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Batesian mimicry occurs when a palatable species (the mimic) gains protection from predators by resembling

an unpalatable or otherwise protected species (the model). While some mimetic species resemble their models

closely, other species (‘imperfect mimics’) are thought to bear only a crude likeness. In an earlier study, pigeons

(Columba livia) were trained to recognize wasp images in one experiment and non-mimetic (NM) fly images in

another by rewarding the pigeons for pecking on the respective image types. These pigeons were subsequently

presentedwithdifferent images, including seeminglywasp-like hoverfly species, and the recordedpeck rates on

these images were used as a measure of the pigeons’ perception of the hoverflies’ mimetic similarity. To identify

a candidate set of morphological features that the pigeons used when assessing this mimetic similarity, we first

extracted a range of biometrical measurements from images originally presented to the pigeons. We then

repeatedly optimized an empirical model in an attempt to match the recorded pigeon peck rates while using as

few biometrical features as input as possible. Our models were able to fit the pigeon peck rates with

considerable accuracyeven while excluding many input features. Antennal length, a feature commonly used to

discriminate between flies and wasps, was regularly retained as an input variable, but overall a different set of

biometrical features was important for predicting the peck rates of pigeons rewarded for identifying wasps

compared to those rewarded for identifying NM flies. In highlighting the importance of specific biometrical

features inpromotingmimicry and the irrelevance ofothers,ouroptimizedmodels provideanexplanationas to

why certain species that appear to be poor mimics to humans are judged to be good mimics by birds.
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1. INTRODUCTION

It has long been appreciated that some mimetic species bear

only a crude resemblance to the models that they are thought

to imitate, and there has been a continuing debate as to why

the extent of mimetic similarity is not further improved upon

by natural selection (Edmunds 2000, 2006; Johnstone

2002; Sherratt 2002; Holen & Johnstone 2004; Gilbert

2005). One explanation for imperfect mimicry may be that

predators perceive mimetic similarity in a different way than

humans. To address this possibility, Dittrich et al. (1993)

attempted to ascertain, using operant learning techniques,

the degree to which (Columba livia) pigeons perceived

different species of seemingly wasp-like hoverflies as wasps

or as non-mimetic (NM) flies. In the training phase of their

experiments, pigeons were presented with images of wasps

and NM flies, and were rewarded for pecking on images of

the target species, namely wasps (waspC experiment) or

NM flies (flyC experiment). The pigeons were then

presented with a range of images of wasps, NM flies and

11 mimetic hoverfly species, and the peck rates on these

images were recorded. The general conclusion was that,

while there was a broad agreement between pigeon ranking
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(measured by peck rate) and human ranking, pigeons

treated some hoverfly species as better mimics than they

appear to be to the human eye (see also Green et al. 1999).

Two key questions arose directly from the study: were the

pigeons focusing on particular features when assessing

mimetic similarity, and, if so, what features were they?

Dittrich et al. (1993) commented in their discussion on these

issues: ‘The question of why the visual systems of humans

and pigeons reach such different conclusions remains open,

but the answer is likely to lie in visual or learning constraints

in the way in which birds classify their prey.’. Moreover,

while the responses of pigeons trained to identify wasps

(waspC) were negatively correlated with the responses of

pigeons trained to identify NM flies (flyC), this correspon-

dence was only approximate, a result that the authors argued

‘might be attributable to slightly different cues upon which

each group apparently concentrates’.

Given that this study represents one of the best

evaluations to date of the extent of perceived mimetic

similarity, and that it included the responses of birds

following two distinct training regimes, we have attempted

to elucidate the underlying basis for their decision making.

Further investigation of the peck rate data may not only

provide more general insights as to how and why birds

tend to make classificatory decisions, but it could also, in

theory, provide an explanation as to why the degree of

mimicry of imperfect mimetic species is not improved

upon by natural selection. Such an approach could be

extremely useful, given the debate in the literature
This journal is q 2007 The Royal Society
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concerning mimetic similarity, and the general acknowl-

edgement that the degree of mimicry is ‘very difficult to

quantify’ (Turner 1984). Indeed, these tools are essential

if we are to objectively test suggestions such as that

imperfect mimics are rare, or that bee mimics are better

mimics than wasp mimics (e.g. Gilbert 2005).

Images that were used to train and test the pigeons in the

original study and the corresponding published results were

available to us. Our objective therefore was to develop and

evaluate a numerical model that could help predict pigeon

peck rates based only on biometrical features extracted from

images viewed by the original pigeons. In effect, we have

attempted to ‘reverse engineer’ the discriminative process by

evaluating the criteria that the pigeons may have used when

reaching their decision as to how often to peck.
2. MATERIAL AND METHODS
(a) Model overview

In what follows, we describe our ‘reverse-engineered

predator’ (REP) model in terms of fitting waspC data

using wasps as the target species; the flyC data were analysed

in a similar way, using NM flies as the target species. For each

REP, we combined two distinct components in a simple

facsimile of how pigeons process information, namely an

optimized numerical classifier to assess the probability that

the image was that of a wasp, and a simultaneously optimized

probability-to-peck-rate conversion function that took that

probability as input and output a predicted peck rate.

For our classifier, we chose a feed-forward neural network

(see Enquist & Ghirlanda (2005) for details), namely

nnet (Ripley 1996; Venables & Ripley 2002) available in

R (R Development Core Team (2004), details at http://www.

R-project.org). The classifier was initially optimized (‘trained’

in neural network terminology) to recognize wasps using

biometrical data drawn from images of wasps and NM flies,

paralleling how the pigeons had been trained. When sub-

sequently presented with biometrical data from any new test

image (such as a hoverfly), the trained neural network could

then make an assessment of the probability of inclusion of the

image in the class ‘wasp’. The optimized conversion function

translated that probability into a predicted peck rate that

ultimately could be compared to the available peck rate data.

In our model building, one objective was to eliminate

unnecessary biometrical features as input. Our hope was that

by identifying biometrical features regularly retained in

separate models built using different datasets, we would

gain some insights into the basis of the discriminative

decisions made by pigeons. These insights could then be

further tested using known peck rates on hoverfly species not

included in the data fitting process.

(b) Data collection

Two sets of images from the original data used by Dittrich

et al. (1993) were available: one set of 37 images (19 wasps

and 18 NM flies) and a second set of 206 images (97 wasps,

48 NM flies and 61 hoverflies; see electronic supplementary

material, appendix A).

We did not have an enumeration as to which images were

used in each experiment in the original study, so we created

10 different artificial datasets (W–NMF-1 to W–NMF-10)

composed only of wasps and NM flies. In all 10 cases, the

data from the set of 37 images were included. For each set iZ
1, ., 10 in turn, from the set of 206 images, data from 21
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randomly selected wasp and 22 randomly selected NM fly

images were added to the W–NMF-i set to augment the set of

37 images up to 80 to provide a substantial set of only wasps

and NM flies with which to train neural networks. Data

corresponding to the remaining 163 images were used to

create a corresponding W–NMF–H-i set, which had 76

wasps, 26 NM flies and all of the hoverfly images for which

predictions could be made with a trained neural network. We

created 10 datasets and averaged results over them rather

than just one because there was variation in appearance

within the wasps and within the NM flies, so a single random

partition could produce misleading results if taken alone.

Seventeen features were extracted for each image: antennal

length, head width, thorax width, abdomen width and wing

length all expressed as a ratio to the total body length; number of

visible colour stripes; number of visible colour patches; the

mean and standard deviation of red (R), green (G) and blue (B)

colours on the abdomen as a whole; whether the abdomen

broadly attached to the thorax or was petiolate; a categorical

description of wing transparency (completely transparent and

clear wings, half clear and half translucent and translucent);

abdominal curviness, and the main colour of stripes and/or

patches (yellow, orange, red and yellow, cream, light grey, dark

grey). The mean and standard deviation of abdominal RGB

values were measured using ADOBE PHOTOSHOP v. 6.0 (San Jose,

CA). IMAGEJ v. 1.29x (National Institutes of Health, USA) was

used to measure all of the other continuous variables. Curviness

of the end of the abdomen was calibrated using the coefficient of

circularity as measured by IMAGEJ. Because dimensions were

tabulated as ratios (the images of specimens were all

approximately equal size), the actual size of the specimens was

not used. Furthermore, orientation was not considered as a

factor because all of the images viewed by pigeons were of

pinned specimens with the same orientation. Even using this

limited set of predictor variables, approximately 5–7 days of

computer time on a workstation with a 3.2 GHz Intel Pentium 4

processor (Santa Clara, CA) were required for each point plus

standard deviation bar on figure 1a,b.
(c) Numerical modelling of the pigeon peck rate

experiment results

Two sets of parameters were optimized simultaneously within

each REP model: the tuning parameters for the neural

network that defined its structure and the parameters in the

conversion function (see electronic supplementary material,

Appendix B for further details). A genetic algorithm (GA,

Whitley 1994) was used to find the optimal parameter

combinations. In our GA, potential solutions were encoded in

a string of 55 zeros and ones. Three information packets were

included in this solution set, namely: (i) which of the 17

predictor variables were to be used, (ii) the neural network

structure, and (iii) the parameters in the conversion function.

The objective of our GA was to maximize fitness defined by

fitness ZKSSE

Kufnumber of predictor variables used as inputg;

ð2:1Þ

whereSSE (summed over all 13 taxonomic groups evaluated) is

SSE Z
X13

mZ1

�
fmean predicted peck rate for group mg

Kfmean observed peck rate for group mg
�2
; ð2:2Þ
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data from Dittrich et al. (1993, fig.2)
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Figure 1. Mean predicted peck rate for each taxonomic group
using the REP with uZ1. Species names: S. ri, Syrphus ribesii;
T. ve, Temnostoma vespiforme; C. ca, Chrysotoxum cautum;
H. pe, Helophilus pendulus; E. gr, Epistrophe grossulariae; X. pe,
Xanthogramma pedissequum; C. bi, Chrysotoxum bicinctum;
S. ve, Sphecomyia vespiformis; V. zo, Volucella zonaria; S. py,
Scaeva pyrastri; I. gl, Ischyrosyrphus glaucius. (a) Wasps and
(b) NM flies were a mixture of species (electronic supple-
mentary material, Appendix A). Error bars represent G1 s.d.
of the 50 values (5 repetitions!10 datasets). An example
image for each taxonomic group is also given (see Dittrich
et al. (1993) for further images).
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and u is a cost coefficient set by us for inclusion of predictor

variables (1, slight; 10, moderate; 100, severe cost for

inclusion). In essence, our challenge was to obtain accurate

predictions using as few predictor variables as possible. Animals

do not have a limitless capacity for processing information

(MacDougall & Dawkins 1998 and references therein), so the

scalaruwas introduced simplybecausewe judged it appropriate

to introduce (and explore) the effects of these information costs.

To obtain one fitness evaluation for dataset i with u given,

the following steps were taken:

(i) Train the neural network, using the 80 images in

W–NMF-i, to distinguish wasps from NM flies using

the predictor variables encoded in packet 1 and the

network structure encoded in packet 2.

(ii) Predict the probability of being a wasp for all 163

images in W–NMF–H-i using the trained network

from step (i).

(iii) Convert the predicted wasp probabilities to predicted

peck rates using the conversion function with par-

ameters encoded in packet 3.

(iv) Average the predicted peck rates for each taxonomic

group (wasps, NM flies and the 11 hoverfly species).

(v) Find SSE.

(vi) Find fitness.

The GA iteratively combined segments from a population of

200 strings to ‘breed’ a solution, over a preset number of

‘generations’ in a manner that maximizes fitness. The list
Proc. R. Soc. B (2007)
of retained predictor variables that produce the maximum

fitness and the corresponding predictions was recorded.

Because there are stochastic elements in the model building,

each simulation produced different results, so for each u value

we ran 50 simulations, namely 5 repetitions for each of the

10 datasets.

As a final note, in some cases, predictions from the neural

network had to be made for stripe/patch colour not available

for training the neural network, e.g. the colour was only found

on hoverflies (electronic supplementary material, appendix

A). As a check, we re-ran the simulations with 12 specimens

removed using waspC data and uZ1 to avoid this

occurrence. The results were similar and are presented in

the electronic supplementary material, Appendix A.
3. RESULTS
Our REP models were able to match the pigeon peck rate

data well (figure 1a,b). The product moment correlations

of mean observed to mean predicted peck rates for waspC
were R2Z0.93 (uZ1), 0.93 (uZ10) and 0.94 (uZ100),

with d.f.Z11, p!0.0001 in all cases. For flyC, these

correlations wereR2Z0.89 (uZ1), 0.89 (uZ10) and 0.79

(uZ100), with d.f.Z11, p!0.0001 in all cases. There is

an apparent general bias for the waspC prediction in that

observed peck rates for the most wasp-like species were

underestimated while observed peck rates for the most

(NM) fly-like species were overestimated. The most likely

explanation is that in keeping the squared deviation from

growing too large for Sphecomyia vespiformis (which the

neural network consistently rated much more wasp-like

than the pigeons did), the REP reduced the peck rate

slightly for the other wasp-like hoverflies.

Given the high goodness of fit achieved using only

knowledge of biometrical features of the images, we are led

to conclude that the pigeons did respond to hoverfly images

based on their morphological appearance and that our

method could help identify key features that the pigeons

employed in reaching their discriminative decisions.

To elucidate these key features, we recorded how often

predictor variables were retained in the repeated runs of the

REP model (figure 2). The retention frequency differed

significantly from uniform for both the waspC experiment

and the flyC experiment (G-tests for homogeneity, waspC:

uZ1, GZ154.2; uZ10, GZ169.5; uZ100, GZ186.5;

flyC: uZ1, GZ197.4; uZ10, GZ233.2; uZ100, GZ
226.9; d.f.Z16, p!0.0001 in all cases), indicating that

certain features were much more important than others in

facilitating discrimination. The most important predictor

variables overall were the number of stripes, antennal length,

standard deviation of abdominal R values (this reflects

contrasting patterns based on RGB colour measurements)

and stripe/patch colour.

Intriguingly, the relative retention of the different

predictor variables varied significantly with pigeon train-

ing regime (waspC versus flyC; c2-test for association:

uZ1, c2Z86.4; uZ10, c2Z105.8; uZ100, c2Z100.3;

d.f.Z16, p!0.0001 in all cases), indicating that the

pigeons focused on different discriminatory features,

dependent on what insect order they were rewarded for

identifying. The standard deviation of abdominal R

values, the number of visible colour stripes and patches

and the stripe/patch colour were frequently retained in our

models based on the waspC data; however, while
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Figure 2. Occurrences of retained predictor variables based on each pigeon response set. Occurrences are based on the number
of times a predictor variable was retained from building the model 50 times (5 repetitions!10 datasets) each with uZ1, 10 and
100 using (a) waspC and (b) flyC data (5!10!3 combinations each).
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standard deviation of abdominal R values and stripe/patch

colour were likewise frequently retained for models based

on the flyC data, antennal length, head width and

abdomen–thorax attachment type were much more

important in generating the fitted outcome. It therefore

seems probable that the pigeons trained in the waspC
regime used the presence and abundance of colourful

patches and stripes as the most important features, while

pigeons trained in the flyC regime relied more upon

features such as antennal length, head width and

abdomen–thorax attachment type to discriminate between

wasp and NM fly images.

We also examined the ‘internal predictability’ of our

REP model by fitting the model to all of the peck rate data

except for a single taxonomic group, then predicting peck

rates for the excluded group. This analysis was heavily

influenced by the peck rate on one species, Helophilus

pendulus, for which only one image was presented

(electronic supplementary material, Appendix A), but

overall our predictions for the excluded groups correlated

well with the actual peck rate (R2Z0.56, d.f.Z10, pZ
0.005 for all test groups except H. pendulus; R2Z0.30,

d.f.Z11, pZ0.055 for all test groups).
4. DISCUSSION
Neural networks have previously been applied in numer-

ous ways in the ecological literature (Tosh & Ruxton 2007

and papers therein); for example, to simulate model–

mimic dynamics (Holmgren & Enquist 1999), to under-

stand aspects of predator behaviour and predator

perception (Merilaita & Tullberg 2005; Tosh et al. 2006)

and to aid taxonomic classification (Clark 2003). Here we
Proc. R. Soc. B (2007)
have employed them as part of an empirical model to help

identify the key features used by pigeons when classifying

the images with which they were presented. To our

knowledge our ‘reverse engineering’ model represents a

new method that might be applied more widely to

understand why predators make the discriminatory

decisions that they do.

Of course, any identification of key features used in

discrimination is limited by the biometrical data that were

extracted. However, in order to minimize the potential

bias in the neural network prediction, we measured a wide

range of visible biometrical attributes, not just the ones we

viewed as taxonomically important. Likewise, it is well

known that many birds are able to see UV wavelengths

(e.g. Church et al. 2004), yet the slide photographs shown

to pigeons omit any UV components of the colour pattern

(Cuthill & Bennett 1993), so we did not need to consider

such issues when attempting to understand the response of

pigeons. In fact, there is no evidence of a significant UV

component to either wasp or hoverfly mimetic patterns

(Nickol 1994; Green et al. 1999), and subsequent work

has largely confirmed the findings of Dittrich et al. (1993),

with real insect specimens replacing the slides as stimuli

(Green et al. 1999).

Our models fitted the pigeon peck rate to the hoverfly

images with considerable accuracy even after excluding

the majority of predictor variables, and they successfully

predicted the peck rate of species systematically left out of

the model fitting process. Moreover, our elucidation of the

input variables used most frequently in the decision-

making process appears to be consistent with our under-

standing of mimicry within this group. For example, it is
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not surprising that pigeons trained to discriminate wasps

in a sample of wasps and NM flies would subsequently use

the number of visible stripes and presence of colourful

patches in deciding whether a given specimen was a wasp.

In addition, antennal length is thought to be among the

most important features used by predators to discriminate

wasps from flies (Gilbert 2005), and indeed some hoverfly

species, such as Spilomyia longicornis and Temnostoma spp.,

wave their front tibia, which are darkened unlike their

other legs, to mimic the presence and movement of the

antennae of their potential wasp models (Waldbauer

1970). Although our REP models were based on an

approximation of the actual experiment, the goodness of

fit achieved using only the knowledge of biometrical

features strongly suggests that the pigeons did respond to

hoverfly images based on certain key features of their

morphological appearance.

As Dittrich et al. (1993) had anticipated, our model

also indicates that different discriminatory features are

used by pigeons rewarded for identifying wasps compared

to those rewarded for identifying NM flies. This

conclusion is consistent with the observation that when

there are multiple features available for the same

discriminatory response, they compete for an animal’s

attention (Shettleworth 2005). Why different features are

employed under the different reward schemes is unclear,

but it is possible that pigeons more readily associate the

presence of a feature (such as colourful patches) with a

reward, rather than the absence of a feature. For example,

when there is a reward for pecking on NM flies, it seems

easier to employ a rule such as ‘peck when head is wide’

rather than ‘peck when stripes are absent’. More generally,

this work highlights that the nature of the training regime

can have an important effect on subsequent decisions. It is

widely appreciated that the prior experience of predators

influences their subsequent dietary preferences (see

Ruxton et al. (2004) for a review), and we note in passing

that a neural network was far more successful at correctly

identifying hoverflies as flies when it encountered them

within the training regime itself (Rashed 2006).

Much like the prediction of ‘missing data’, once the

response criteria for several hoverfly species have been

elucidated, our model can be used to estimate the

perceived mimetic similarity of any new species of

hoverfly. As a specific illustration of the use of our REP

to measure the mimetic similarity of a novel species, we

extracted biometrical data for nine specimens of the

hoverfly Episyrphus balteatus, a species not included so far

in any aspect of our analysis but used by Dittrich et al.

(1993) in a parallel set of training regimes (both waspC
and flyC) that used images of flies and wasps set in their

natural surroundings. Episyrphus balteatus was singled out

by Dittrich et al. for appearing to be a poor mimic to

human eyes, yet being assessed by pigeons as being wasp-

like. On average, using uZ1, our REP models likewise

predicted that pigeons trained in the waspC regime would

have a peck rate of 48 (making it the best wasp mimic

compared with all others tested by Dittrich et al. in the

original waspC regime; figure 1a) and those trained in the

flyC regime would have a peck rate of 25 (again the best

wasp mimic compared with all others tested by Dittrich

et al. in the original flyC regime; figure 1b). Neural

networks use nonlinear combinations of predictor vari-

ables, so looking at single variables may be misleading;
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however, by inspecting individual plots of the key

predictor variables listed, it appears that the combination

of stripe/patch colour, number of patches and standard

deviation of abdominal R values, which are all more wasp-

like than fly-like for E. balteatus, overrode the distinctly fly-

like nature of antennal length. This suggests that

‘imperfect mimicry’ could persist simply because certain

traits that would in theory facilitate discrimination are

effectively ignored by predators.

Although pigeons are not insectivorous, bird visual

systems are thought to be highly conserved (Dittrich et al.

1993), so the qualitative results are likely to be relevant to

a range of bird species. Our work has provided testable

insights into how pigeons used morphological traits to

inform their discriminative decisions. In so doing, we can

help explain why pigeons consistently assessed certain

hoverfly species as good mimics, when they appear to be

relatively poor mimics to human eyes.

We thank Daniel Franks and Colin Tosh for their comments
on an early draft. Funding was provided to T.N.S. by the
Natural Sciences and Engineering Research Council of
Canada (NSERC) and the Canada Foundation for Inno-
vation (CFI). We also acknowledge David Grewcock, who
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