

FENFLUX: The short term climate response of CO_2 , CH_4 and H_2O fluxes from a regenerating fen

Gong Pan

Supervisors: Dr. Jörg Kaduk; Prof. Heiko Balzter; Dr. Susan Page

Peatland

Beautiful, unique ecosystem

- Peat accumulate slowly by anoxic decomposition in waterlogged condition
- Sedge (*Carex*); Reed (*Phragmites*); Peat moss (*Sphagnum*)

Peatland covers ca.400 million ha, = 3% Earth's land surface (*Strack et al. 2008*)

Theoretically, peatlands is a major store of soil carbon, the sink for CO_2 and source of atmospheric CH_4

- ca. 30% of the world's soil carbon pool (Turetsky 2001),
- = half of carbon that in the atmosphere as CO_2 (*Dise 2008*)
- emit CH_4 ca. 20 million tones per year (*Strack et al. 2008*)

Peatland

Bog: ombrotrophic (rain-fed) peatland

- low pH 3.5 4
- species-poor
- mineral-poor
- anoxic

- high pH 4 8.5
- species-rich
- mineral-rich
- well aerated

Fen: minerotrophic peatland

- litter decays rapidly
- peat formation is weak
- plants can receive water pass through mineral soil (rich in calcium etc. cations)

Peat

Peat "grow" 1 mm per year

9,000 years = 10 metre deep

Have been drained for agriculture, forestry, harvested for energy

- Tropical peatlands: 120,000 km² to oil palm plantation (*Page et al. 2002*)
- Non-tropical peatlands: 250,000 km² to agriculture 150,000 km² to forestry 50,000 km² to peat extraction (*Joosten and Clarke 2002*)

Wicken fen

Backer's fen (regenerating fen)

- Has been drained
- Started to be rewetted

Be harvested every four years

Eddy covariance

Air flow can be imagined as a horizontal flow of numerous rotating eddies Each eddy have horizontal and vertical components

Eddy covariance

Vertical movement of the components can be measured from the tower

- Investigate whether regenerating fen (baker's) acts as CO₂ sink or source ?
- Whether semi-natural fen (sedge) acts as CO₂ sink or source?
- How about CH₄ emission on two sites?
- Investigate the magnitude of the impacts of restoration and their response to climate variability

	Year 1 Term 1	Year 1 Term 2	Year 2 Term 1	Year 2 Term 2	Year 3 Term 1	Year 3 Term 2
Training						
Literature reading						
Data collecting						
Data analysis						
Thesis writing						
			VIVA			

Acknowledgment

Dr. Jörg Kaduk Prof. Heiko Balzter Dr. Susan Page Ross Morrison

