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A B S T R A C T

The IUCN Red List of Threatened Species is one of the most important of all conservation indicators, but most
developing countries do not have enough information with which to make assessments. The use of species
distribution models (SDMs) to predict habitat suitability, both currently and in the future under the effects of
climate change, offers a potential solution for estimating extinction risk. With a set of validated observations, we
used SDMs to make preliminary evaluations of the risk of extinction for 114 Egyptian medicinal plants based on
IUCN Red-List Criteria and Categories. Using MaxEnt and eleven environmental variables, distributions were
projected for 2020, 2050, and 2080 under two emission scenarios (A2a and B2a) assuming unlimited and no
dispersal. The IUCN assessments used the predicted distributions as well as the actual records to measure both
extent of occurrence (EOO) and area of occupancy (AOO). There was a positive correlation between EOO es-
timates based on actual records and those based on SDMs, demonstrating the ability of SDMs to compensate for a
lack of data. Most species could be classified as Least Concern (LC) at the current time, whilst in the future under
climate change, many species face some risk of extinction, depending on assumptions. We conclude that it is
possible to make regional risk assessments even in data-sparse countries, in order to plan conservation man-
agement in the future. Using species distribution modelling together with IUCN Red-List assessment is a good
method for countries where data are sparse in order to conserve and protect threatened species.

1. Introduction

The IUCN Red List of Threatened Species is widely perceived as one
of the most important frameworks for classifying species threatened
with worldwide extinction (Lamoreux et al., 2003). The IUCN Cate-
gories and Criteria (IUCN, 2016) were created to enhance objectivity
and clarity in evaluating extinction risk, improving consistency and
understanding among users (IUCN, 2010). Currently the Red List is
considered to be a classification of sufficient accuracy for the assess-
ments to be used for conservation planning (Mace et al., 2008) and in
management to prioritize conservation actions (Ricketts et al., 2005;
Cassini, 2011).

In order to assess species (IUCN, 2016), the whole area encom-
passing validated records is measured using the Extent of Occurrence
(EOO), whilst occupancy is measured using the Area of Occupancy
(AOO), the actual area of the squares occupied by records. Both EOO
and AOO can be estimated from “known, inferred, or predicted

locations of observed occurrences”, which clearly include model pre-
dictions (IUCN, 2016). The IUCN-recommended method of calculating
the AOO is to divide the study area into a 2x2-km grid and use the
validated observations, or a binarized map from a model under certain
conditions. The “number of locations” is another criterion used for
species with a restricted range. A “location” is defined as a “geo-
graphically or ecologically distinct area in which a single threatening
event can rapidly affect all individuals of the taxon present. Where a
taxon is affected by more than one threatening event, location should
be defined by considering the most serious plausible threat.” (IUCN,
2016).

The IUCN Red-List Categories and Criteria are designed to classify
species under risk of extinction on a global scale (IUCN, 2016), but have
developed to be applicable at national, local, and regional levels (IUCN,
2012). The first assessment of an entire group on a global scale was
done for birds (Butchart et al., 2010), and Red Listing has also been
applied successfully at national and regional scales (Zamin et al., 2010):
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here we are concerned with National assessments.
Indicators such as the IUCN Red Lists are vital because a concerted

international effort is needed to achieve the biodiversity targets of the
Convention on Biological Diversity to reduce decline and loss of species
at risk of extinction by 2020, and to improve conservation planning (see
CBD, 2010). One the main barriers to this effort is a lack of information.
Most developing countries have few validated data, and even if avail-
able there is little capacity or political will to carry out IUCN assess-
ments, and in particular those that take into account the risks of climate
change.

The Millennium Ecosystem Assessment recognized climate change
as the greatest threat to biodiversity (MEA, 2005). Climate change is
one of the main factors driving changes in species distributions
worldwide (Parmesan and Yohe, 2003; Root et al., 2003; Hannah,
2011); others are, for example, human disturbance, invasive species,
habitat loss and degradation, and changes in land-use (Chapin et al.,
2000). As a result, there is now a huge effort being made to improve
conservation planning by including possible changes in distributions.
One simple way of trying to deal with this is to increase Protected Area
coverage, which has gone from less than 2% of land cover in 1970 to
about 15.4% in 2014 (Deguignet et al., 2014). A more sophisticated
way is to use various Global Circulation Models and different future
emission scenarios together with species distribution modelling to
predict the potential effects of future climate change on biodiversity
(Thuiller et al., 2005; Araujo et al., 2011).

Species distribution models (SDMs) use the environments of re-
corded locations to estimate the preferred environmental conditions of
a species, and then map the distribution of this preferred environment
in the area of interest. The risk of extinction under climate change is
estimated from the estimated future changes in the distribution of the
preferred environments. This is the procedure we have adopted here.
SDMs are a very useful method of predicting distributions even when
few data are available (Elith et al., 2006). There is strong evidence that
even with few data, SDMs result in accurate portrayals of distributions
(Elith and Leathwick, 2009). They use occurrence (presence/absence or
just presence) data and associated environmental variables to predict
distributions, which can then give a great deal of information useful for
conservation planning, especially about possible future changes. SDMs
provide estimates of the spatial variation of environmental suitability
rather than the realised distribution (Marcer et al., 2013). Given certain
assumptions, these can provide estimates of threats to species from
climate change, and be used in the Red-Listing process on a large scale
for ranking species according to extinction risk (Cassini, 2011; Maes
et al., 2015; Collen et al., 2016).

SDMs only predict environmental suitability based on environ-
mental factors and do not include population parameters or their de-
terminants (e.g. species interaction, fertility, migration) (Conlisk et al.,
2013). However, there is a relationship between presence-absence and
abundance, and SDMs can be used to estimate abundance (Anadon
et al., 2010; Hwang and He, 2011) and changes in population size (He,
2012). The IUCN Guidelines (2016: 86) allow the assumption that
changes in suitability be equated to population decline in the absence of
other information. For data-sparse countries where the urgency for
action means that we cannot afford to wait for ideal data, therefore,
SDM-based estimates of extinction risk can provide a useful overview of
what needs to be done.

Various studies have used SDMs to predict the range size of a species
(i.e. the EOO) in order to apply IUCN Red-List assessments (Cardoso
et al., 2011; Pena et al., 2014; Syfert et al., 2014; Keith et al., 2014;
Stanton et al., 2015; Fois et al., 2016), but have mentioned small
samples as a potential problem (Brummitt et al., 2008; Syfert et al.,
2014). Currently, most data are presence-only, but several SDMs can
use such data successfully to estimate the relative environmental suit-
ability across the study area. This is potentially useful for measuring the
EOO in IUCN assessments (see Merow et al., 2013; Syfert et al., 2014 for
more details). Any SDM should take into account the accuracy of the

data (for example, sampling bias, environmental predictors, algorithm
used, etc.), because such factors impact the accuracy of the results
(Elith and Leathwick, 2009). Some studies have used SDMs in applying
IUCN Red-List criteria, but they have not always followed the full IUCN
rules (Keith et al., 2000; Sapir et al., 2003; Good et al., 2006;
Callmander et al., 2007; Rivers et al., 2010). Some explain that the
IUCN Red-List criteria are not sufficient, especially for small organisms
(Cardoso et al., 2011), and a comprehensive guide for applying the
IUCN criteria under climate change has been lacking (IUCN, 2016). In
this paper we try to avoid such shortcomings by respecting all the IUCN
rules, using occurrence data obtained mainly from systematic surveys,
taking care with the environmental variables, and using a single SDM
approach consistently acknowledged to be among the best (MaxEnt).

Our study taxa are the medicinal plants of Egypt. Plants are essential
to all terrestrial ecosystems, and plant extinctions will affect many
animal species including humans (Díaz et al., 2006). Currently there is
no comprehensive assessment of overall extinction risk for plant species
(Brummitt et al., 2015), with only approximately 3% having been Red
Listed by 2010, and only 5% by 2014 (Kew, 2010; Brummitt et al.,
2015). There is no distribution map for most plants, and most countries
do not have up-to-date checklists (Kew, 2010). In this study we take
advantage of a validated dataset, and make preliminary national eva-
luations for 114 Egyptian medicinal plant species according to IUCN
Red List Categories and Criteria. We do this by using SDMs for current
conditions and then projecting them to different future times under
different emissions scenarios and dispersal assumptions.

Only a handful of Egyptian plants have been assessed, but many of
these assessments have not used IUCN methodology. Medicinal plants
are especially at risk in Egypt because the main threat comes from the
large and rapacious pharmaceutical industry (GEF, 2000). Assessments
are needed to help Egyptian conservation planning, and to start the
process of adapting conservation efforts to climate change. We classify
the species in current conditions depending on the actual records by
calculating the EOO and AOO. Then we calculate the loss or gain of
range size between two different times by measuring the EOO from the
model output, and assessing the predicted declines against the Red-List
Criteria to estimate the risk of extinction (IUCN, 2010). The aim of the
paper is therefore to test whether realistic IUCN assessments can be
made by developing countries using SDMs as a substitute for the re-
lative lack of data.

2. Methods

2.1. Occurrence data

Occurrence data for the 114 medicinal plant species (Table S1) used
in this assessment were extracted from the databases of the Cairo-based
BioMap project of 2004–8 (see Gilbert and Zalat, 2008), one of whose
aims was the production of databases of records where each record had
been validated taxonomically by experts and carefully georeferenced.
All plants labelled as ‘medicinal’ in Egypt were included (taken from a
UNDP/GEF project: see Hurst et al., 2006); unfortunately, non-medic-
inal plants do not have a validated dataset for comparison. Plant no-
menclature follows Boulos (1999–2005). There were 14396 presence-
only occurrence records of sufficient accuracy from various sources (i.e.
the literature, herbaria, and field surveys). Much of the data come from
recent systematic surveys with coordinates from hand-held GPS (of
Sinai in particular), but the literature data derive from between 1900
and 2008, all assumed to be a product of the ‘current’ environment for
modelling purposes. Species with fewer than 10 spatially separate re-
cords were not modelled to avoid poor model performance (Pearson
et al., 2007). There are virtually no available validated records of these
species from surrounding countries, so we were unable to model the
entire range of non-endemic species: this will often be the case for
developing countries.
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2.2. Species distribution models Using MaxEnt

MaxEnt version 3.3.3 k was used to build the models (Phillips et al.,
2006), because its performance is good with presence-only data and it
can cope with relatively few records (Elith et al., 2006; Pearson et al.,
2007); it has become the standard method of choice for studies such as
ours. MaxEnt was run using the standard default options, i.e. feature
classes QPT (Quadratic, Product, Threshold - different assumed shapes
of non-linear responses to environmental variables), regularization
parameter= 1 (a smoothing function), background 10000 points,
convergence threshold 0.00001, 1000 iterations, k-fold cross-validation
(k= 10) with 10 replicates for estimating prediction errors, and logistic
output equivalent to habitat suitability values. We did this after an
exhaustive check to find the best combination of options, using the
criteria of the highest Area Under the Curve (AUC) or True Skill Statistic
(TSS), the standard measures of goodness-of-fit for SDMs (see Allouche
et al., 2006). All mean values are given ± one SE.

2.3. Current and future environmental variables

The environmental variables consisted of 23 predictors. These in-
cluded the standard set of 19 ‘Bio-layers’, i.e. different measures of
maximal, minimal and seasonality of temperature and precipitation
data, created to represent biologically relevant environmental variables
(Table S2). The Bio-layers along with altitude were downloaded from
the WorldClim v. 1.4 dataset at resolutions of 30 arc-sec and 2.5 arc-
min (Hijmans et al., 2005). A layer of the normalized difference vege-
tation index (NDVI) was downloaded from the Spot website (http://
free.vgt.vito.be). This was calculated from seven years of satellite
imaging (Jan 2004–Dec 2010) to create layers of the maximum re-
corded NDVI (Max_NDVI), and the difference between the minimum
and the maximum (NDVI_differences). A final predictor was a habitat
layer consisting of 11 classes (sea, littoral coastal land, cultivated land,
sand dune, wadi, metamorphic rock, igneous rock, gravels, serir sand
sheets, sabkhas and sedimentary rocks) based on remote sensing and
extensive ground truthing. This layer was a product of the Biomap
project (for more details see Newbold et al., 2009). Eleven of these 23
predictors (bio3, bio4, bio6, bio8, bio9, bio13, bio15, altitude, habitat,
max_NDVI, NDVI_differences) were eventually used after removal of
collinearity by applying Variance Inflation Factor analysis using the ‘car
package’ in R (R Development Core Team, 2012) (see Table S2). VIF
analysis sorts out the best set of uncorrelated predictor variables (see
Bombi et al., 2012).

For each species, distributions were modelled for the ‘current’ time,
assumed to be the year 2000, and then, as is standard in such studies,
projected to three different future times (2020s, 2050s, and 2080s)
under two emission scenarios (A2a and B2a) and assuming two kinds of
dispersal abilities (unlimited and no-dispersal). We chose to use the
IPCC 4th assessment (IPCC, 2007: obtained from http://www.ccafs-
climate.org/) and emission scenarios A2 and B2, rather than the latest
5th assessment and its very different scenarios, for continuity with
previous work (e.g. El-Gabbas et al., 2016) and because the differences
in SDMs are slight (Wright et al., 2016). The A2a and B2a scenarios
involve different assumptions about the levels of CO2 emissions, with
A2 denoting large changes and B2 relatively small changes (Phillips
et al., 2017; Hannah, 2011). The two extreme dispersal assumptions
(see Peterson et al., 2002; Thuiller et al., 2005) assume species can
perfectly (unlimited) or cannot at all (no-dispersal) track climate
changes. These extremes were chosen because of the lack of informa-
tion about true dispersal ranges in the species. We should see greater
range changes under no-dispersal, with impacts on the IUCN categor-
ization. Both assumptions have been criticized for not involving the
impact of biotic interactions on species distributions (Araújo and
Peterson, 2012), but there is no practical way of incorporating any
putative interactions for the poorly studied Egyptian species. We used
data from the Global Circulation Model generated by the UK Hadley

Centre (HadCM3) for the two scenarios because the HadCM3 is more
highly correlated with the observed data than other similar models
(Turner et al., 2006). Modelling used a grid-cell size of 2.5 arc-min
(∼4.6×4.6 km=∼20 km2), which was chosen because of the level of
positional uncertainty of the non-GPS records, and also because of the
uncertainty of interpolations from the very non-random distribution of
weather stations producing most of the environmental data.

2.4. IUCN Red List assessments

The IUCN Red List Categories and Criteria (IUCN, 2016) were used
to assess extinction risk under the impacts of climate change. There are
several studies that have used these to assess plant species based on
their distribution (e.g. (Keith et al., 2000; Callmander et al., 2007;
Cardoso et al., 2011), but often they do not apply all the rules com-
pletely. For example, grid-size guidelines are often not followed (see
Table S7). Here, we used the IUCN-recommended grid-cell size of 2×2
km in order to calculate the EOOrecords and AOOrecords from which the
IUCN assessments for the current and future conditions were made.
Estimates of predicted future changes (%) in range size under climate
change used the same grid-cell size of 2×2 km, using the down-scaling
process as recommended by IUCN (2016: 49–50). Each map was bi-
narized (i.e. continuous predicted habitat suitabilities were turned into
1 [suitable] or 0 [unsuitable]) using the 10%-training-presence
threshold rule (see Liu et al., 2005); we chose this threshold rule be-
cause this assumes that 90% of the training data are correctly classified,
thus allowing for some georeferencing error with the data (Kaky and
Gilbert, 2017): then EOOmodel and AOOmodel were calculated from the
resulting set of ‘presences’.

To estimate the number of “locations” (IUCN, 2016), we considered
that over-collection by pharmaceutical companies is the biggest threat
(GEF, 2000). The actions of such companies often destroy entire pat-
ches of plants (cf. Hoyle and James, 2005), and the extent of the de-
struction is probably driven by their knowledge of the areas where the
plants grow. We assume this is area-based rather than based on na-
tional-scale mapping (because there are no such maps available for
Egypt), and therefore that in this case ‘location’ and ‘subpopulation’ are
equivalent. Based on the assumed behaviour of collectors, we estimated
the number of 'locations' (IUCN, 2016) on a national scale from the
records by applying three different assumptions about the possible size
gaps among the records (> 20,> 50 and > 100 km) that separate the
subpopulations. In this way we assessed how many locations there were
under each assumption. The number of locations was estimated in the
same way for the SDMs of the future maps, but in fact this did not add
useful information for the assessments, and was not used.

Preliminary IUCN assessments based on the actual records used both
EOOrecords and AOOrecords, and depended mainly on criterion B (small
geographic range) or on criterion D (a very small range). For criterion
B, we assessed the species based on two sub-criteria: (a) the small
number of ‘locations’ (as previously described); and (b) ‘continuing
decline’, an interpretation of the ongoing threat of over-collection im-
plying a decline in the number of mature individuals - it is for this
reason that our assessments are called ‘preliminary’. It was enough if
either metric (EOO or AOO) met one of the relevant criteria to cate-
gorize each species, and then the regional adjustment was made if ap-
propriate.

To assess how realistic the EOO measurements were for the pro-
jected future maps, we estimated the similarity between real and pro-
jected values, and their correlation. We explored whether there were
systematic estimation errors by correlating them and their difference
with the number of records. We used a Jaccard Similarity Index (Araújo
et al., 2005; Syfert et al., 2014) (see Fig. 1) to measure the similarity in
the areas of the current EOOmodel and the EOOrecords. The relationships
between these variables, the number of records and the difference
(EOOmodel – EOOrecords) were then explored using rank correlations.

For assessments using future scenarios, IUCN criterion A was used,
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relevant when species are predicted to undergo large reductions (IUCN,
2016), especially A3 for projected population reductions. No-one has
any idea of the generation times of most Egyptian medicinal plants, nor
their close relatives: they could be several or many years or many
decades. Thus we scaled all estimates of declines to the standard ten-
year period (IUCN, 2016) as well as a fifty-year period. The first
probably underestimates the threat level, whereas the second probably
overestimates it. The predicted change in suitable habitat was calcu-
lated as the difference in EOO/AOO between the current and each fu-
ture map, expressed as a percentage. The percentages were then used to
classify each species according to the IUCN criteria, and then the re-
gional adjustment applied (Table S3): LC= loss < 30%,
VU= loss > 30%, EN= loss> 50%, CR= loss > 80%, EX=100%
loss (IUCN, 2016). The NT category was used in this study with a
threshold loss> 15%. The categorization assumes that changes in ha-
bitat suitability convert directly into changes in population size: given
the almost complete lack of data coupled with the need for countries to
act according to the precautionary principle, we think this is a rea-
sonable assumption (see Introduction). Again it was enough if either
metric (EOO or AOO) met one of the relevant criteria to categorize each
species.

Most of the plant species in this study have not been evaluated yet,
globally or locally. Global assessments for those species that have been
assessed were obtained from IUCN (2015) and national assessments
from NRL (2015). We found global assessments for just four species, all
classified as LC (Ephedra alata (Bell and Bachman, 2011)], Juncus rigidus
(Lansdown and Juffe Bignoli, 2013)], Phragmites australis (Lansdown,
2015)] and Tamarix nilotica (Akhani, 2014)]). Most species have not
been assessed in any local region either: there were National assess-
ments for just four plant species in Egypt, all of them classified as VU
(Colutea istria, Teucrium leucocladum, Zilla spinosa biparmata and Zygo-
phyllum dumosum) (Hadidi et al., 1992).

The IUCN recommend estimating the proportion of the global po-
pulation of each species that occurs in the local region being assessed
(IUCN, 2012). We did this by downloading all the global records from

the Global Biodiversity Information Facility (http://www.gbif.org) and
using the Geospatial Conservation Assessment Tool (GeoCAT) devel-
oped by the Royal Botanical Gardens at Kew to measure EOO and AOO
for Red List assessment (see http://geocat.kew.org/editor). We calcu-
lated the proportion of the total records represented by Egyptian re-
cords, and the proportion of the global AOO made up of the AOO for
Egypt (Bachman et al., 2011).

3. Results

3.1. Model performance

The performance of the models was good in terms of AUC
(0.90 ± 0.004, 0.80–0.98) and TSS (0.63 ± 0.01). Temperature was
always one of the most important environmental predictors (for more
details, see Kaky and Gilbert, 2016). There was a significant positive

Fig. 1. Binarized map for Chiliadenus montanus showing the calculation of the
Jaccard similarity index (in this case equal to 0.61) = C/(A + B–C), where A is
the EOO derived from the SDM model, B is the EOO derived from the records,
and C is the area of overlap between A and B.

Fig. 2. Scatterplots showing the relationships between the Extent of Occupancy
(EOO) measurements for the records (EOOrecords), the species distribution
models (EOOmodel) and the model quality (area under the curve, AUC) of the
SDMs: a) EOOrecorda and EOOmodel; and b) EOOmodel and AUC. These in-
dicate how good the SDMs are in relation to the more traditional IUCN methods
of calculating the EOO. The correlations are Pearson correlations that assume
linearity.
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Fig. 3. Scatterplots exploring variables affecting the validity of measuring the
Extent of Occupancy from species distribution models (EOOmodel). The re-
lationships between: a) the number of records and EOOrecords; b) the number
of records and EOOmodel; c) the number of records and the differences between
EOOrecords and EOOmodel. All correlations are Pearson correlations that as-
sume linearity.

Fig. 4. Scatterplots with Spearman rank correlations showing: a) the relation-
ship between EOOmodel and Jaccard Similarity Index; b) the relationship be-
tween EOOrecords and Jaccard Similarity Index; c) the number of the records
and Jaccard Similarity Index.
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correlation between EOOmodel and EOOrecords (Fig. 2a), and a significant
negative correlation between EOOmodel and AUC values (Fig. 2b). The
number of records was significantly positively related to both
EOOrecords and EOOmodel (Fig. 3a and b), and negatively to the differ-
ences between EOOrecords and EOOmodel (Fig. 3c). The Jaccard Simi-
larity Index was significantly positively related to the EOOrecords and the
number of records (Fig. 4a and b), but the relationship was not sig-
nificant for EOOmodel (Fig. 4b).

3.2. Species classifications under current conditions

For the present-day data, most of the species were classified pre-
liminarily using EOOrecords and AOOrecords as LC (Table 1 & S4). When
only using EOOrecords, two species were classified as VU (Lavandula
pubescens, Solanum elaeagnifolium), whilst with AOOrecords there were up
to 10 species classified as EN and 29 as VU, depending on the as-
sumptions made about the minimum distance between ‘locations’
(Table 1, S4 & S8). All species were classified as LC when using mod-
elled current distributions (Table 2 & S5). The comparison between our
Egyptian data and the GBIF global data (see Table S9) suggests that
Egyptian records represent a reasonable proportion of the global data,
and hence that it is worth assessing them regionally. Rather than ac-
cepting these proportions as accurate, we believe they highlight the
inadequacies of the GBIF dataset.

3.3. Species classifications with future climate change

Under both future scenarios, and under both dispersal assumptions,
when based on declines over 10 years, nearly all species were classified
as LC, with just a few classified as NT (Tables 2 and 3 & S5).

When declines were based on declines over 50 years, not surpris-
ingly there was more change. Assuming unlimited dispersal, no species
were predicted to become extinct at any future time (Tables 2 and S6).
There were four species evaluated as CR under the A2 scenario, three of
them by 2020 (Agathophora alopecuroides, Cymbopogon schoenanthus,
and Deverra tortuosa) and one by 2080 (Andrachne aspera) because it
was predicted to lose more than 80% of its suitable habitat. Under the
B2a scenario, seven species were evaluated as CR, four of them by 2020
(Agathophora alopecuroides, Avena barbata, Deverra tortuosa, and

Lavandula pubescens) and three by 2080 (Agathophora alopecuroides,
Asclepias sinaica, and Teucrium polium). Under the A2a scenario, twelve
species were evaluated as EN, two by 2050 and ten by 2080 because
they were predicted to lose more than 50% of their suitable habitat.
Under the B2 scenario, eleven species were evaluated as EN (Table 2
and S6). Under the A2a scenario, 21 species were classified as VU, five
of them by 2020, eight by 2050 and a further eight by 2080 (Table 2
and S6). Under the B2a scenario there were 21 species classified as VU,
nine by 2020, five by 2050, and a further seven by 2080 (Table 2 and
S6). For the A2a scenario there were 34 species evaluated as NT, seven
by 2020, 15 by 2050, and 12 by 2080. Under the B2a scenario there
were 28 species evaluated as NT, three by 2020, 13 by 2050, and a
further 12 by 2080 (Table 2 and S6). The only available data for re-
gional adjustments were from Israel, where (because of its small size)
all species were assessed as Threatened, and therefore unlikely to act as
sources of rescue for Egyptian populations.

With the assumption of no dispersal, and assessed over 50 years
rather than 10, again no species was predicted to become Extinct under
either scenario. Under the A2a scenario, six species were classified as
CR, three species by 2020 (Acacia pachyceras, Agathophora alopecuroides
and Nitraria retusa) and another three by 2080 (Agathophora alopecur-
oides, Andrachne aspera and Lavandula pubescens) (Table 3 and S6), but
only by 2080 were they predicted to lose more than 80% of their sui-
table habitat. By 2020, 37 species were classified as EN, 23 by 2020,
three by 2050, and 11 by 2080 (Table 3 and S6). There were 34 species
classified as VU, 21 by 2020, five by 2050 and a further eight by 2080
(Table 3 and S6). 47 species were classified as NT, 28 by 2020, ten by
2050, and a further nine by 2080. The majority was consistently clas-
sified as LC (Table 3 and S6). Under the B2a scenario there were seven
species classified as CR, six by 2020 (Agathophora alopecuroides, Avena
barbata, Fagonia glutinosa, Lavandula pubescens, Nitraria retusa, Urginea
maritima), and one by 2080 (Agathophora alopecuroides) (Table 3, S6).
There were 37 species evaluated as EN, 30 by 2020, four by 2050, and
three by 2080.33 species were classified as VU, 22 by 2020, four by
2050, and seven more by 2080 (see Table 3 and S6). There were 54
species classified as NT, 29 by 2020, 15 more by 2050, and a further ten
by 2080: again the majority was consistently classified as LC under all
circumstances (Table 3 and S6).

4. Discussion

Overall our results suggest that reasonable estimates can be made of
the risk of extinction even when data are sparse, by using IUCN Red List
categories coupled with the results of species distribution models pro-
jected into the future under different climate-change scenarios. We
were able to make this conclusion because SDM methodology is a
helpful tool in measuring range size (Elith et al., 2006), and hence in
assessing species using Red-List criteria. SDMs are also important when
there is no opportunity for surveying and limited financial support
(Fivaz and Gonseth, 2014), and for developing countries we can use
even the sparse existing data to guide in the protection of threatened
species quickly. There is no time to wait for good quality data. Thus
with certain conditions, we agree with Cassini (2011) that SDM-based

Table 1
Number of plant species categorized into each of the preliminary National IUCN
categories based on EOOrecords, and on AOOrecords under three different as-
sumptions about the minimum distance between ‘locations’. These are ‘pre-
liminary’ because of uncertainty in the sub-criterion ‘continuing decline'.

Category EOO AOO>20 km2 AOO
>50 km2

AOO
>100 km2

Extinct 0 0 0 0
Critically

Endangered
0 0 0 0

Endangered 0 1 4 10
Vulnerable 2 10 13 29
Least Concern 112 103 97 75

Table 2
Number of plant species assessed in each IUCN category assuming unlimited dispersal.

Category Assessments based on 50 years Assessments based on 10 years

Current A2 2020 A2 2050 A2 2080 B2 2020 B2 2050 B2 2080 Current A2 2020 A2 2050 A2 2080 B2 2020 B2 2050 B2 2080

Extinct 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Critically Endangered 0 3 0 1 4 0 3 0 0 0 0 0 0 0
Endangered 0 0 2 10 1 4 6 0 0 0 0 0 0 0
Vulnerable 0 5 8 8 9 5 7 0 0 0 0 0 0 0
Near Threat 0 7 15 12 3 13 12 0 0 1 1 1 0 3
Least Concern 114 99 89 83 97 92 86 114 114 113 113 113 114 111
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approaches can now be applied for Red-Listing globally and regionally
to classify the risk of extinction.

This is important for developing countries with few available data,
because our results show that reasonable estimates of the EOO can be
made when few data are available (Pena et al., 2014), or for rare species
(Marcer et al., 2013). When SDMs can estimate the EOO accurately,
then Red-List assessments are facilitated (Syfert et al., 2014). Using
Egyptian data controlled for quality by experts, there was a respectable
relationship between the EOOrecords and EOOmodel, indicating that the
SDM predictions were reasonable, as Syfert et al. (2014) found. The
relationship between mean AUC and EOOmodel is negative, implying
that small predicted ranges work better than large ones (Elith et al.,
2006; Hernandez et al., 2006). However, there is no strong evidence for
a high correlation between the number of the records and model ac-
curacy (Elith et al., 2006), and one of the advantages of MaxEnt is that
it obtains accurate models with small sample sizes (Pearson et al.,
2007). Accuracy of the models increases in species occupying a small
geographical range and restricted environmental tolerance (Hernandez
et al., 2006). It is interesting that the relationship between the number
of records and the difference EOOrecords - EOOmodel was negative, falling
almost to zero for the larger sample sizes. This implies that as long as
there are enough records, the estimates of EOO from SDMs are likely to
be good. Of course one of the main sources of prediction bias in SDMs is
sampling bias (Syfert et al., 2013): we are exploring current techniques
that claim to allow for sampling bias.

Limitations to the use of SDMs are well known; for example, when
the available data are inadequate for the modelling process to be ef-
fective (Kadmon et al., 2003; Wisz et al., 2008), or when the predictions
involve extrapolation outside the limits of the existing predictors (Elith
and Leathwick, 2009; Saupe et al., 2012). A number of recent studies
have raised questions about the validity of predicting solely using en-
vironmental variables: there are other elements that play significant
roles in shaping species distributions, for example, human activities
(Newbold et al., 2015), dispersal limitation and biotic interactions
(Pearson and Dawson, 2003). SDMs are associated with various kinds of
uncertainties, especially when projected into the future, but recent
studies suggest that despite these uncertainties SDMs are able to predict
geographical distributions reasonably well, even under climate change,
and can be used as a tool to assess extinction risks (Keith et al., 2014;
Pearson et al., 2014; Stanton et al., 2015). Of course, SDMs will be more
robust when there is a good quality data with low bias, and incorporate
the role of human disturbance and species interactions. However, such
‘ideal’ approaches are usually not available, especially in data-sparse
countries such as Egypt.

When species were preliminarily Red Listed using the actual re-
cords, the AOO was more critical than the EOO, because using the
EOOrecords only two species were assessed as threatened. Using
AOOrecords was provisional because the lack of information about po-
pulation size, or trends in habitat quality or populations, meant that the
number of locations and continuing decline were the only two available
criteria. Even here, given the generalised threat of over-collection, it
was difficult to decide the number of the locations based on occurrence
records. We used three assumptions based on the gaps between records

on the map (Martín, 2009). Increasing the minimum gap increased the
number of plants assessed as threatened because it decreased the de-
duced number of locations.

Many studies have used different grid-cell sizes to calculate the
AOO, and some used the AOO for calculating the locations or sub-
populations (see Table S7). The Red List claims that a cell size of 4 km2

is suitable for all cases, and smaller or coarser sizes are inappropriate.
On the other hand, the IUCN state that it is “impossible to provide any
strict but general rules for mapping taxa or habitats; the most appro-
priate scale will depend on the taxon in question, and the origin and
comprehensiveness of the distribution data” (IUCN, 2010). This allows
the rescaling of grid-cell size according to the distribution, and perhaps
encourages studies not to follow the advice (see Table S7 for details).
This variability and uncertainty leads researchers into confusion in
choosing the best grid-cell size, especially when there are knock-on
effects on the number of locations or subpopulations.

SDMs have proven their ability to predict distributions reasonably
well (Elith et al., 2006; Elith and Leathwick, 2009), and there is an
argument that EOO estimates from SDMs are more representative than
those drawn around occurrence points (Syfert et al., 2014). However,
the technique carries several uncertainties (Pearson and Dawson,
2003), and therefore care in interpretation is important. Combining
them with IUCN Red List assessment under climate changes risks mis-
applying the Criteria, leading to inaccurate assessments (Akçakaya
et al., 2006). Therefore there has been some concern that the Criteria
may not be appropriate to assess species under climate-change threats
(Hannah, 2012). Conversely, recent studies show that SDMs can iden-
tify species that are vulnerable to the effects of climate changes (Keith
et al., 2014; Pearson et al., 2014; Stanton et al., 2015). We believe that
as long as a carefully validated dataset can be created, because of the
ability of SDMs to build good models from relatively few data, even
data-sparse developing countries can assess their preparedness to adapt
their conservation efforts to climate change. We have identified a key
knowledge deficiency, however, in the way the time horizon affects the
assessments. The most important issue is the period over which declines
are estimated. Since virtually nothing is known about the generation
times of our plants, it is uncertain whether 10 years is an appropriate
period over which to estimate declines. Ecological knowledge about the
species is therefore vital.

Our models show that no plant species is currently at risk of ex-
tinction, a much lower estimate than the mean risk reported previously
for plants (Brummitt et al., 2015). Plants and birds may be more able to
respond to climate change than other taxa (e.g. reptiles and amphi-
bians) because of their ability to disperse, and hence their risk of ex-
tinction could be lower because they can track climate change (Araujo
and Pearson, 2005). The actual evidence suggests that all plant groups
are more threatened than birds, but less threatened than amphibians
(Brummitt et al., 2015), although this comparison may be biased by the
way plants have been selected to be assessed.

In general, most scientists realize that the effects of global climate
change are increasing, and may soon match human disturbance as the
main factor affecting species distributions in the future. A recent study
confirms that climate and human activities together dominate in

Table 3
Number of plant species assessed in each IUCN category assuming no dispersal.

Category Assessments based on 50 years Assessments based on 10 years

Current A2 2020 A2 2050 A2 2080 B2 2020 B2 2050 B2 2080 Current A2 2020 A2 2050 A2 2080 B2 2020 B2 2050 B2 2080

Extinct 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Critically Endangered 0 3 0 3 6 0 1 0 0 0 0 0 0 0
Endangered 0 23 3 11 30 4 3 0 0 0 0 0 0 0
Vulnerable 0 21 5 8 22 4 7 0 0 0 0 0 0 0
Near Threat 0 28 10 9 29 15 10 0 1 0 3 2 0 1
Least Concern 114 39 96 83 27 91 93 114 113 114 111 112 114 113
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shaping plant distribution (Fois et al., 2017; Abdelaal et al., 2019):
conversion and degradation of habitats are known to cause significant
declines in biodiversity (Newbold et al., 2015). Globally, extinction
risks are growing and population sizes are declining (Tittensor et al.,
2014; Pimm et al., 2014), and we appreciate that conservation planning
will be incomplete without taking into account human activities
(Faleiro et al., 2013). Our SDMs lack these and other biotic influences,
and are basically regressions. Truly predictive biological models will
incorporate the important biological mechanisms (e.g. evolution, en-
vironment, physiology, demography, dispersal, and species interac-
tions: Urban et al., 2016) in a biologically realistic way, but such rea-
lism is a long way off.

At about 15% of the total land, PAs in Egypt potentially represent a
good level of conservation (El-Gabbas et al., 2016) when compared
with the global average of about 12% (Chape et al., 2005). Egyptian
PAs appear to have higher species richness within them than areas
outside (Newbold et al., 2009; Leach et al., 2013), even in future pro-
jections under climate change (Kaky and Gilbert, 2017). Many species
are now known to be shifting their range northwards under climate
change (Parmesan and Yohe, 2003), and therefore dispersal capacity is
undeniably important.

Assuming unlimited dispersal, there were more plant species clas-
sified as Threatened or Near Threatened under the A2a than the B2a
scenario, with greater risks by 2080. These findings are consistent with
the IPCC report on emission scenarios, where greenhouse gases gra-
dually increase more under the A2 scenario than the B2a (Nakicenovic
et al., 2000), and risks of extinction increase with time under both
scenarios. As expected, the risks of extinction under the assumption of
unlimited dispersal were less harmful than under no dispersal, because
species can track the effect of climate change by find new suitable
habitat (Thuiller et al., 2005). Under the no-dispersal assumption, as
Thuiller (2004) found, the B2 scenario was slightly more harmful than
A2, perhaps because the pattern of projected CO2 and NO2 emissions
under the A2 scenario is ‘safer for species diversity’ than the B2 scenario
(Thuiller, 2004), although it is considered to be the more negative
scenario for global equilibrium (Nakicenovic et al., 2000). On the other
hand, the average number of species predicted to become threatened
between 2020 and 2050 in both scenarios decreases, perhaps because
the predicted levels of CO2 and NO2 emissions are lower under the A2
than the B2 scenario (Thuiller, 2004). This result needs more in-
vestigation, because based on the IPCC reports, predicted gas emissions
increase gradually in both scenarios. In view of the increased risk of
extinction, conservation in Egypt needs to be prioritized quickly and
given more resources to avoid this outcome.

From this case study, we conclude that SDMs are helpful tools for
estimating the risk of extinction using IUCN Red-List criteria, because of
their ability to estimate range sizes both now and in the future, espe-
cially for developing countries if a validated dataset can be engineered.
It would be very interesting if there were available data for the same
species in neighbouring countries, so as to create a more general view of
the range-size changes. For species assessment in a small region, it is
probably important to assess across a larger region than used for con-
servation planning (IUCN, 2012): however, the data are completely
lacking.

Acknowledgements

We thank Italian Cooperation (Debt Swap) for funding the BioMAP
Project; Ahmed El-Gabbas, Tim Newbold and Katie Leach for advice;
and Ahmed Dhahir Athab for GIS advice. We also thank the Higher
Committee for Education Development in Iraq for funding this work.
We would like to thank two anonymous referees and the Editor in chief
(Dr Damian Ravetta) for their constructive and helpful comments on a
previous version of the manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.jaridenv.2019.05.016.

References

Abdelaal, M., Fois, M., Fenu, G., Bacchetta, G., 2019. Using MaxEnt modeling to predict
the potential distribution of the endemic plant Rosa arabica Crép. in Egypt. Ecol. Inf.
50, 68–75.

Anadon, J.D., Gimenez, A., Ballestar, R., 2010. Linking local ecological knowledge and
habitat modelling to predict absolute species abundances on large scales. Biodivers.
Conserv. 19, 1443–1454.

Akçakaya, H.R., Butchart, S.H.M., Mace, G.M., Stuart, S.N., et al., 2006. Use and misuse of
the IUCN Red List Criteria in projecting climate change impacts on biodiversity. Glob.
Chang. Biol. 12, 2037–2043.

Akhani, H., 2014. Tamarix nilotica. The IUCN Red List of Threatened Species 2014:
e.T19179434A46081355. https://doi.org/10.2305/IUCN.UK.2014-1.RLTS.
T19179434A46081355.en, Accessed date: 12 December 2016 Downloaded on.

Allouche, O., Tsoar, A., Kadmon, R., 2006. Assessing the accuracy of species distribution
models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43,
1223–1232.

Araujo, M.B., Pearson, R.G., 2005. Equilibrium of species' distributions with climate.
Ecography 28, 693–695.

Araujo, M.B., Alagador, D., Cabeza, M., Nogues-Bravo, D., et al., 2011. Climate change
threatens European conservation areas. Ecol. Lett. 14, 484–492.

Araújo, M.B., Thuiller, W., Williams, P.H., Reginste, I., 2005. Downscaling European
species atlas distributions to a finer resolution: implications for conservation plan-
ning. Glob. Ecol. Biogeogr. 14, 17–30.

Araújo, M.B., Peterson, A.T., 2012. Uses and misuses of bioclimatic envelope modeling.
Ecology 93, 1527–1539.

Bachman, S., Moat, J., Hill, A.W., de Torre, J., et al., 2011. Supporting Red List threat
assessments with GeoCAT: geospatial conservation assessment tool. ZooKeys 150,
117–126.

Bell, A., Bachman, S., 2011. Ephedra alata. The IUCN Red List of Threatened Species
2011: e.T201688A9165505. https://doi.org/10.2305/IUCN.UK.2011-2.RLTS.
T201688A9165505.en, Accessed date: 12 December 2016 Downloaded on.

Bombi, P., Salvi, D., Bologna, M.A., Pettorelli, N., 2012. Cross-scale predictions allow the
identification of local conservation priorities from atlas data. Anim. Conserv. 15,
378–387.

Boulos, L., 1999-2005. Flora of Egypt. 4 vols Al Hadara Publishing, Cairo, Egypt.
Brummitt, N.A., Bachman, S.P., Griffiths-Lee, J., Lutz, M., et al., 2015. Green plants in the

red: a baseline global assessment for the IUCN sampled red list index for plants. PLoS
One 10, e0135152.

Butchart, S.H., Walpole, M., Collen, B., Strien, A. v., et al., 2010. Global biodiversity:
indicators of recent declines. Science 328, 1164–1168.

Callmander, M.W., Schatz, G.E., Lowry Ii, P.P., Laivao, M.O., et al., 2007. Identification of
priority areas for plant conservation in Madagascar using Red List criteria: rare and
threatened Pandanaceae indicate sites in need of protection. Oryx 41, 168.

Cardoso, P., Borges, P.A.V., Triantis, K.A., Ferrández, M.A., et al., 2011. Adapting the
IUCN red list criteria for invertebrates. Biol. Conserv. 144, 2432–2440.

Cassini, M.H., 2011. Ranking threats using species distribution models in the IUCN Red
List assessment process. Biodivers. Conserv. 20, 3689–3692.

CBD, 2010. Decision Adopted by the Conference of the Parties to the Convention of
Biological Diversity at its Tenth Meeting. Convention on Biological Diversity
[Online]. http://www.cbd.int/sp/ accessed 20.08.15.

Chape, S., Harrison, J., Spalding, M., Lysenko, I., 2005. Measuring the extent and effec-
tiveness of protected areas as an indicator for meeting global biodiversity targets.
Phil. Trans. Roy. Soc. B 360, 443–455.

Chapin, F.S., Zavaleta, E.S., Eviner, V.T., Naylor, R.L., et al., 2000. Consequences of
changing biodiversity. Nature 405, 234–242.

Collen, B., Dulvy, N.K., Gaston, K.J., Gardenfors, U., et al., 2016. Clarifying misconcep-
tions of extinction risk assessment with the IUCN Red List. Biol. Lett. 12 (4)
20150843.

Conlisk, E., Syphard, A.D., Franklin, J., Flint, L., et al., 2013. Uncertainty in assessing the
impacts of global change with coupled dynamic species distribution and population
models. Glob. Chang. Biol. 19, 858–869.

Deguignet, M., Juffe-Bignoli, D., Harrison, J., MacSharry, B., et al., 2014. United Nations
List of Protected Areas. UNEP-WCMC, Cambridge, UK, pp. 44.

Díaz, S., Fargione, J., F.S.C III, , Tilman, D., 2006. Biodiversity loss threatens human well-
being. PLoS Biol. 4, 1300–1305.

El-Gabbas, A., Baha El Din, S., Zalat, S., Gilbert, F., 2016. Conserving Egypt's reptiles
under climate change. J. Arid Environ. 127, 211–221.

Elith, J., Graham, C.H., Anderson, R.P., Dudík, M., et al., 2006. Novel methods improve
prediction of species' distributions from occurrence data. Ecography 29, 129–151.

Elith, J., Leathwick, J.R., 2009. Species distribution models: ecological explanation and
prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697.

Fivaz, F.P., Gonseth, Y., 2014. Using species distribution models for IUCN Red Lists of
threatened species. J. Insect Conserv. 18, 427–436.

Faleiro, F.V., Loyola, R.D., Knight, A., 2013. Socioeconomic and political trade-offs in
biodiversity conservation: a case study of the Cerrado Biodiversity Hotspot, Brazil.
Divers. Distrib. 19, 977–987.

Fois, M., Fenu, G., Cañadas, E.M., Bacchetta, G., 2017. Disentangling the influence of
environmental and anthropogenic factors on the distribution of endemic vascular

E. Kaky and F. Gilbert Journal of Arid Environments 170 (2019) 103988

8

https://doi.org/10.1016/j.jaridenv.2019.05.016
https://doi.org/10.1016/j.jaridenv.2019.05.016
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref1
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref1
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref1
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref2
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref2
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref2
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref3
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref3
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref3
https://doi.org/10.2305/IUCN.UK.2014-1.RLTS.T19179434A46081355.en
https://doi.org/10.2305/IUCN.UK.2014-1.RLTS.T19179434A46081355.en
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref5
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref5
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref5
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref6
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref6
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref7
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref7
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref8
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref8
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref8
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref9
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref9
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref10
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref10
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref10
https://doi.org/10.2305/IUCN.UK.2011-2.RLTS.T201688A9165505.en
https://doi.org/10.2305/IUCN.UK.2011-2.RLTS.T201688A9165505.en
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref12
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref12
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref12
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref13
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref14
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref14
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref14
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref15
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref15
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref16
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref16
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref16
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref17
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref17
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref18
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref18
http://www.cbd.int/sp/
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref20
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref20
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref20
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref21
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref21
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref22
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref22
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref22
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref23
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref23
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref23
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref24
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref24
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref25
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref25
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref26
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref26
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref27
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref27
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref28
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref28
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref29
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref29
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref30
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref30
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref30
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref31
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref31


plants in Sardinia. PLoS One 12 (8), e0182539.
Fois, M., Cuena-Lombrana, A., Fenu, G., Cogoni, D., Bacchetta, G., 2016. The reliability of

conservation status assessments at regional level: past, present and future perspec-
tives on Gentiana lutea L. ssp. lutea in Sardinia. J. Nat. Conserv. 33, 1–9.

GEF (Global Environment Fund), 2000. Conservation and Sustainable Use of Medicinal
Plants in Arid and Semi-arid Ecosystems. GEF, Washington DC, USA.

Hadidi, M.N., Abd El Ghani, M.M., Fahmy, A.G., 1992. The Plant Red Data Book of Egypt.
1. Woody Perennials. Palm Press and Cairo University Herbarium- 977-5089-04-2.

Hannah, L., 2012. Are a million species at risk? In: Saving Amillion Species: Extinction
Risk from Climate Change. Island Press, Washington DC.

Hannah, L., 2011. Climate Change Biology. Elsevier Ltd.
He, F.L., 2012. Area-based assessment of extinction risk. Ecology 93, 974–980.
Hernandez, P.A., Graham, C.H., Master, L.L., Albert, D.L., 2006. The effect of sample size

and species characteristics on performance of different species distribution modeling
methods. Ecography 29, 773–785.

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., et al., 2005. Very high resolution
interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978.

Hoyle, M., James, M., 2005. Global warming, human population pressure, and viability of
the world's smallest butterfly. Conserv. Biol. 19, 1113–1124.

Hurst, F., Barakat, H., Maxted, N., 2006. Conservation and Sustainable Use of Medicinal
Plants in Arid and Semi-arid Ecosystems. Atlas Project GEF12347. UNDP 12348
PIMS#972, Mid-term review, final report.

Hwang, W.H., He, F.L., 2011. Estimating abundance from presence/absence maps.
Methods Evol. Ecol. 2, 550–559.

IUCN, 2010. Guidelines for Using the IUCN Red List Categories and Criteria.Version 8.1.
Prepared by the Standards and Petitions Subcommittee in March 2010.

IUCN, 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National
Levels: Version 4.0. (Gland, Switzerland and Cambridge, UK).

IUCN, 2015. The IUCN Red List of Threatened Species. Version 2015-4. http://www.
iucnredlist.org/, Accessed date: 28 December 2015 Downloaded on.

IUCN, 2016. Guidelines for Using the IUCN Red List Categories and Criteria: Version 12.
Prepared by the Standards and Petitions Subcommittee.

Kadmon, R., Farber, O., Danin, A., 2003. A systematic analysis of factors affecting the
performance of climatic envelope models. Ecol. Appl. 13, 853–867.

Kaky, E., Gilbert, F., 2016. Using species distribution models to assess the importance of
Egypt's protected areas for the conservation of medicinal plants. J. Arid Environ. 135,
140–146.

Kaky, E., Gilbert, F., 2017. Predicting the distributions of Egypt's medicinal plants and
their potential shifts under future climate change. PLoS One 12, e0187714.

Keith, D.A., Auld, T.D., Ooi, M.K.J., Mackenzie, B.D.E., 2000. Ensitivity analyses of de-
cision rules in World Conservation Union (IUCN) Red List criteria using Australian
plants. Biol. Conserv. 94, 311–319.

Keith, D.A., Mahony, M., Hines, H., Elith, J., et al., 2014. Detecting extinction risk from
climate change by IUCN Red List criteria. Conserv. Biol. 28, 810–819.

Kew, 2010. Plants under Pressure – a Global Assessment. The First Report of the IUCN
Sampled Red List Index for Plants. Royal Botanic Gardens, Kew, UK.

Lamoreux, J., Akçakaya, H.R., Bennun, L., Collar, N.J., et al., 2003. Value of the IUCN red
list. Trends Ecol. Evol. 18, 214–215.

Lansdown, R.V., Juffe Bignoli, D., 2013. Juncus rigidus. The IUCN Red List of Threatened
Species 2013: e.T185693A13559337. https://doi.org/10.2305/IUCN.UK.2013-1.
RLTS.T185693A13559337.en, Accessed date: 12 December 2016 Downloaded on.

Lansdown, R.V., 2015. Phragmites australis. The IUCN Red List of Threatened Species
2015: e.T164494A79857020. https://doi.org/10.2305/IUCN.UK.2015.RLTS.
T164494A79857020.en, Accessed date: 12 December 2016 Downloaded on.

Leach, K., Zalat, S., Gilbert, F., 2013. Egypt's Protected Area network under future climate
change. Biol. Conserv. 159, 490–500.

Liu, C., Berry, P.M., Dawson, T.P., Pearson, R.G., 2005. Selecting thresholds of occurrence
in the prediction of species distributions. Ecography 28, 385–393.

Mace, G.M., Collar, N.J., Gaston, K.J., Hilton-Taylor, C., et al., 2008. Quantification of
extinction risk: IUCN's system for classifying threatened species. Conserv. Biol. 22,
1424–1442.

Maes, D., Isaac, N.J.B., Harrower, C.A., Collen, B., et al., 2015. The use of opportunistic
data for IUCN Red List assessments. Biol. J. Linn. Soc. 115, 690–706.

Marcer, A., Sáez, L., Molowny-Horas, R., Pons, X., et al., 2013. Using species distribution
modelling to disentangle realised versus potential distributions for rare species con-
servation. Biol. Conserv. 166, 221–230.

Martín, J.L., 2009. Are the IUCN standard home-range thresholds for species a good

indicator to prioritise conservation urgency in small islands? A case study in the
Canary Islands (Spain). J. Nat. Conserv. 17, 87–98.

MEA, 2005. Ecosystems and Human Well-Being: Biodiversity Synthesis. World Resources
Institute, Washington, DC.

Nakicenovic, N., Swart, R., Alcamo, J., Davis, G., et al., 2000. Emissions Scenarios: A
Special Report of Working Group III of the Intergovernmental Panel on Climate
Change. Cambridge University Press, Cambridge, UK.

Newbold, T., Gilbert, F., Zalat, S., El-Gabbas, A., et al., 2009. Climate-based models of
spatial patterns of species richness in Egypt's butterfly and mammal fauna. J.
Biogeogr. 36, 2085–2095.

Newbold, T., Hudson, L.N., Hill, Samantha L.L., et al., 2015. Global effects of land use on
local terrestrial biodiversity. Nature 520, 45–50.

NRL, 2015. National red list. http://www.nationalredlist.org/, Accessed date: 30
December 2015 Downloaded on.

Parmesan, C., Yohe, G., 2003. Aglobally coherent fingerprint of climate change impacts
across natural systems. Nature 421, 37–42.

Pearson, R.G., Dawson, T.P., 2003. Predicting the impacts of climate change on the dis-
tribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12,
361–371.

Pearson, R.G., Raxworthy, C.J., Nakamura, M., Townsend Peterson, A., 2007. Predicting
species distributions from small numbers of occurrence records: a test case using
cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117.

Pearson, R.G., Stanton, J.C., Shoemaker, K.T., Aiello-Lammens, M., et al., 2014. Life
history and spatial traits predict extinction risk due to climate change. Nat. Clim.
Change 4, 217–221.

Pena, J. C. d. C., Kamino, L.H.Y., Rodrigues, M., Mariano-Neto, E., et al., 2014. Assessing
the conservation status of species with limited available data and disjunct distribu-
tion. Biol. Conserv. 170, 130–136.

Peterson, A.T., Ortega-Huerta, M.A., Bartley, J., Sánchez-Cordero, V., et al., 2002. Future
projections for Mexican faunas under global climate change scenarios. Nature 416,
626–629.

Pimm, S.L., Jenkins, C.N., Abell, R., Brooks, T.M., et al., 2014. The biodiversity of species
and their rates of extinction, distribution, and protection. Science 344 1246752.

Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species
geographic distributions. Ecol. Model. 190, 231–259.

Phillips, S.J., Anderson, R.P., Dudík, M., Schapire, R.E., et al., 2017. Opening the black
box: an open-source release of Maxent. Ecography 40, 887–893.

Ricketts, T.H., Dinerstein, E., Boucher, T., Brooks, T.M., et al., 2005. Pinpointing and
preventing imminent extinctions. Proc. Natl. Acad. Sci. Unit. States Am. 102,
18497–18501.

Root, T.L., Price, J.T., Hall, K.R., Schneider, S.H., et al., 2003. Fingerprints of global
warming on wild animals and plants. Nature 421, 57–60.

Saupe, E.E., Barve, V., Myers, C.E., Soberón, J., Barve, N., et al., 2012. Variation in niche
and distribution model performance: the need for a priori assessment of key causal
factors. Ecol. Model. 237–238, 11–22.

Stanton, J.C., Shoemaker, K.T., Pearson, R.G., Akcakaya, H.R., 2015. Warning times for
species extinctions due to climate change. Glob. Chang. Biol. 21, 1066–1077.

Syfert, M.M., Joppa, L., Smith, M.J., Coomes, D.A., et al., 2014. Using species distribution
models to inform IUCN Red List assessments. Biol. Conserv. 177, 174–184.

Tittensor, D.P., Walpole, M., Hill, S.L.L., et al., 2014. A mid-term analysis of progress
toward international biodiversity targets. Science 346, 241–244.

Thuiller, W., Lavorel, S., Araujo, M.B., Sykes, M.T., et al., 2005. Climate change threats to
plant diversity in Europe. Proc. Natl. Acad. Sci. Unit. States Am. 102, 8245–8250.

Turner, J., Connolley, W.M., Lachlan-Cope, T.A., Marshall, G.J., 2006. The performance
of the Hadley Centre climate model (HadCM3) in high southern latitudes. Int. J.
Climatol. 26, 91–112.

Urban, M.C., Bocedi, G., Hendry, A.P., Mihoub, J.B., Pe'er, G., et al., 2016. Improving the
forecast for biodiversity under climate change. Science 353.

Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C.H., et al., 2008. Predicting
Species Distributions Working Group. Effects of sample size on the performance of
species distribution models. Divers. Distrib. 14, 763–773.

Wright, A.N., Schwartz, M.W., Hijmans, R.J., Shaffer, H.B., 2016. Advances in climate
models from CMIP3 to CMIP5 do not change predictions of future habitat suitability
for California reptiles and amphibians Climate. Change 134, 579–591.

Zamin, T.J., Baillie, J.E., Miller, R.M., Rodriguez, J.P., et al., 2010. National red listing
beyond the 2010 target. Conserv. Biol. 24, 1012–1020.

E. Kaky and F. Gilbert Journal of Arid Environments 170 (2019) 103988

9

http://refhub.elsevier.com/S0140-1963(18)30347-1/sref31
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref32
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref32
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref32
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref33
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref33
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref34
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref34
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref35
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref35
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref36
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref37
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref38
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref38
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref38
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref39
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref39
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref40
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref40
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref41
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref41
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref41
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref42
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref42
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref43
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref43
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref44
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref44
http://www.iucnredlist.org/
http://www.iucnredlist.org/
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref46
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref46
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref48
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref48
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref49
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref49
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref49
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref50
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref50
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref51
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref51
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref51
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref52
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref52
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref53
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref53
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref54
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref54
https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T185693A13559337.en
https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T185693A13559337.en
https://doi.org/10.2305/IUCN.UK.2015.RLTS.T164494A79857020.en
https://doi.org/10.2305/IUCN.UK.2015.RLTS.T164494A79857020.en
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref57
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref57
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref58
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref58
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref59
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref59
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref59
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref61
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref61
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref62
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref62
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref62
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref63
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref63
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref63
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref64
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref64
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref65
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref65
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref65
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref66
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref66
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref66
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref67
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref67
http://www.nationalredlist.org/
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref69
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref69
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref70
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref70
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref70
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref71
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref71
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref71
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref72
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref72
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref72
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref73
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref73
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref73
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref74
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref74
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref74
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref75
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref75
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref76
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref76
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref77
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref77
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref78
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref78
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref78
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref79
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref79
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref80
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref80
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref80
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref81
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref81
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref82
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref82
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref83
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref83
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref84
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref84
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref85
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref85
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref85
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref86
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref86
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref87
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref87
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref87
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref88
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref88
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref88
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref89
http://refhub.elsevier.com/S0140-1963(18)30347-1/sref89

	Assessment of the extinction risks of medicinal plants in Egypt under climate change by integrating species distribution models and IUCN Red List criteria
	Introduction
	Methods
	Occurrence data
	Species distribution models Using MaxEnt
	Current and future environmental variables
	IUCN Red List assessments

	Results
	Model performance
	Species classifications under current conditions
	Species classifications with future climate change

	Discussion
	Acknowledgements
	Supplementary data
	References




