbon Tax

Implications for the Builder / Developer

- You can expect to see further tightening of the Building regulations.
- Air-tightness Tests: Levels reduced further.
- □ TER (target emissions rate): Increases in the improvement factor (currently 20%)
- □ Reductions in allowable cold bridging.
- □ Energy Efficient appliances

Outside Pressures

□ Consumer Pressures.

- Increased demand for air conditioning?
- Home information packs 1st June 2007, Energy Performance Certificate.
- Continued emphasis on density of housing.
 - High density housing is overall more energy efficient. Flats, Terraces, etc.
 - Greater use of basements. For houses of equal volume, a house with a basements is 10% more efficient.

Cost Pressures

- Do these changes mean houses will cost more to build?
- Meeting these requirements using traditional techniques will need
 - extra insulation materials,
 - extra care and attention to details,
 - and slow building down.
- Cost of reworking buildings that fail is very expensive.

- Modern Methods of Construction offer Opportunities for builders to:
 - Meet the building regulation changes, easily.
 - Make their homes stand out from the crowd.
 - Sell earlier, at better prices
 - Increase margins by increasing plot density, through use of basements and building into the roof space.
 - Use less, skilled labour.

With no cost penalty compared to traditional methods.

Introduction to Logix Insulated Concrete Forms

Technology

Concrete

ICFs are the successful marriage of two proven technologies

Expanded Polystyrene (EPS)

Longevity
Strength
Durability
Versatility

Expanded Polystyrene (EPS)

Exceptional insulation properties
 Safe
 Cost-effective
 Highly mouldable

EPS and Concrete

An ideal marriage of building materials offering...

High strength
High insulation value
Versatility
Ease of use
Relatively low cost

Performance

Based on a finished wall

□ Thermal:

- Standard EPS: U value 0.23W/m²K
- Neopor: U value 0.19W/m²K
- Exceeds requirements of Part L of Building Regs by 40%

□ Acoustic:

Combination of EPS and concrete means
 Logix ICFs easily meet the requirements of
 Part E of Building Regs

Performance

Based on a finished wall

Grire:

– 2 hour retardant rating

Air-tightness:
1 to 2 air changes per hour

Strength

Strength

□ Loadings:

- Capable of withstanding wind speeds up to 250mph
- Adaptable to individual requirements of project
- Suitable for multi-storey constructions
- Suitable for basements
- Compatible with most flooring and roofing systems

"Like Lego™, only more fun..."

Product Features

LOGIX ICFs

- □ 2no 70mm thick EPS panels
 - Competitors range from 38 65mm
 - Fully reversible
- Interlocks top and bottom
 - Repeated regularly for easy alignment
 - Secures courses without adhesive
 - Prevents weeping of concrete at joints
- External vertical cutting guides
 - Regularly spaced to aid accurate cutting on site
- Internal end cap guides
- Standardised features throughout the range
 - Permits multiple combinations of forms

For the building contractor

□ Most builder-friendly ICF on market

- Standard modules
- Robust and solid, comprising 2 x 70mm EPS panels
- Lightweight and easy to handle
- Interlocking system easy to align
- Web fastening surfaces
 - Widest and thickest available, making it easier to attach fasteners for wall finishes

For the building contractor

Reduced build-time

- Straightforward on-site installation
- 0.5m² modules easily cut-to-size with hand tools
- Rapid placement of steel reinforcements without slowing the build
- Simple mechanical fixing of fixtures and wall finishes
- Concrete-pour rate of one storey or 3m height per day
- Bricklaying / external finishes moved off critical path
- No timber shrinkage cracks

For the building contractor

Efficient use of materials

- Wide range of shapes and sizes reduces on-site cutting
- Off-cuts used elsewhere in wall
- Speed up construction from strip foundations, to reduce muck disposal
- □ All-year round construction
 - Protective EPS ensures optimum curing conditions for concrete
 - Less dependent on weather

Product Features

Webs

Embedded into polystyrene during manufacture

- Ensure complete integrity of block during construction
- Allow faster build speeds
- Configured for securing reinforcement bars
 - Remove need for tying bars together
- □ Manufactured from non-thermally conductive polypropylene
 - Eliminate cold-bridging through the web itself
- □ Extends to full height of forms
 - Increase strength of block
- □ Easy to cut using hand tools
- □ High recycled content

Product Features

Positioning of the Webs

- Positioned at 203mm intervals with 8" centres
 - Unrestricted flow of concrete during pour
- Allows easy poker-vibration in concrete settlement
 - Eliminates air-pockets in concrete
- □ Marked on external faces of forms
 - Guides the fixing of any screw fitments
 - E.g. wall surfaces finishes, brackets
 - Aides with placement of plasterboard and wall cladding

For the homeowner

□ Energy-efficiency:

- Enhanced levels of thermal insulation
- Reduced fuel consumption and wastage
- Contribute to lower CO₂ emissions
- More comfortable interiors:
 - Effective sound insulation
 - Helps protect homes from unwanted noise pollution
 - Airtight construction
 - Significantly reduces drafts

For the homeowner

Design individuality:

- Virtually any wall feature can be realised
- Compatible with most internal and external wall finishes
- Peace of mind:
 - Confidence in the life-long performance of LOGIX ICF
 - LOGIX UK's commitment to quality
 - From in-house manufacture
 - Through to hand-in-hand support to its approved installers

□ Ecological impact:

- Environmentally-friendly construction method:
 - High-recycled content of LOGIX ICFs
 - Complete recyclability of foam panels
 - Preservation of natural resources

EPS and the Environment

Expanded Polystyrene (EPS)

Proven characteristics

- Thermal performance does not degrade over time
- Fully recyclable
- 97% air
- No VOCs, CFCs, HCFCs are used during manufacture
- No chemicals are release in to the building after construction
- EPS won't support mould or bacteria
- Moulded at 25g/l to optimise thermal insulation and strength
- In-house manufacture and quality control in UK facility

Concrete and the Environment

□ Concrete is a UK based Material:

- 90% of Portland Cement is manufactured in the UK
- The materials used to make concrete are among the most abundant on earth.
- 85% of aggregates are used within 30km of the extraction site.
- Over 7000 SSSIs in the UK have their origin in extraction site.

Concrete and the Environment

The Cement Industry has reduced emission by 25% on 1990 levels

Climate Change Agreement Performance and Targets 1990 to 2010

Concrete and the Environment

- Concrete has less embodied energy than kiln dried timber, kg for kg.
- The amount of cement used in a concrete can be substantially reduced by the use of recycled material, (GGBS, PFA).
- □ You may be using it already.
- □ C60 house uses 50% cement replacement.
- Recycled aggregates

LOGIX Support Package

For Contractors

- □ Comprehensive product manual
- ICFA membership
- □ Approved installer network
 - Recommendations and referrals
 - Forwarding of leads
- □ Training programme
 - Off-site dry build
 - On-site practical instruction
- Technical and practical support
 - Installation advice
 - Estimating service
- □ Availability of alignment system

Building Types

Multiple uses...

LOGIX ICFs...

Building with LOGIX ICFs, Demo

Useful tools and materials

- □ Hand Saw
- **Cordless Drill**
- Internal Vibrator
- Alignment System
- □ Foam Adhesive
- □ Fiber Reinforced Tape
- **Zip ties**
- □ Transit or laser
- □ String line and Chalk line
- Rebar Bender/Cutter

Stage 1: Footings / Slabs on grade

Verify that wall layout is in accordance with plans and specifications

Stage 2: Placement of first and following courses

Stage 3: Check level and square

Stage 4: Reinforcement – installed without tying

Project dependent

Stage 5: Install window | door frame | Service penetrations

Step 6: Wall alignment | bracing

Step 7: Concrete placement & Compaction

Step 8: Electrical and plumbing channelling

□Wiring should be in line with IEE 16th Edition. I.E.:

- -PVC cable in conduit
- -LSZH cable can run in contact with the EPS
- Cables may need de-rating.

Step 9: Interior and exterior finishes

An Example of a thin coat acrylic render applied to Logix ICF blocks.

Suitable arcylic renders are also available from a number of leading supplincluding Remmers, Sto, Marmorit, Webbers, Heathfields, Dryvit, and other

Renders

Bricks & /or Slips

□ Some climate changes is inevitable

There is still time to avoid the worst impacts of climate change, if we take strong action now.

Emission need to be reduced by 25% from 1990 levels, globally.

- □ The challenges for builders and developers will continue increase.
- The builders who embrace the challenges before them have a real opportunity to set their business ahead of the crowd.
- Using Logix ICFs you can tackle these challenges – Today.

Logix Insulated Concrete Forms.

- Easy to use,
- Thermal insulation up to 42% better than Building regs.
- Air-tightness 1-2 changes per hour
- Fast builds
- Durable builds 200 yr+ buildings
- Reinforcement without ties
- Fire resistance
- Ex stock availability

LOGIX ICFs...

Any Questions?

www.LOGIX.UK.com

 LOGIX UK, Balena Close, Creekmoor Industrial Estate, Creekmoor, Poole, Dorset, BH17 7DG.
 0845 6076958
 enquiries@logix.uk.com
 www.logix.uk.com