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Abstract

These lecture notes cover the Advanced Gravity module (F34AGR) forming part
of the Gravity, Particles and Fields Masters course. General Relativity is based on
the geometry of four dimensional spacetime, the curvature of which is governed by
the Einstein’s equations. This theory is extremely well tested and represents our best
description of the gravitational force. This module develops the ideas behind General
Relativity to an advanced level. The derivation of certain solutions to the Einstein
equations will be presented, including black hole and cosmological solutions. Gravity
in the weak-field limit will be derived from the full theory, demonstrating how one
should understand the gravitational interaction in terms of graviton exchange. The
module will then move on to advanced topics, including modified gravity models (e.g.
models with extra dimensions) that are at the forefront of current research.
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Useful resources

• D’Inverno, “Introducing Einstein’s Relativity”

• Carroll, “Spacetime and Geometry”

• Hartle, “Gravity: an introduction to Einstein’s General Relativity”

• Zee, “Quantum field theory in a nut-shell”.

For more advanced stuff:

• Wald, “General Relativity”

• Misner, Thorne, & Wheeler, “Gravitation”

• Parker & Toms, “Quantum fields in curved spacetime”
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“And then I looked up at the Sun
And I could see

Oh, the way that gravity pulls on you and me”

Coldplay, Gravity
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1 What is gravity?

“The laws in this city are clearly racist. All laws are racist. The law of gravity is racist.” So
said Mayor Marion Barry of Washington D.C. We cannot comment on the laws in America’s
capital, but we can say that Mayor Barry was wrong about gravity. Gravity does not
care about how we look, or how we are put together. I suspect that Mayor Barry did not
understand the principle of equivalence.

To most people, gravity is what keeps your feet on the ground. It is the force that caused
the apple to fall on Newton’s head. It is the force that keeps the earth in orbit around
the Sun. It is even the force that controls the expansion of the entire Universe! Newton
described gravity using his famous inverse square law, a law from which we can derive those
planetary orbits with great accuracy. We can even get cosmology from those laws!

A particle physicist would take a more sophisticated view. To him, gravity, like any other
force, comes from the exchange of “virtual” particles. The particle that mediates this force
is often referred to as the graviton, and most likely has spin two, and vanishing mass. A
string theorist would suggest that this graviton is not a particle, but a closed string, like a
loop of finite size.

In your Gravity course you learned that Gravity is Geometry. This course is largely aimed
at providing us with the necessary mathematics to add meat to the bones of that statement.

1.1 The Equivalence Principle

The statement that Gravity is Geometry stems from the Equivalence Principle, or perhaps
more precisely, the Einstein Equivalance Principle (EEP). The reason we are being pedan-
tic about this is that the Equivalence Principle comes in many forms, with some subtle
differences:

Weak Equivalence Principle (WEP) The trajectory of an uncharged, freely falling test
particles is independent of its mass or composition.

Einstein Equivalence Principle (EEP) The WEP holds, and furthermore, local non-
gravitational experiments performed in a freely falling laboratory yield the same results
as those performed in Minkowski spacetime, regardless of the position and velocity of the
laboratory.

Strong Equivalence Principle (SEP) The WEP holds for massive gravitating objects
as well as test particles, and furthermore, local non-gravitational experiments performed in
a freely falling laboratory yield the same results as those performed in Minkowski spacetime,
regardless of the position and velocity of the laboratory.

If we are to discuss what we been by each of these, we first need to remind ourselves what
is meant by a freely falling test particle, or a freely falling lab. A freely falling particle is
one whose motion is subject only to gravity. In other words, it only feels acceleration due
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to gravity, and not any other force. When you stand on the surface of the earth, you are
not freely falling because your feet are subject to those electromagnetic forces that stop you
from plummeting towards the earth’s core. In contrast, if we neglect the effects of friction,
a man crazy enough to jump from the top of the physics building would indeed be freely
falling, as the only force affecting his motion is gravity. Note that a laboratory on a space
station orbiting the earth is also freely falling since its motion is entirely governed by the
earth’s gravitational field. Sometimes you will find that people use inertial rather than freely
falling. They mean the same thing: subject only to gravity.

The WEP is the generalisation of Galileo’s famous claim, that a moving body falls with
uniform acceleration, independently of its mass or composition. In other words, when a canon
ball and a wooden ball are released simultaneously form the top of the leaning tower of Pisa,
they hit the ground at the same time. It is sometimes described as the Universality of Free
Fall. The EEP tells us that provided we restrict our attention to a small enough region of
spacetime, we can eliminate the effects of gravity to the point where our (non-gravitational)
experiments become indistinguishable from those performed in Minkowski spacetime. The
SEP merely extends the scope of the EEP, taking into account the trajectory through space
of self gravitating objects.

The WEP is easily incorporated into our geometrical picture by demanding that all test
particles move along geodesics – the shortest paths through spacetime. In flat spacetime,
the shortest paths are just straight lines, but in curved spacetime the shortest paths can be
curved. In direct analogy, because the surface of the earth is curved, the shortest path, or
geodesic, connecting London to New York, is not a straight line, but curved along the great
circle.

The EEP holds because Minkowski spacetime is a good approximation within a small
enough neighbourhood of any point in curved spacetime. Again, in direct analogy, recall
that the ancients believed the earth was flat. This is precisely because its surface looks flat
when viewed over small enough regions. The EEP also allows us to extend the statement
about test particles to massless species such as light, which are now required to move along
null geodesics (see section 1.2).

At this stage it is worth reminding ourselves of the Machian element to our ideas about
gravity. Mach’s principle states that the distribution of all matter relative to a given observer
determines his/her inertial frame. In our geometrical view of gravity, this is equivalent to
saying that the distribution of all matter determines the curvature of spacetime. In General
Relativity this is almost true. Einstein’s equation relates the energy and momentum of
matter to the spacetime geometry, but it does leave room for gravitational waves, which
are freely propagating and technically violate Mach’s principle. Some alternative gravity
theories, such as Brans-Dicke, permit additional fields to play a role in determining the
geometry, but the spirit of Mach’s principle remains intact up to freely propagating waves.

Finally, we return to the SEP. It essentially extends the EEP to apply to bodies with
significant gravitational self interaction. In the geometrical picture, it requires gravity to
be entirely geometrical, in the sense that all we have is matter and geometry. The former
completely determines the latter, up to gravitational waves, so there are no additional fields
playing any role. This picks out General Relativity (plus cosmological constant) uniquely in
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four dimensions.

1.2 Some details from the Gravity course

Let us pause to recap a few details from the Gravity course. There we learnt that curved
spacetime is described using a metric

ds2 = gµν(x)dxµdxν (1.1)

where µ = 0, 1, 2, 3. This tells us how to measure spacetime distance in the curved geometry.
In this course, we will adopt the convention that the signature of the metric is (− + ++).
For example, this would mean that Minkowski spacetime would be written as ds2 = −dt2 +
dx2 + dy2 + dz2. You will find that some old fashioned people prefer to use the convention
(+ − −−), in which Minkowski would be written as ds2 = dt2 − dx2 − dy2 − dz2. Its just
convention. Like we said, we will adopt the “mostly +” convention in this course. Note that
we will also work in units where the speed of light, c = 1, unless explicitly stated.

Provided that the metric is non-degenerate, that is det gµν 6= 0, we can always define
the inverse metric gµν satisfying gµνgνα = δµα. The metric and inverse metric are useful
for turning a covariant vector Vµ into a contravariant vector V µ = gµνVν , and vice-versa,
Vµ = gµνV

ν . We can also use them to define the Levi-Civita connection,

Γµαβ =
1

2
gµν (gνα,β + gνβ,α − gαβ,ν) (1.2)

where we have used the following shorthand: gµν,α = ∂
∂xα

gµν .
The geodesic paths xµ = xµ(λ), parametrised by some parameter, λ, can be found by

minimising the spacetime distance∫ √∣∣∣∣gµν(x(λ))
dxµ

dλ

dxν

dλ

∣∣∣∣dλ (1.3)

This yields the following differential equation

d2xµ

dλ2
+ Γµαβ

dxα

dλ

dxβ

dλ
= α(λ)

dxµ

dλ
(1.4)

where α(λ) = d
dλ

ln
√∣∣gµν(x(λ))dx

µ

dλ
dxν

dλ

∣∣. If λ is an affine parameter then we have

gµν(x(λ))
dxµ

dλ

dxν

dλ
= constant

and so
d2xµ

dλ2
+ Γµαβ

dxα

dλ

dxβ

dλ
= 0 (1.5)

One can always find an affine parameter for a geodesic. We should also recall that in
spacetime, geodesics can be categorised as timelike, null or spacelike. This depends on the

7



properties of the tangent vector to the geodesic, uµ = dxµ

dλ
. Given our signature convention,

we have that uµu
µ is negative, zero, or positive for timelike, null and spacelike geodesics

respectively.
In General Relativity, ordinary massive test particles follow timelike geodesics, since their

action is given by

S = −m
∫ √

−gµν(x(λ))
dxµ

dλ

dxν

dλ
dλ (1.6)

Using the EEP we extend this philosophy to massless particles like the photon, and require
them to follow null geodesics. If they existed, which they do not, we would also say that
nonsensical particles with imaginary mass (tachyons) follow spacelike geodesics.

A useful short-cut for calculating geodesics is as follows. We simply assume an affine
parametrisation and set

M2 = −gµν(x(λ))
dxµ

dλ

dxν

dλ
(1.7)

with the constant M2 being positive, zero, or negative for timelike, null and spacelike
geodesics respectively.

Finally, we note that throughout this course we will make use of the following shorthand
denoting symmetrization and anti-symmetrization of indices,

Q(µν) =
1

2
Qµν +

1

2
Qνµ, Q[µν] =

1

2
Qµν −

1

2
Qνµ

Exercises

1. Suppose we have a theory with a metric, gµν and a scalar field, φ, such that the action
for a test particle of mass, m, is given by

S = −m
∫
e4φ(x(λ))

√
−gµν(x(λ))

dxµ

dλ

dxν

dλ
dλ (1.8)

Which of the following holds: WEP, EEP, and/or SEP? Explain your answer.

2. Suppose we have a theory with two metrics, gµν , and hµν , such that the action for a
test particle of mass, m, is given by

S = −m
∫ [√

−gµν(x(λ))
dxµ

dλ

dxν

dλ
+

√
−hµν(x(λ))

dxµ

dλ

dxν

dλ

]
dλ (1.9)

Now, one can always choose coordinates so that either gµν or hµν is locally Minkowski.
However, in general, there exists no choice of coordinates for which both metrics are
locally Minkowski at the same time. Therefore, which of the following holds: WEP,
EEP, and/or SEP? Explain your answer.

3. The Schwarzschild geometry is given by

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2(dθ2 + sin2 θdφ2), V (r) = 1− rH

r
(1.10)
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Show that the radial null geodesics are given by(
r

rH
− 1

)
er/rH = Aet/rH , A = constant (1.11)

for r > rH .

2 General Relativity: the successes

Nearly 100 years after its inception, General Relativity has time and again stood up to
experimental scrutiny. By now there are many different tests of GR, but three in particular
are regarded as the classics.

2.1 The perihelion precession of Mercury

According to Kepler’s first law, the motion of each planet in the solar system is given by an
ellipse with the Sun at its focus. Viewed on short enough timescales, these ellipses appear
fixed, but a more careful examination reveals this not to be the case. The point of closest
approach (the perihelion) is seen to precess (rotate) around the Sun. This precession can
usually be accounted for in Newtonian gravity by corrections due to the gravitational fields
of the other planets in the Solar System. However, most notably in the case of the planet
Mercury, this is not enough, leading Urbain Le Verrier to speculate on the existence of a
new unseen dark planet that he dubbed “Vulcan”. However, if we include the corrections
from General Relativity we find that Mercury’s perihelion precession can be reproduced
to excellent accuracy without any reference to the mythical “Vulcan”. Being closest to the
Sun, Mercury is more sensitive to GR corrections than the other planets. Given that average
radius of Mercury’s orbit is of the order 56,000,000 km and the Schwarzschild radius of the
Sun is of the order 3km, so the GR corrections are of order 1 part in 107. The anomalous
precession of Mercury is 42.98± 0.04 arcsecs/century, which is emphatically consistent with
the GR prediction of 42.98 arcsecs/century.

For details on how to derive the GR correction to the perihelion precession of a planet,
see D’Inverno, Section 15.3.

2.2 The bending of light

Light bending per se is not unique to a geometric description of gravity. If we embrace
the WEP and model the photon as having an infinitesimally small mass we obtain light
bending even in Newtonian gravity. To see this consider a photon passing a heavy object of
mass, M . By extending the WEP we conclude that the photon feels a radial acceleration
a = GM/r2 pointing towards the massive object, and thus its trajectory is deflected by some
angle, θN . Eddington was the first to find experimental evidence of starlight bent by the
gravitational field of the Sun in 1919. However, for a photon grazing the edge of the Sun,
the Newtonian prediction , θN = 0.875 arcsecs is not consistent with observation. Modern
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tests give a deflection angle of θ = (0.99992 ± 0.00023) × 1.75. In General Relativity, one
can compute the path of a lightray by calculating the null geodesics in the curved geometry
around a heavy object. The same photon trajectory is found to be deflected by an angle
θGR = 2θN = 1.75 arcsecs, and is in excellent agreement with observation.

For details on how to compute the bending of light around a heavy object in General
Relativity, see D’Inverno, Section 15.4.

2.3 Gravitational redshift

Any theory that satisfies the Einstein Equivalence Principle will experience gravitational
redshift. This is the redshifting of light as it climbs out of a gravitational potential well.
Conversely, light is blueshifted as it falls down the potential well, which is why the accretion
disks of black holes appear so energetic.

To understand this effect, consider the following thought experiment. Imagine a giant
water wheel running between the earth at the top and the Sun at the bottom. This water
wheel is modified slightly so that on one half of the wheel the atoms in the water buckets are
excited, but in the other half they lie in their ground state. By mass-energy equivalence, the
buckets of excited atoms are ”heavier” and will fall towards the Sun, causing the wheel to
rotate. At some point we reach a state of equilibrium with the lowermost bucket of excited
atoms arriving at the Sun (bucket A), and the uppermost bucket of ground state atoms
arriving at the earth (bucket B). At this point, there is a device on the Sun that returns
the excited atoms in bucket A to their ground state and extracts the energy difference as
radiation. This radiation is then beamed back to earth where it is used to excite the atoms
in bucket B. Because bucket A is now a little lighter, and bucket B a little heavier, the
wheel rotates some more, and the process is repeated. We are left with a state of perpertual
motion, which would seem to be in violation of conservation of energy.

The resolution of this puzzle lies in the fact that the radiation beamed back to earth is
redshifted as it climbs out of the gravitational potential well sourced by the Sun. Redshifting
causes the frequency, ν of the photon to decrease, and by the Planck-Einstein equation,
E = hν, this leads to a reduction in its energy. In other words, the photon must do work
to climb out of the potential well, and this drop in energy manifests itself through a drop in
the frequency.

Gravitational redshift was famously verified in 1959 by the Pound-Rebka experiment
between the top and bottom of the Jefferson tower at Harvard University.

Further details on gravitational redshifting can be found in D’Inverno, Section 15.5.

Exercises

1. In Newtonian gravity, a particle in the gravitational field of the Sun follows a trajectory
given by

r =
rmin(1 + ε)

1 + ε cos θ
, ε =

√
1 + 2E h

GM�
(2.1)
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where (r, θ) represent polar coordinates in the plane of motion, with the Sun at the
origin and rmin is the point of closest approach. We assume a photon has energy per
unit mass, E = 1

2
c2, and angular momentum per unit mass, h = rminc. Show that a

light ray is deflected through an angle,

δ =
(
θin −

π

2

)
+

(
3π

2
− θout

)
= 2 sin−1(1/ε) ≈ 2GM�/c

2

rmin
(2.2)

assuming rmin � 2GM�/c
2. [Hint: see Fig. 2.1.]

Figure 2.1: Path of a light ray bent by the gravitational field of the Sun.

2. In General Relativity, a light ray in the gravitational field of the Sun follows a trajectory
approximately given by

r =
rmin

cos θ + 2GM�/c2

rmin

(
1− 1

2
cos2 θ

) , (2.3)

Show that it is deflected through an angle,

δ ≈ 4GM�/c
2

rmin
(2.4)

assuming rmin � 2GM�/c
2. [Hint: for small deflection angles you may neglect cos2 θin

and cos2 θout.]

3. Browse Clifford Will’s Living Review article to familiarise yourself with some of the
latest results on experimental tests of GR:

Clifford M. Will, “The Confrontation between General Relativity and Experiment”, Liv-
ing Rev. Relativity 9, (2006), 3. URL: http://www.livingreviews.org/lrr-2006-3
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3 General Relativity: the failures

Lets not get carried away. GR is good, but its not that good. Indeed, it predicts its own
demise at short distances, whilst at large distances it faces serious challenges from the dark
side.

3.1 Non-renormalisability

As you will learn in your black hole course, when stars run out of fuel, they begin to collapse
under their own weight. For the heaviest stars, there is no process that can permanently
halt the collapse, ensuring that the star forms a black hole, with a singularity at its centre.
This singularity corresponds to a region of infinite spacetime curvature, where the classical
equations of General Relativity break down. Indeed Hawking and Penrose proved that,
given reasonable energy conditions on matter, such singularities are inevitable in General
Relativity. To resolve them, one must resort to quantum theory beyond the Planck scale
Mpl =

√
~c/8πGN , where GN is Newton’s constant. The trouble is that GR is not a

renormalisable theory – loop corrections at higher and higher order generate a never-ending
set of counter-terms. This essentially follows from the fact that the graviton propagator goes
like 1/k2, and that the gravitational coupling, GN , has negative mass dimension, [GN ] = −2.
For more details on what makes a theory non-renormalisable, see Chapter III.3 of Zee.

3.2 The dark side

General Relativity also faces a serious challenge from the dark side. The problem is that
General Relativity, coupled to ordinary baryonic matter cannot account for a slew of as-
trophysicial and cosmological data. To get around this we fudge the issue, by postulating
the existence of some invisible fields, labelled dark matter and dark energy, between them
making up 96% of the cosmic energy budget!

Figure 3.1: The cosmic energy budget today.
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The motivation for dark matter comes from a number of sources, but most notably from
the rotation curves of the outer stars in galaxies. Let us model what we expect this profile to
be according to Newtonian gravity (which corresponds to the leading order non-relativistic
limit of GR). We expect the gravitational field to be dominated by the large (and constant)
baryonic mass, Mg contained in the visible core of the galaxy. Assuming circular orbits for
simplicity, one would find that the velocity profile, v, of the outer stars, is governed by the
following equation

v2

r
=
GMg

r2
=⇒ v ∝ 1√

r
(3.1)

However, as we see in Fig. 3.2, the observed profile has v ≈ constant. We can recover
this by assuming that the mass of the galaxy grows like Mg(r) ∝ r, with the extra con-
tribution coming from dark matter. The claim is that we cannot see dark matter since it
barely interacts with the standard model fields. Strong evidence for dark matter also comes
from gravitational lensing experiments, structure formation and measurements of the Cos-
mic Microwave Background (CMB). In the standard cosmological model, dubbed ΛCDM,
dark matter makes up around 23% of the energy density of the Universe (see Fig. 3.1).
Particle physics promises some good dark matter candidates in the form of WIMPS, Weakly
Interacting Massive Particles, often corresponding to the lightest supersymmetric particle.
Nonetheless, there have been attempts to modify gravity as an alternative to dark mat-
ter, most notably MOND (Modified Newtonian Dynamics) and its relativistic cousin TeVeS
(Tensor-Vector-Scalar theory).

Figure 3.2: Velocity profiles for outer stars in a typical galaxy: newtonian prediction versus
observation.

The motivation for dark energy comes primarily from CMB, large scale structure surveys,
and, of course, supernovae observations. The latter won Perlmutter, Schmidt and Riess the
nobel prize in 2011. These observations all point to one startling fact – on the largest
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scales the expansion of the Universe is speeding up. This is counter-intuitive: gravity is
an attractive force, so surely the expansion should be slowing down. But it isn’t. What is
causing this repulsion on large scales. We wave our hands and say “dark energy”, but the
truth is that particle physics offers no good candidates for this. Some would argue that a
cosmological constant, Λ, with constant energy density ρΛ ∼ M2

plΛ ∼ (meV)4 can account
for the observed acceleration. This is indeed true, and represents the main ingredient of the
ΛCDM model, with Λ making up 73% of the cosmic energy budget (see Fig. 3.1).

However, within the realm of effective field theory, the problem with a cosmological
constant is that it receives contributions from the zero point energies of each particle with
mass below the cut-off. Indeed,

ρobsΛ = ρbareΛ +
1

2

∑
particles

∫
d3k

(2π)2

√
~k2 +m2 ≈ ρbareΛ + cνm

4
ν + cem

4
e + . . .M4

cut-off (3.2)

where the ci are order one coefficients, and mν is the neutrino mass, me ∼ MeV is the
electron mass, and so on. The electron contribution already requires us to fine tune the bare
value of ρbareΛ to one part in 1036, and yet we claim to have a good understanding of physics
at this scale! If we work up to a Planckian cut-off, we require a fine tuning of one part in
10120. This is truly a disaster for particle physics, and is known as the cosmological constant
problem. Because of it, there is strong motivation for searching for gravitational alternatives
to dark energy, a field of physics which has blossomed in recent years.

Exercises

1. Verify the right-hand side of the formula (3.2).

2. The Bullet cluster is made up of two colliding galaxies, shown in Fig. 3.3. The pink
bits represent the location of ordinary baryonic matter, where as the blue bits represent
the location of the hypothetical dark matter, calculated using gravitational lensing
experiments. Explain why this observation suggests that the dark matter problem will
be solved using particle physics as opposed to a modfication of gravity such as MOND,
or TeVeS.

4 Manifolds

We have said that Gravity is Geometry. So what is geometry? Well in General Relativity,
geometry is described by a Lorentzian Manifold (sometimes called a pseudo-Riemannian
manifold). The words Lorentzian and pseudo just indicate that we are interested in manifolds
endowed with a metric of Lorentzian signature, (−,+ . . .+), consistent with some notion of
space-time.

Let us forget about signature for a moment and concentrate on what we mean by plain
old Riemannian manifolds (without the pseudo bit). In n dimensions, the simplest example
of a Riemannian manifold is n-dimensional Euclidean space Rn. Hopefully you will already
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Figure 3.3: The bullet cluster.

know a lot about this space, at least in 3 dimensions. You will know that we can choose a
Cartesian coordinates so that this manifold is endowed with the simplest of metrics,

ds2 = dx2
1 + dx2

2 + . . .+ dx2
n (4.1)

You may even have some idea of what is meant by a vector or a tensor, and you will probably
know that we can do calculus on this space.

More generally, a Riemannian manifold is a space made up of a series of patches that are
smoothly sewn together. Each patch should look like Rn, when viewed on a small enough
neighbourhood of any point in the manifold. Other examples of Riemannian manifolds
include the n-sphere, Sn, the n-torus, T n, as well as much more complicated objects. One
of the things that characterises a manifold is its genus, which measures the number of holes.
Manifolds with different genera (plural of genus) are shown in Fig. 4.1.

Figure 4.1: Some simple manifolds – the 2-sphere, the 2-torus and the double 2-torus.

Let us now give a more formal definition of a manifold.
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Manifold A manifold is a topological space, M , together with an atlas.

An atlas is a set of charts (or coordinate systems), serving each patch of the manifold
satisfying certain conditions. It is often written as {(Uα, ϕα)}, where the Uα denote the
patches, and the ϕα denote the charts. The relevant conditions are the following:

1. M is the union of all the patches, Uα.

2. On a given patch, Uα, the chart, ϕα is a continuously differentiable one to one map
from Uα onto a subset of Rn

3. If two patches overlap, Uα∩Uβ 6= ∅, then the map ϕα◦ϕ−1
β is a continuously differentiable

function on (a subset of) Rn.
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Fig. 3 contains a pictorial representations of this definition.
The surface of the earth is a topological space, whereas lines of longitude and latitude

represent a chart. Together they form a manifold. To be honest, this is a lot of unnecessary
hullabaloo! Basically, for the purpose of this course and plenty more beyond, all you need
to know is that a manifold is a space along with a set of coordinates mapping out that
space, and that it has some nice properties such as being smooth, and locally flat. But
remember, in general relativity, we are interested in spacetime, rather than space, so we deal
with pseudo-Riemannian manifolds rather than Riemannian manifolds. Let us rephrase our
earlier sentence in this context: a pseudo-Riemannian manifold is a spacetime along with a
set of coordinates mapping out that spacetime, and it has some nice properties such as being
smooth, and locally Minkowski.

4.1 Vectors

Now let’s move on to what is really important, starting with vectors. At school you learnt
that a vector was something with magnitude and direction, such as velocity and force.
Another example of a vector is the tangent to a curve at a given point. Given a set of
coordinates xi, such a curve is given by the path xi = X i(λ), and the components of the

tangent vector is given by vi = dXi

dλ
. To picture this consider a football following some

curved path from the boot to the goal. At any instance, the tangent vector to that path
corresponds to the ball’s velocity. This example demonstrates how the vector can depend on
position, so what we should really be talking about are vector fields, with position dependent
components, vi = vi(x).

In special relativity you will have become familiar with the idea of a four-vector, with
components, vµ, µ = 0, 1, 2, 3. The notion of a vector, can, of course, be generalised to any
manifold (both Riemannian and Lorentzian) of any dimensionality. Again, we can think
in terms of the tangent vectors to paths through the manifold. Given a set of coordinates
xµ, the tangent vector to the path xµ = Xµ(λ) has components vµ = dXµ

dλ
. The vector

itself should be written in terms of its components and a set of basis vectors adapted to the
coordinate system,

v = vµeµ = v0e0 + v1e1 + v2e2 + v3e3 + . . . (4.2)

We can think of each eµ as being the basis vector parallel to the xµ axis. Intuitively, physics
should not depend on our choice of coordinates, so what characterises a vector is the fact that
the quantity v is independent of that choice. What does this mean, then, for the components
of the vector? How do they transform under a change of coordinates?

Let us consider a change of coordinates from xµ → x̂µ(x). As a result, our basis vectors
change eµ → êµ, and so then do the components of a vector field, vµ(x) → v̂µ(x̂). But
remember, any vector can be thought of as a tangent vector to a path. This path is given
by xµ = Xµ(λ) in one coordinate system, and x̂µ = X̂µ(λ) = x̂µ(X(λ)) in the other. The
components of the tangent vector in the transformed coordinate system are given by

v̂µ(X̂) =
dX̂µ

dλ
=
∂x̂µ

∂xν

∣∣∣
x=X(λ)

dXν

dλ
=
∂x̂µ

∂xν

∣∣∣
x=X(λ)

vν(X) (4.3)

17



Since this equation holds for any choice of path, we can define the following transformation
law for vectors in general:

Under xµ → x̂µ(x), the components of a vector v transform as vµ(x)→ v̂µ(x̂) =
∂x̂µ

∂xν
vν(x).

(4.4)
This transformation law essentially defines a vector. It also suggests a better way to think
of the basis vectors eµ. The point is that one can easily infer1 the relation

eµ =
∂x̂ν

∂xµ
êµ (4.5)

This should be compared with the Chain Rule, or the Liebniz rule, applied as follows on a
function F : M → R

∂

∂xµ
F (x̂) =

∂x̂ν

∂xµ
∂

∂x̂ν
F (x̂) (4.6)

This suggests that we should identify the basis vectors with the following differential opera-
tors,

eµ =
∂

∂xµ
, êµ =

∂

∂x̂µ
(4.7)

In other words, we should really think of a vector as a differential operator. It corresponds to
a directional derivative that acts on real valued functions on the manifold. Indeed, sometimes
you will see people write

v ◦ F = vµ
∂F

∂xµ

If we identify v with the tangent to a curve, vµ = dXµ

dλ
, then dF

dλ
= v ◦ F .

As we have emphasized already, a vector is a field that depends on where you are on the
manifold. Conversely, at each point on the manifold, we can consider the space of all the
vectors that can be defined there. The set of all such vectors at a point p ∈ M is known as
the tangent space, Tp(M). We can think of a vector as a map from a point on the manifold to
an element of the tangent space. The set of all tangent spaces on a given manifold is known
as the tangent bundle, T (M) = {Tp(M), p ∈ M}. Imagine taking a freekick at Anfield – in
principle you could kick the ball in any number of ways. The space of all possible initial
velocities for the ball corresponds to the tangent space at the position of the freekick. The
set of all such tangent spaces with the freekick being taken from any point on the pitch is
the tangent bundle.

The tangent space Tp(M) is a real vector space in the usual mathematical sense. In
particular we have distributivity: if v1, v2 ∈ Tp(M) and a, b ∈ R, then (a + b)(v1 + v2) =
av1 + bv1 + av2 + bv2. Like any vector space we can define a set of basis vectors. The
examples given by Eq. 4.1 are called coordinate bases, because they are adapted to a given
coordinate system defined in a neighbourhood of the point, p. However, we are perfectly

1This can be seen from v = vµeµ = v̂µêµ = vν ∂x̂
µ

∂xν êµ = vµ ∂x̂
ν

∂xµ êν .
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entitled to consider non-coordinate bases which cannot be written in the form of Eq. 4.1, eg
{Ea, a = 0, 1, 2, 3 . . .} where

Ea = ea
µ ∂

∂xµ
(4.8)

Here ea
µ is known as the tetrad, or vierbein in four dimensions. If you speak ancient Greek

or modern German you can probably generalise its name to higher dimensions. I don’t so I
won’t!

For the coordinate basis, we have ea
µ = δµa . Another commonly used basis is an or-

thonormal basis defined such that

gµνea
µea

ν = ηab (4.9)

where gµνdx
µdxν is the metric on the manifold, and ηab is the Minkowski metric in the same

number of dimensions.
We can also define the components of a vector, va with respect to a general non-coordinate

basis v = vaEa. We can generalise our transformation law Eq. 4.4 to correspond to any
change of basis.

Under a change of basis Ea → Êa = Λa
bEb, the components of a vector v transform as

va → v̂a = vb(Λ−1)b
a

Note that
(Λ−1)a

cΛc
b = Λa

c(Λ−1)c
b = δab (4.10)

For transformations between coordinate bases we have Λµ
ν = ∂xν

∂x̂µ
and (Λ−1)ν

µ = ∂x̂µ

∂xν
, and

recover Eq. 4.4. For transformations between orthonormal bases, Λ is a Lorentz transfor-
mation and so (Λ−1)a

b = (ΛT )a
b = Λb

a. This follows from the fact we need to the preserve
Eq. 4.1 before and after.

So, now we know what is really meant by a vector. To summarize,

• A vector is a differential operator that acts on real valued functions of the manifold.

• A vector is a field that depends on where you are on the manifold.

• A vector is a map from a point on the manifold to an element of a vector space, known
as the tangent space.

• A coordinate basis in the tangent space is one that is adapted to a particular coordinate
system on the manifold at that point, satisfying Eq. 4.1

• The components of the vector transform according to a special law given by Eq. 4.4
when we change from one coordinate basis to another.

• It is possible (and sometimes convenient) to use non-coordinate bases instead.

4.2 Dual vectors (or 1-forms)

Everyone needs a sidekick. Who is Morecambe without Wise? Who is Mork without Mindy?
Vectors also have a sidekick – they are called 1-forms. So what on earth are they? Well, just
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as vectors are often associated with tangent vectors to curves in the manifold, so 1-forms
are sometimes identified with the normals to surfaces in the manifold. Not all 1 forms can
be identified as such, but some can and it will provide us with a useful intuitive picture.

Let us be a little more precise. If the manifold has dimension D, a surface of dimension
D − 1 can defined by an equation F (x) = constant, where F : M → R is some real map on
the manifold, as shown in Fig. 4.2. Given a set of coordinates, xµ, the normal, nµ, to such
a surface can be identified with the gradient nµ = ∂F

∂xµ
.

Figure 4.2: Surfaces of constant F (x) and their normals.

To see why this is so, all we need to show is that for any tangent vector, v, lying in
the surface, we have vµ ∂F

∂xµ
= 0. To this end, consider a curve Xµ(λ) lying in the surface.

It follows that F (X(λ)) = constant, and so dF
dλ

= 0. But we have already seen by simple
application of the Chain rule that dF

dλ
= vµ ∂F

∂xµ
, where vµ = dXµ

dλ
, and we arrive at the expected

result vµ ∂F
∂xµ

= 0. So indeed, nµ = ∂F
∂xµ

is the normal to our surface of constant F .
One thing you will notice is that the components of the normal, nµ have been written with

indices down, in contrast to the vector, vµ which has indices up. This will be reminiscent of
contravariant and covariant vectors introduced in your Gravity course. Indeed, convention
states that the components of 1-forms are written with indices down, and are identified with
covariant vectors in a coordinate basis. In any event, as with vectors, a general 1-form,
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w, can be written in terms of its components and a set of basis 1-forms adapted to the
coordinate system,

w = wµθ
µ = w0θ

0 + w1θ
1 + w2θ

2 + w3θ
3 + . . . (4.11)

Here we think of each θµ as being the basis 1-form in the xµ direction. But what are these
θµ? To find out, let us return to the special case2 where the 1-form is a normal, nµ, and
consider how F varies across the manifold,

δF = F (x+ δx)− F (x) =
∂F

∂xµ
δxµ +O(δx2)

To leading order, the infinitesimal version of the fluctuation δF is sometimes written as

dF =
∂F

∂xµ
dxµ (4.12)

This defines a 1-form, dF , using the gradient operator, d, which you may be familiar with
from your differential geometry course. It has components nµ = ∂F

∂xµ
and we read off the

standard notation for the basis 1-forms θµ = dxµ. Clearly these are adapted to a particular
coordinate system, so these correspond to our coordinate basis.

One is obviously tempted to ask what happens when we change coordinates from xµ →
x̂µ(x). As before we require that the general 1-form w be independent of the choice of
coordinates. Under this transformation, the basis 1-forms change from θµ → θ̂µ, where

θµ = dxµ, θ̂µ = dx̂µ (4.13)

and the components of the 1-form field transform as wµ(x)→ ŵµ(x̂). Now, using Eq. 4.12, it
is easy to see that dx̂µ = ∂x̂µ

∂xν
dxν . We now infer the following transformation law for 1-forms

Under xµ → x̂µ(x), the components of a 1-form w transform as wµ(x)→ ŵµ(x̂) =
∂xν

∂x̂µ
wν(x).

(4.14)
This transformation law essentially defines what is meant by a 1-form.

In the previous section, we learnt that vectors live in the tangent space, so where do the
1-forms live? They live in something called the cotangent space. To appreciate what this
is, we need to introduce the notion of a dual vector space. In general, every vector space,
V , has a dual, V ∗. This is the defined as the space of linear maps from the vector space to
the real line. So, if w ∈ V ∗, then w : V → R : v → w(v) is a linear map in the usual sense.
Often w(v) is written as an inner product 〈w|v〉.

Obviously our interest lies in the dual to the tangent space, Tp(M), at each point p
in the spacetime manifold, M . This is what we mean by the cotangent space, and it is
written T ∗p (M). Unsurprisingly, the set of all cotangent spaces is called the cotangent bundle,
T ∗(M) = {T ∗p (M), p ∈M}.

2It is important to realise that not all 1-forms can be identified with normals.
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The elements of the cotangent space, w ∈ T ∗p (M) are what we have been calling 1-forms.
They are also known as covectors. The basis 1-forms given by Eq. 4.13 correspond to
a coordinate basis on the cotangent space, as they are adapted to a particular coordinate
system. However, we can certainly choose a more general basis, Θa, so that a general 1-form
can be written as w = waΘ

a. As with vectors we can use vierbeins to relate a general basis
to a coordinate basis on the cotangent space. In general we have that

Θa = eaµdx
µ (4.15)

where the inverse vierbein eaµ is related to ea
µ and satisfies the relations

eaµeb
µ = δab , ea

µeaν = δµν

For the coordinate basis, we have eaµ = δaµ. For the orthonormal basis we have

gµνeaµe
b
ν = ηab (4.16)

where gµν is the inverse metric on the manifold, and ηab is the inverse Minkowski metric in
the same number of dimensions.

Just like Mork and Mindy, basis vectors, Ea and basis 1-forms, Θa come in pairs, where
one basis is described as the dual of other. This is defined as being the case whenever

〈Θa|Eb〉 = δab (4.17)

It immediately follows that 〈w|u〉 = wav
b〈Θa|Eb〉 = wav

a. Note that the coordinate basis
vectors and the coordinate basis 1-forms are, of course dual bases,〈

dxµ

∣∣∣∣∣ ∂∂xν
〉

= δµν

We are now ready to generalise our transformation law Eq. 4.14.

Under a change of basis Ea → Êa = Λa
bEb, the dual basis transforms as Θa → Θ̂a =

Θb(Λ−1)b
a, and the components of a 1-form w transform as wa → ŵa = Λa

bwb

Again, for transformations between coordinate bases we have Λµ
ν = ∂xν

∂x̂µ
and (Λ−1)ν

µ = ∂x̂µ

∂xν
,

and so we recover 4.14. For an orthonormal basis we identify Λ with a Lorentz transforma-
tion.

In summary then,

• The cotangent space, T ∗p (M) is the dual to the tangent space, Tp(M) at each point on
the manifold.

• Elements of the cotangent space are known as 1-forms or covectors.

• A coordinate basis in the cotangent space is one that is adapted to a particular co-
ordinate system on the manifold at that point. Given a set of coordinates, xµ, the
coordinate basis vectors are dxµ
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• The components of the 1-form transform according to a special law given by Eq. 4.14
when we change from one coordinate basis to another.

• It is possible (and sometimes convenient) to use non-coordinate bases instead.

• In a D dimensional manifold, the normal to a surface of dimension D − 1 is a 1-form,
dF . Not all one forms can be written like this though.

4.3 Dual dual vectors (or just vectors!)

Mork has a sidekick called Mindy. But who is Mindy’s sidekick? Well its Mork of course.
So what about 1-forms? What is the dual of a 1-form? If we follow the Mork and Mindy
logic, then presumably the answer is .... a vector. Let’s see why this is correct.

To identify the dual of a 1-form, we need to ask, what is the space dual to the cotangent
space? By definition, this must be the space of linear maps from the cotangent space to
the real line. All we need to show is that a vector is such a map. Consider v ∈ Tp(M) and
w ∈ T ∗p (M), then we know from the previous section that w(v) = 〈w|v〉 ∈ R. So the map
which takes w → 〈w|v〉 is certainly a map from T ∗p (M) → R, and since 〈aw1 + bw2|v〉 =
a〈w1|v〉+ b〈w2|v〉 we know it to be linear. This linear map can obviously be identified with
the vector v.

4.4 Tensors

Both vectors and 1-forms can be thought of as one dimensional arrays. Some people distin-
guish between the two by writing vectors as a vertical array

v =


v0

v1

v2

v3


and 1-forms as a horizontal array

w = (w0, w1, w2, w3)

Having made this identification, we might ask whether there is any geometrical quantity
that can be associated with higher dimensional arrays, such as matrices T 0

0 . . . T 0
3

...
...

T 3
0 . . . T 3

3


Well, we know that higher dimensional arrays can be obtained by taking products of lower
dimensional ones. For example, the outer matrix product of two one dimensional arrays is
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a 2 dimensional array.

v ⊗ w =


v0

v1

v2

v3

 (w0, w1, w2, w3) =

 v0w0 . . . v0w3
...

...
v3w0 . . . v3w3


Let us push this idea a little further, and imagine taking the outer products of say, k vectors,
v1, . . . , vk , and l 1-forms, w1, . . . , wl. The resulting object is known as a (k, l) tensor field

T = v1 ⊗ . . .⊗ vk ⊗ w1 ⊗ . . .⊗ wl

Given a set of coordinates, xµ, we may write each vector and 1-form in terms of the coordinate
vector and 1 form bases respectively, giving

T =

(
vµ1

1

∂

∂xµ1

)
⊗ . . .⊗

(
vµkk

∂

∂xµk

)
⊗ (w1

ν1
dxν1)⊗ . . .⊗ (wlνldx

νl) (4.18)

= vµ1

1 . . . vµkk w
1
ν1
. . . wlνl

∂

∂xµ1
⊗ . . .⊗ ∂

∂xµk
⊗ dxν1 ⊗ . . .⊗ dxνl (4.19)

Here we identify the components of the tensor with k indices up and l indices down,

T µ1...µk
ν1...νl = vµ1

1 . . . vµkk w
1
ν1
. . . wlνl

and the coordinate tensor basis,

∂

∂xµ1
⊗ . . .⊗ ∂

∂xµk
⊗ dxν1 ⊗ . . .⊗ dxνl (4.20)

We can use this particular example to infer the following transformation law for tensors 3:

Under xµ → x̂µ(x), the components of a (k, l) tensor T transform as

T µ1...µk
ν1...νl(x)→ T̂ µ1...µk

ν1...νl(x̂) =
∂x̂µ1

∂xµ̄1
. . .

∂x̂µk

∂xµ̄k
.
∂xν̄1

∂x̂ν1
. . .

∂xν̄l

∂x̂νl
T µ̄1...µ̄k

ν̄1...ν̄l(x) (4.21)

Of course, the notion of a (k, l) tensor goes beyond the direct products we have been dis-
cussing. It applies to anything of the form

T = T µ1...µk
ν1...νl

∂

∂xµ1
⊗ . . .⊗ ∂

∂xµk
⊗ dxν1 ⊗ . . .⊗ dxνl (4.22)

provided the components satisfy the transformation law 4.21.
We have already come across an example of a tensor. You will sometimes see the metric

written as
ds2 = g = gµνdx

µ ⊗ dxν

3Apply (4.4) and (4.14) applied to each individual ingredient in this example
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Since the metric transforms as

ĝµν(x̂) =
∂xα

∂x̂µ
∂xβ

∂x̂ν
gαβ(x)

it clearly corresponds to a (0, 2) tensor. Similarly, the inverse metric

g−1 = gµν
∂

∂xµ
⊗ ∂

∂xν

corresponds to a (2, 0) tensor.
Where do tensors live? Well, at each point p ∈ M , we can define the space of all (k, l)

tensor fields evaluated at that point. This corresponds to the product space built out of the
tangent and cotangent spaces,

T (k,l)
p (M) =

k copies︷ ︸︸ ︷
Tp(M)× . . .× Tp(M)×

l copies︷ ︸︸ ︷
T ∗p (M)× . . .× T ∗p (M)

In analogy with our discussion of dual vectors, and indeed, dual dual vectors, this suggests
that in actual fact, a (k, l) tensor is a really multi-linear map

T : T (l,k)
p (M)→ R : (v1, . . . , vl, w

1, . . . , wk)→ T (w1, . . . , wk, v1, . . . , vl)

The ordering of k and l here is not a typo. To see why, note that in component language
this map does the following,

(vν11 , . . . , v
νl
l , w

1
µ1
, . . . , wkµk)→ T µ1...µk

ν1...νlw
1
µ1
. . . wkµkv

ν1
1 . . . vνll

Now Eq. 4.4 corresponds to the coordinate basis in T
(k,l)
p (M). As usual, we can also consider

non-coordinate bases, built out of the non-coordinate bases in Tp(M) and T ∗p (M),

Ea1 ⊗ . . .⊗ Eak ⊗Θb1 ⊗ . . .⊗Θbl (4.23)

The tensors are now written as

T = T a1...ak
b1...blEa1 ⊗ . . .⊗ Eak ⊗Θb1 ⊗ . . .⊗Θbl (4.24)

From Eqs. 4.8 and 4.15, we see that one can easily switch between components in a non-
coordinate and coordinate basis using the vierbeins,

T µ1...µk
ν1...νl = T a1...ak

b1...blea1

µ1 . . . eak
µkeb1ν1 . . . e

bl
νl (4.25)

T µ1...µk
ν1...νle

a1
µ1 . . . e

ak
µkeb1

ν1 . . . ebl
νl = T a1...ak

b1...bl (4.26)

You should compare these expressions with Eqs. 4.1 and 4.2
Let us end this discussion with a comment on why tensors are so cool. The point is

that if a tensor equation holds in one coordinate system, it holds in all coordinate systems,
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because of the tensor transformation law. This can be computationally very powerful. For
example, suppose you wanted to prove a tensor equation,

T µ1...µk
ν1...νl = Sµ1...µk

ν1...νl

This may be tricky to prove in a generic coordinate system. What you can do, however, is
pick a convenient coordinate system in which the above relation is easy to prove. Because
the relation is a tensor relation, you can extrapolate this proof to apply in any coordinate
system! A particularly useful coordinate system is known as Riemann normal coordinates
about a particular point. These exploit the fact that any pseudo Riemannian manifold is
locally Minkowski. With Riemann normal coordinates, the metric looks Minkowski, up to
second order,

gµν = ηµν +O(xµxν) (4.27)

In summary then

• tensors can be identified with higher dimensional arrays

• a (k, l) tensor has k indices up and l indices down.

• a (k, l) tensor lives in the product of k tangent spaces and l cotangent spaces

• a (k, l) tensor is a multi-linear map acting on l vectors and k 1 forms

• the components of a tensor transform according to a special law given by Eq. 4.21 when
we change from one coordinate basis to another.

• it is possible (and sometimes convenient) to use non-coordinate bases instead.

• tensor equations can be proven in one particular coordinate system (eg Riemann nor-
mal), but the proof automatically applies to any coordinate system.

Exercises

1. A two dimensional Euclidean vector, v, has components

(
vx

vy

)
in a Cartesian coordi-

nate system. Show that in polar coordinates it has components

vr = 2r(cos θvx + sin θvy), vθ =
2

r
(− sin θvx + cos θvy)

2. Prove that the contracted product of a vector and a 1 form, vµwµ transforms as a scalar.

3. Write down the components of the vierbein relating the orthonormal basis to the coor-
dinate basis for the Schwarzschild metric,

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2(dθ2 + sin2 θdφ2)

Hint: recall that for an orthonormal basis we have ds2 = ηabΘ
a⊗Θb, where Θa = eaµdx

µ.
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5 Tensor calculus

As we have seen, given a manifold, we can define vectors, 1-forms and tensors at each point
on that manifold. If we want to know how things change from point to point, if we want
to do any sort of calculus, we need to be able to compare tensors at different points. For
example, suppose you want to track the changes in velocity of a ball rolling around a football
pitch. At Wembley stadium, with its flat pristine pitches, all points on the pitch are more
or less equivalent and one can easily compare velocities at different points. In contrast, on a
bumpy pitch in Beeston things are much more complicated. How does one track the changes
in velocity of a ball rolling over a series of bobbles?

Lets work with vectors for the moment, just to be definite. Given a general manifold M
and a coordinate system xµ, what is the gradient of the vector field with components, vµ(x)?
Diving in head first, we make the obvious guess, and propose that it is given by a quantity
with components

T µν (x) =
∂vµ(x)

∂xν
(5.1)

However, we immediately see that this cannot be right because T µν does not transform as a
tensor (see Exercise 1). What goes wrong? Well to calculate the partial derivative we are
required to compare the vector field at neightbouring points p and p̂, by computing

lim
ε→0

vµ|p − vµ|p̂
ε

(5.2)

for some appropriate parameter ε. The trouble is that the quantity vµ|p − vµ|p̂ does not
transform as a vector because the transformation laws 4.4 are defined independently for
each point on the manifold. What we need is a way of mapping the vector at p̂ to the point
p. We will comment on two methods: Lie dragging and parallel transport. The former gives
rise to the Lie derivative while the latter gives rise to the covariant derivative.

5.1 The Lie derivative

We will now outline the method of Lie dragging and describe the Lie derivative. We want
to drag the vector field vµ(x) along the integral curves of another vector field uµ(x)4. The
result is a new vector field, v̂µ(x), that we then compare with vµ(x). This will give us the
Lie derivative of v with respect to u .

We begin with the integral curve, xµ = Xµ(λ), passing through the point p, and suppose
that we have λ = λp at p and λ = λp + δλ at a nearby point p̂. If we define the coordinate
transformation

xµ → x̂µ = xµ + δλuµ(x) (5.3)

then it is clear that xµ|p̂ = x̂µ|p +O(δλ2). To see this, we simply note that

x̂µ|p − xµ|p̂ = xµ|p + δλuµ(xp)− xµ|p̂ = Xµ(λp) + δλ
dXµ

dλ

∣∣∣
λp
−Xµ(λp + δλ) = O(δλ2) (5.4)

4The integral curves of uµ are those curves that are tangent to uµ(x). There is only one such curve
passing through each point on the manifold
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In other words, the two points, p and p̂, are mapped to the same point in R4 by the two
different coordinate systems. Having identified the points via the coordinate transformation,
we then compute the effect of transformation on the vector to extract the Lie derivative.

In accordance with the transformation law 4.4,

vµ(x)→ v̂µ(x̂) ≡ v̂µ(x+ δλu) = vµ(x) + δλ
∂uµ

∂xν
vν(x) +O(δλ2) (5.5)

This implicitly defines a new vector field v̂µ(x). At the point p it represents the original
vector having been Lie dragged from the point p̂. Using x̂µ = xµ + δλuµ(x) we now see that

v̂µ(x) = vµ(x) + δλ

(
∂uµ

∂xν
vν(x)− ∂vµ

∂xν
uν(x)

)
+O(δλ2) (5.6)

We are now in a position to define the Lie derivative as

Luvµ = lim
δλ→0

vµ(x)− v̂µ(x)

δλ
= uν(x)

∂vµ

∂xν
− vν(x)

∂uµ

∂xν
(5.7)

One can explicitly check that this transforms as a vector. The Lie derivatives of a general
(k, l) tensor, T µ1...µk

ν1...νl can be computed using the same logic

LuT µ1...µk
ν1...νl = lim

δλ→0

T µ1...µk
ν1...νl(x)− T̂ µ1...µk

ν1...νl(x)

δλ

= uα∂αT
µ1...µk

ν1...νl −
k∑
i=1

T ...µi−1αµi+1...
ν1...νl∂αu

µi +
l∑

i=1

T µ1...µk
...νi−1ανi+1...∂νiu

α (5.8)

Again, one can explicitly check that this transforms as a tensor. Note that the derivation
and definition of the Lie derivative makes no reference to the metric.

Lie derivatives tell you how a tensor changes along an integral curve, so when they happen
to vanish everywhere, this is usually associated with symmetry. A particularly important
example of this is when the Lie derivative of the metric vanishes with respect to some vector,
ξµ,

Lξgµν = 0 (5.9)

This is known as Killing’s equation. When it holds, ξµ is known as the Killing vector, and
the metric is understood to remain unchanged along its integral curves. A spacetime with a
timelike Killing vector is known as a stationary spacetime.

Lie derivatives play an important role in perturbation theory, particularly when applying
infinitesimal coordinate transformations to tensor fluctuations. Indeed, suppose we have a
background (k, l) tensor T̄ ······, and we consider some fluctuation T ······ = T̄ ······+δT

···
···. Under

an infinitesimal coordinate transformation, xµ → xµ − ξµ(x), we find that to leading order
the tensor fluctuations transform as

δT ······ → δT ······ + LξT̄ ······ (5.10)
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In particular, this means that if T̄ ······ vanishes on the background, δT ······ is invariant under
infinitesimal coordinate transformations (we typically say it is gauge invariant)

Finally we note that the Lie derivative obeys all the properties usually associated with a
derivative operator, such as being Liebnizian (see Exercise 5). The Lie derivatives of vectors
are often written as a Lie bracket

Luv = [u, v] (5.11)

defined by the following action on a function f : M → R,

[u, v](f) = u(v(f))− v(u(f)) (5.12)

5.2 The covariant derivative and the connection

The covariant derivative is a different beast to the Lie derivative. This time we map the
vector at p̂ to the point p using a procedure known as parallel transport. Parallel transport
involves connecting the two points along a suitable curve, and transporting the vector along
that curve so it always stays instantaneously parallel (in some intuitive sense, see figure 5.1).

Figure 5.1: For parallel transport in flat space, the components of the vector are kept
constant.

However, we will not derive the covariant derivative using parallel transport, but take
another approach which uses techniques familiar to those who have ever gauged a global
symmetry. Recall that the Lagrangian for a free complex scalar field

L = −∂µφ∂µφ∗

is invariant under a global U(1) symmetry, φ → φeiα, where α is constant. However, to
promote this to a local U(1) in which α = α(x), we must introduce a connection Aµ,
transforming as Aµ → Aµ − 1

g
∂µα, and the covariant derivative, Dµ, where Dµφ = (∂µ +
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igAµ)φ. The covariant derivative of φ has “nice” transformation properties, Dµφ→ eiαDµφ
and the modified Lagrangian

L = −Dµφ(Dµφ)∗

is invariant under the local U(1).
Let’s return to our discussion of geometry and the derivative of a vector, vµ(x). We saw

how the partial derivative ∂vµ

∂xν
did not have “nice” transformation properties, where “nice”

here means “transforming like a tensor”. So in analogy with the gauging process we just
described for the U(1) symmetry, we introduce a connection that transforms appropriately,
and a covariant derivative that has the nice transformation properties we desire. To this
end, let us define the connection, Γµαν , and the covariant derivative, ∇µ, where

∇νv
µ = ∂νv

µ + Γµανv
α (5.13)

Under a coordinate transformation, xµ → x̂µ, the connection transforms as

Γµαν(x)→ Γ̂µαν(x̂) =
∂x̂µ

∂xρ
∂xσ

∂x̂α
∂xλ

∂x̂ν
Γρσλ(x)− ∂2x̂µ

∂xσ∂xλ
∂xσ

∂x̂ν
∂xλ

∂x̂α
(5.14)

It now follows that the covariant derivative of vµ transforms as a tensor, as desired

∇νv
µ → ∂xα

∂x̂ν
∂x̂µ

∂xβ
∇αv

β (5.15)

By applying similar methods we define the covariant derivative of a general (k, l) tensor as

∇βT
µ1...µk

ν1...νl = ∂βT
µ1...µk

ν1...νl+
k∑
i=1

ΓµiαβT
...µi−1αµi+1...

ν1...νl−
l∑

i=1

ΓανiβT
µ1...µk

...νi−1ανi+1...

(5.16)
which transforms as a (k, l + 1) tensor.

We now pause for some notation. Just as the partial derivative is often written us-
ing commas, ∂µT

···
··· = T ······ ,µ, so the covariant derivative is often written using semi-colons,

∇µT
···
··· = T ······ ;µ. Also, the covariant derivative of a tensor along a given direction, uµ, defined

by uµ∇µT
···
··· is sometimes written as ∇uT

···
··· for short.

We should also point out a thing or two about the connection. The first is that one can
always choose a coordinate system or which the connection vanishes locally. This corresponds
to choosing Riemann normal coordinates, touched on in section 4.4. Calculationally it is a
very useful tool, and you are invited to prove this result in Exercise 9 below.

The second thing we would like to point out that the difference of any two connections is
actually a tensor. This is easily seen by glancing at the transformation law 5.14, and follows
from the fact that the term by which the connection fails to be a tensor is independent of
the connection itself. The best known example of such a tensor is the torsion tensor, defined
by antisymmetrizing over the lower indices of the connection,

T αµν = Γαµν − Γανµ
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Torsion measures the amount by which covariants derivatives do not commute when acting
on a scalar

[∇µ,∇ν ]f = −T αµν∂αf
For the rest of this course will assume that torsion vanishes, unless otherwise stated, and
that we have a symmetric connection,

Γαµν = Γανµ

The most important connection is the Levi Civita connection. This is the unique connection
for which the metric is covariantly constant, in a torsion free theory,

∇αgµν = 0

One can straightforwardly show that the Levi-Civita connection is given by

Γαµν =
1

2
gαβ (gβµ,ν + gβν ,µ − gµν,β) (5.17)

The Levi-Civita connection is sometimes called the metric connection, for obvious reasons.
We are now ready to return to the notion of parallel transport. A tensor is parallely

transported along a curve xµ = Xµ(λ) if its absolute derivative vanishes everywhere on the
curve

D

Dλ
T ······ = 0

The absolute derivative is defined as the covariant derivative along the direction of the curve,

D

Dλ
T ······ = ∇uT

···
···

where uµ = dXµ

dλ
is the tangent vector along the curve.

An affinely parametrised geodesic is an example of a curve for which the tangent vector
is transported parallel to itself, ∇uu

µ = 0 (see section 6.1).

Exercises

1. Suppose we change coordinates, xµ → x̂µ(x). Show that if vµ(x) transforms as a vector
that

T µν (x) =
∂vµ(x)

∂xν
(5.18)

transforms as

T µν (x)→ T̂ µν (x̂) ≡ ∂v̂µ(x̂)

∂x̂ν
=
∂x̂µ

∂xα
∂xβ

∂x̂ν
Tαβ (x) +

∂2x̂µ

∂xα∂xβ
∂xβ

∂x̂ν
vα(x) (5.19)

2. Verify that Luvµ defined by equation 5.7 transforms as a vector.

3. Derive the formula for LuT µ1...µk
ν1...νl given by equation 5.8 from first principles, in

analogy with the vector example. Verify that this Lie derivative transforms as a tensor.
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4. (a) Consider the fluctuation in some vector field, vµ(x) = v̄µ(x) + δvµ(x) about some
background value v̄µ(x). Prove that under an infinitesimal coordinate transforma-
tion, xµ → xµ − ξµ(x) the vector fluctuation transforms as.

δvµ(x)→ δvµ(x) + Lξv̄µ(x) (5.20)

Hint: let x̂µ = xµ − ξµ(x) and use equation 4.4 to show that vµ(x) → vµ(x̂) ≡
v̂µ(x− ξ) = vµ(x)− ∂νξµvν(x). Hence show that v̂µ = vµ + ξν∂νv

µ − ∂νξµvν. The
algebra is identical to that used in the derivation of the Lie derivative, provided we
identify δλuµ with −ξµ.

(b) If you are feeling confident show that equation 5.10 holds for a general tensor
fluctuation.

5. Prove that the Lie derivative is Liebnizian,

Lu(T1T2) = (LuT1)T2 + T1LuT2

for any tensors T1 and T2 (indices suppressed for brevity).

6. Show that the transformation law for the connection given by equation 5.14 is equivalent
to the following transformation law,

Γµαν(x)→ Γ̂µαν(x̂) =
∂x̂µ

∂xρ
∂xσ

∂x̂α
∂xλ

∂x̂ν
Γρσλ(x) +

∂2xρ

∂x̂ν∂x̂α
∂x̂µ

∂xρ

7. Verify that the covariant derivative of a vector, defined by equation 5.13, transforms as
a (1, 1) tensor.

8. Verify that the covariant derivative of a (k, l) tensor, defined by equation 5.16, trans-
forms as a (k, l + 1) tensor.

9. By choosing a coordinate transformation xµ → x̂µ = xµ + 1
2
Γµαβx

αxβ show using
the transformation law 5.14 that the connection vanishes to quadratic order in the
coordinate.

10. Prove using the equation ∇αgµν = 0 that the Levi-Civita connection is given by

Γαµν =
1

2
gαβ (gβµ,ν + gβν ,µ − gµν,β) (5.21)

6 Curvature

Gravity is geometry, and locally, the most important geometrical property is curvature. The
orbits of planets around the Sun are curved precisely because spacetime is curved, because
spacetime has curvature. Intuitively, what is curvature? In your mind’s eye you are probably
picturing the curved surface of a two dimensional sphere. You can appreciate that it is curved
because you see its shape, embedded in 3 dimensional space. What you are really seeing here
is the extrinsic curvature of the sphere. But what if you were a two dimensional ant bound
to the surface of that sphere? Would you know it was curved? To do so you would need
to find a way of measuring the intrinsic curvature of the sphere. That is a more abstract
notion, and one that we will pursue in this section.

32



6.1 Geodesics

The simplest way to identify intrinsic curvature is to study geodesics. If they are curved,
then the spacetime is curved! As you learned in your gravity course, these are the shortest
paths, xµ = Xµ(λ) in a given geometry, and can be obtained by minimising the spacetime
distance ∫ √∣∣∣∣gµν(X(λ))

dXµ

dλ

dXν

dλ

∣∣∣∣dλ (6.1)

This yields the following differential equation

d2Xµ

dλ2
+ Γµαβ

dXα

dλ

dXβ

dλ
= α(λ)

dXµ

dλ
(6.2)

where Γµαβ is the Levi-Civita connection and α(λ) = d
dλ

ln
√∣∣gµν(X(λ))dX

µ

dλ
dXν

dλ

∣∣. We should

also recall that in spacetime, geodesics can be categorised as timelike, null or spacelike
depending on the nature of the tangent vector to the geodesic, uµ = dXµ

dλ
.

If we choose an affine parametrisation then the RHS of the geodesic equation (6.2) van-
ishes and we see that it is equivalent to

∇uu
µ = 0 (6.3)

This says that an affinely parametrised geodesic is a curve along which the tangent vector
is transported parallel to itself. Equation 6.3, however, does not make any reference to a
Levi-Civita connection and can be used to define the (affinely parametrised) geodesic even
when we use any arbitrary connection. Note that torsion plays no role in geodesics since the
antisymmetric part of the connection drops out of the geodesic equation.

6.1.1 Geodesic deviation

Now consider a whole family of geodesics labelled by some parameter s, and each individually
parametrised by an affine parameter t. We use these parameters to make up our coordinate
system in the relevant patch of the manifold, xµ = (s, t, . . .). The tangent vectors to the
geodesic are given by T µ ∂

∂xµ
= ∂

∂t
, and they satisfy the geodesic equation ∇TT

µ = 0. The
deviation vector represents the displacement to a neighbouring geodesic in the family, and
is given by Sµ ∂

∂xµ
= ∂

∂s
. How does it change along an individual geodesic? This will give us

information about the relative velocity and acceleration of neighbouring geodesics.
The relative velocity of a neighbouring geodesic is given by

vµ =
DSµ

Dλ
= T ν∇νS

µ (6.4)

while the relative acceleration is given by

aµ =
Dvµ

Dλ
= T ν∇νv

µ (6.5)
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It is the relative acceleration that will give us more insight into curvature and the nature
of the gravitational force. This stands to reason. Freely falling test particles are assumed
to travel along timelike geodesics. By measuring the relative acceleration of those geodesics
we are measuring the acceleration between freely falling test particles. That acceleration
is due to the gravitational potential, which we are identifying with a curved geometry. An
example of this would be the relative acceleration of earth and mars. Neglecting the small
gravitational force of one planet on the other, their relative acceleration comes about due to
the fact that they are following different accelerated trajectories in the gravitational field of
the Sun.

After a small amount of algebra we find that

aµ = ∇TW
µ +∇WT

µ + TαSβ[∇α,∇β]T µ +∇S∇TT
µ (6.6)

where W µ = T ν∇νS
µ − Sν∇νT

µ. The last term vanishes by the geodesic equation. Also,
since T µ = δµt and Sµ = δµs are coordinate vector fields, it is clear that we have the following
commutation relation,

T ν∇νS
µ − Sν∇νT

µ = Γµαν(S
αT ν − TαSν) = T µανSαT ν

where T µαν is the torsion. Finally, as we will see in the next section, we identify the
commutator of covariant derivatives with the Riemann tensor, such that

[∇α,∇β]T µ = −Rαβν
µT ν (6.7)

Therefore, in a torsion free theory, we are left with

aµ = −Rαβν
µT νTαSβ (6.8)

This is known as the geodesic deviation equation. We have aµ = 0 for all families of geodesics
if and only if the Riemann tensor vanishes everywhere. Otherwise some geodesics will accel-
erate towards or away from one another, depending on the curvature. It is worth repeating
what we have already said: freely falling test particles follow geodesics, and these will ac-
celerate towards or away from one another in the presence of curvature. This is gravity in
action. To a good approximation, all planets are following different geodesics in the curved
geometry sourced by the Sun, and as a result they accelerate relative to one another. This
is why planets to and fro in the night sky.

The geodesic deviation equation has an analogue in Newtonian gravity, of course. A
particle falling in a potential Φ(x) follows a trajectory xi = X i(t) according to Newton’s
second law

d2X i

dt2
= −∂iΦ(X) (6.9)

A neighbouring particle follows a trajectory xi = X i(t) + Si(t), where

d2

dt2
(X i + Si) = −∂iΦ(X + S) (6.10)
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We deduce that the relative acceleration of the two particles is given by

d2Si

dt2
= −(∂i∂jΦ)Sj +O(S2) (6.11)

This is sometimes referred to as the Newtonian deviation equation and it is the analogue of
equation (6.8)

6.2 The Riemann tensor

Through geodesic deviation, we have already touched on the Riemann tensor, Rµνα
β. To see

where this arises from we first look at what happens when we commute covariant derivatives
acting on 1-forms by considering the following map,

[∇µ,∇ν ] : T ∗p (M)→ T ∗p (M)⊗ T ∗p (M)⊗ T ∗p (M) : wα → [∇µ,∇ν ]wα (6.12)

By direct computation we see that,

[∇µ,∇ν ]wα = Rµνα
βwβ (6.13)

where, in a torsion free theory,

Rµνα
β = −2∂[µΓβν]α + 2Γσα[µΓβν]σ (6.14)

Note that the Riemann tensor is given entirely in terms of the connection. We do not need
to refer to a metric to define it, but we do need the metric if want to raise and lower its
indices in the usual way.

The Riemann tensor shows up when we commute covariant derivatives acting on any
tensor field. For a vector we have

[∇µ,∇ν ]v
α = −Rµνβ

αvβ (6.15)

whereas for a general (k, l) tensor we have

[∇µ,∇ν ]T
α1...αk

β1...βl = −
k∑
i=1

Rµνγ
αiT ...αi−1γαi+1...

β1...βl +
l∑

i=1

Rµνβi
γTα1...αk

...βi−1γβi+1... (6.16)

The Riemann tensor has some important properties, which we list below. For a proof of
these, check out chaper 3.2 of Wald.

1. Rµνα
β = −Rνµα

β

2. R[µνα]
β = 0

3. Rµναβ = −Rµνβα (only true for a Levi-Civita connection)

4. ∇[γRµν]α
β = 0 (Bianchi identity)

5. Rµναβ = Rαβµν (only true for a Levi-Civita connection)
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Figure 6.1: Parallel transport about a loop on a sphere.

Since we wish to embrace each of these properties, let us assume a Levi-Civita connection
from now on, unless we say otherwise.

Physically we have already seen how the Riemann tensor plays a role in geodesic devi-
ation, giving rise to acceleration between neighbouring geodesics. It also appears when we
parallel transport a vector around a closed curve, measuring the amount by which it fails
to return to its initial state. Indeed, consider the parallel transport of the vector around a
closed loop on the curved surface of a sphere as shown in fig 6.1. The loop starts and ends
at the north pole, and in between it passes through a line of longtiude, the equator and then
another line of longtiude. We clearly see how the vector has changed upon return to the
north pole.

Where exactly does the Riemann tensor come in? Well, to see this consider the (infinites-
imally small) loop shown in figure 6.2. We choose coordinates xµ = (s, t, . . .) so that AB
and DC are tangent to T µ ∂

∂xµ
= ∂

∂t
while BC and AD are tangent to Sµ ∂

∂xµ
= ∂

∂s
. AB and

DC lie on s = 0 and s = δs respectively, while t varies. Similarly, BC and DA lie on t = δt
and t = 0 respectively, while s varies. We wish to parallel transport the vector, vµ along this
loop, as we go A→ B → C → D → A. Now,

δvµAB =

∫ δt

0

dt
dvµ

dt
|s=0 =

∫ δt

0

dt

[
Dvµ

Dt
− Γµαβv

αT β
]
|s=0 (6.17)

The first term vanishes by parallel transport, and we are left with

δvµAB = −
∫ δt

0

dtΓµαβv
αT β|s=0 (6.18)
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Figure 6.2: Loop around which we wish to parallely transport the vector vµ.

Similarly we find that

δvµBC = −
∫ δs

0

dsΓµαβv
αSβ|t=δt (6.19)

δvµCD = −
∫ 0

δt

dtΓµαβv
αT β|s=δs (6.20)

δvµDA = −
∫ 0

δs

dsΓµαβv
αSβ|t=0 (6.21)

We now see that

δvµAA = δvµAB + δvµBC + δvµCD + δvµDA

=

∫ δt

0

dt
[
Γµαβv

αT β|s=δs − Γµαβv
αT β|s=0

]
−
∫ δs

0

ds
[
Γµαβv

αSβ|t=δt − Γµαβv
αSβ|t=0

]
≈ δtδs

[
Sγ∂γ(Γ

µ
αβv

α)T β − T γ∂γ(Γµαβvα)Sβ
]
|t=s=0 (6.22)

where we have used the fact that T µ = δµt and Sµ = δµs are coordinate vector fields.
Now,

Sγ∂γ(Γ
µ
αβv

α)T β|t=s=0 = Sγ∂γ(Γ
µ
αβ)vαT β|t=s=0 + SγΓµαβ∂γv

αT β|t=s=0 (6.23)

and, because we are parallely transporting,

Sγ∂γv
α|t=s=0 = −Γασγv

σSγ|t=s=0 (6.24)

Thus we have that

Sγ∂γ(Γ
µ
αβv

α)T β|t=s=0 = [∂γΓ
µ
αβ − ΓµσβΓσαγ] v

αSγT β|t=s=0 (6.25)
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Similarly
T γ∂γ(Γ

µ
αβv

α)Sβ|t=s=0 = [∂γΓ
µ
αβ − ΓµσβΓσαγ] v

αT γSβ|t=s=0 (6.26)

Given that we are in a torsion free, one can explcitly check that

δvµAA = δtδsRβγα
µvαSγT β|t=s=0 (6.27)

It follows that parallel transport of a vector around a small loop will not return the vector
to its initial state if the space is curved.

6.3 Other curvature tensors

The Riemann tensor may well be the mother of all curvature tensors, but what of its progeny?
There are a few other curvature tensors that we ought to know about. Let’s go through them,
bearing in mind that we are now assuming a Levi-Civita connection.

The Ricci tensor. This is obtained by taking the appropriate trace of the Riemann tensor,

Rµν = Rµαν
α (6.28)

This is a symmetric tensor, Rµν = Rνµ, following on from property 5 of the Riemann tensor
given in the previous section.

The Ricci scalar. This is obtained by taking the trace of the Ricci tensor

R = gµνRµν = Rµ
µ (6.29)

The Einstein tensor. This is a super-important tensor, as we shall see later, and it is
given by

Gµν = Rµν −
1

2
Rgµν (6.30)

Clearly it is a symmetric tensor. However, perhaps most importantly, it is divergence-free

∇µGµν = 0 (6.31)

This follows from the Bianchi identity (property 4 of the Riemann tensor). Indeed, equation
6.31 is sometimes referred to as the contracted Bianchi identity for obvious reasons.

The Weyl tensor This is the traceless part of the Riemann tensor, and in D dimensions
is given by

Wµναβ = Rµναβ −
2

D − 2

(
gµ[αR̃β]ν − gν[αR̃β]µ

)
; R̃µν = Rµν −

1

2(D − 1)
Rgµν (6.32)

The Weyl tensor shares the properties 1, 2 and 3 of the Riemann tensor, and is also traceless
in each of its indices. It vanishes for conformally flat metrics, gµν = e2φ(x)ηµν
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6.4 Calculating curvature

If you want to study gravitational physics then at some point you are going to have to
compute a curvature tensor or two. This can be a messy business. Here we outline some
standard methods for doing so.

Method 1: brute force Suppose you have a metric, gµν . You can calculate the corre-
sponding Levi-Civita connection,

Γµαβ =
1

2
gµν (gνα,β + gνβ,α − gαβ,ν) (6.33)

then plug this directly, using brute force, into our formula for the Riemann tensor,

Rµνα
β = −2∂[µΓβν]α + 2Γσα[µΓβν]σ (6.34)

You are encouraged to try this method for a conformally flat metric in Exercise 5.

Method 2: using differential geometry This is probably the simplest way to calculate
the Riemann tensor, once you have mastered the art of differential geometry. You have
already done a course on this, so hopefully this section won’t seem like complete gobbledy
gook. We start with an orthonormal basis of 1-forms, Θa, and calculate the curvature 2-form,
Ra

b using Cartan’s structural equations, with vanishing torsion,

dΘa = −wab ∧Θb (6.35)

Ra
b = dwab + wac ∧ wcb (6.36)

Recall that the connection 1-form and the curvature 2-form have antisymmetric indices:
wab = −wba and Rab = −Rba. The curvature two form can be related to the Riemann
tensor, written in an orthonormal basis via the relation,

Ra
b =

1

2
Ra

bcdΘ
c ∧Θd (6.37)

To get the Riemann tensor in a coordinate basis we just use the vierbein

Rµ
ναβ = Ra

bcdea
µebνe

c
αe

d
β (6.38)

Let’s do an example. Consider the cosmological metric,

ds2 = −dt2 + a(t)2δijdx
idxj (6.39)

The orthonormal basis of 1-forms is given by

Θt = dt, Θi = adxi

from which we easily obtain,

dΘt = 0, dΘi = ȧdt ∧ dxi = HΘt ∧Θi
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where H = ȧ/a. It follows that the connection 1-forms are given by

wti = HΘi = ȧdxi, wit = HΘi = −ȧdxi, wab = 0 otherwise

It is important to ensure that these are antisymmetric, wab = −wba, then the solution is
unique. We now compute the two form

Rt
i = dwti + wta ∧ wai = ädt ∧ dxi =

ä

a
Θt ∧Θi (6.40)

Ri
j = dwij + wia ∧ waj = H2Θi ∧Θj (6.41)

This enables us to read off the non-trivial components of the Riemann tensor in an orthonor-
mal basis, remembering to respect the symmetries of the Riemann tensor

Rt
itj =

ä

a
δij, Ri

jkl = H2(δikδjl − δilδjk) (6.42)

All other components of the Riemann tensor are either vanishing, or follow from symmetry.
Finally, we return to a coordinate basis using the vierbein to obtain,

Rt
itj =

ä

a
gij, Ri

jkl = H2(δikgjl − δilgjk) (6.43)

Method 3: using Maple Maple contains some useful packages for working out curvature,
including the “tensor” package. A word of warning though. Although the Riemann tensor
is computed correctly, the Maple programmers use a different convention for the definition
of the Ricci tensor. This means that their results for the Ricci tensor and Ricci scalar will
differ by a sign compared with the ones used in this course, and in most of the literature you
will see. Anyway, check out the following programme which computes the curvature tensors
for a Schwarzschild like metric,

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2(dθ2 + sin2 θdφ2) (6.44)
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restart:

# call the "tensor" package
with(tensor):

# define coordinates
coords:=[t,  r, theta, phi]:

# define metric components
metric:=array(1..4, 1..4, symmetric, sparse):
metric[1, 1]:=-V(r): metric[2, 2]:=1/V(r): metric[3, 3]:=r^2: 
metric[4, 4]:=metric[3, 3]*sin(theta)^2:

# create the metric. Note "[-1, -1]" denotes two indices down. #
Indices up have 1 rather than -1
gdd:=create([-1,-1], eval(metric));

gdd := table index_char = K1, K1 , compts =

KV r 0 0 0

0
1

V r 0 0

0 0 r2 0

0 0 0 r2 sin q
2

# create various objects. In the list below, we have
# coords=coordinates
# gdd=metric
# guu=inverse metric
# detg=determinant of metric
# C1=christoffel symbol of first kind (don't worry about this)
# C2=christoffel symbol of second kind (the Levi-Civita 
connection)
# Rdddd=Riemann tensor, all indices down
# Rdd=Ricci tensor, all indices down (warning: sign convention)
# R=Ricci scalar (warning: sign convention)
# Gdd= Einstein tensor, all indices down (warning: sign 
convention)
# Cdddd=Weyl tensor
tensorsGR(coords, gdd,guu, detg, C1, C2, Rdddd, Rdd, R, Gdd,
Cdddd):

#display the Ricci scalar (warning: sign convention)
displayGR(Ricciscalar, R);

The Ricci Scalar

 R =
r2 

d2

dr2  V r C 4 
d
dr  V r  rK 2C 2 V r

r2

#display the Ricci tensor (warning: sign convention)



(4)(4)

O O 

(3)(3)

O O 

O O 

displayGR(Ricci, Rdd);

The Ricci tensor
non-zero components :

 R11 =K
1
2

 
V r  

d2

dr2  V r  rC 2 
d
dr  V r

r

 R22 =
1
2

 

d2

dr2  V r  rC 2 
d
dr  V r

r V r

 R33 =
d
dr  V r  rK 1CV r

 R44 =
d
dr  V r  rK d

dr  V r  r cos q
2
C cos q

2
K 1CV r KV r  cos q

2

character : [-1, -1]
#display the Einstein tensor  (warning: sign convention)
displayGR(Einstein, Gdd);

The Einstein Tensor
non-zero components :

 G11 =
V r  

d
dr  V r  rK 1CV r

r2

 G22 =K

d
dr  V r  rK 1CV r

V r  r2

 G33 =K
d
dr  V r  rK 1

2
 r2 

d2

dr2  V r

 G44 =K
d
dr  V r  rC d

dr  V r  r cos q
2
K

1
2

 r2 
d2

dr2  V r

C
1
2

 r2 
d2

dr2  V r  cos q
2

character : [-1, -1]



Exercises

1. Show that in a torsion free theory,

[∇µ,∇ν ](f1w
(1)
α + f2w

(2)
α ) = f1[∇µ,∇ν ]w

(1)
α + f2[∇µ,∇ν ]w

(2)
α

where f1 and f2 are scalar functions, and w
(1)
α and w

(2)
α are 1-forms.

2. Show that
[∇µ,∇ν ]∇αwβ = Rµνα

γ∇γwβ +Rµνβ
γ∇αwγ

3. Show that property 5 of the Riemann tensor given in section 6.2 implies that Ricci
tensor is symmetric.

4. Using property 4 of the Riemann tensor given in section 6.2, prove the contracted
Bianchi identity (6.31). Hint: contract γ and β, then µ and α.

5. Show that the Levi-Civita connection for a conformally flat metric, gµν = e2φ(x)ηµν , is
given by

Γαµν = δαµ∂νφ+ δαν ∂µφ− ηµν∂αφ

Now use the brute force method to show that the Riemann tensor is given by

Rµνα
β = 2δβ[µ∂ν]∂αφ− 2ηα[µ∂ν]∂

βφ− 2δβ[µ∂ν]φ∂αφ+ 2ηα[µ∂ν]φ∂
βφ− 2ηα[µδ

β
ν]∂

γφ∂γφ

7 The Einstein equation

The great relativist, John Wheeler, famously said: “Matter tells space how to curve, and
space tells matter how to move”. As long ago as your Gravity course you got to grips with the
second half of this statement. Matter particles follow geodesic paths on curved spacetime.
Now that we have developed a better mathematical understanding of what curvature is,
we are ready to try to understand the first half of Wheeler’s statement. How exactly does
matter tell space how to curve?

Before we dive headlong into Einstein’s brilliant equation, let us pause for a moment to
consider Newtonian gravity. For Newtonian gravity, Wheeler’s statement can be modified
slightly to read “Matter sets up the gravitational potential, and the gravitational potential
tells particles how to move” . Again, the latter half of this statement is understood through
Newton’s second law

d2xi

dt2
= −∂iΦ(x) (7.1)

where the particle moves along a trajectory xi(t) under the influence of the potential Φ(x).
But what about the first half of the statement? What sets up the potential? Well, we know
that for a non-relativistic matter distribution of density ρ(x), the gravitational potential is
given by the Poisson equation

∂i∂iΦ = 4πGNρ (7.2)
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whereGN is Newton’s constant. The energy density is obtained from the energy δE contained
in an infinitesimal spatial volume δV via the relation

δE = ρδV (7.3)

Energy density is, of course, conserved for a non-relativistic fluid ρ̇ = 0.

7.1 The stress energy tensor

Now suppose we wish to consider a relativistic matter distribution (in flat space). Things
get more complicated. A relativistic fluid can exert pressure and anisotropic stress. It is
reasonable to suggest that these will play a role in setting up the curvature, along with
energy density. Also, from special relativity we know that the energy, δE, is not a Lorentz
scalar, but the time component of a vector: the four-momentum,

δpµ =

(
δE
δpi

)
where δpi is the 3-momentum contained in δV . The spatial volume itself is also ill defined at
this stage, because in 4 dimensional spacetime it is merely a surface and we need to specify
its orientation. This requires us to introduce the spacetime normal to that surface, nν , and
the resulting surface element nνδV . What, then, is the relativistic analogue of equation 7.3?
Since we have energy stored within δpµ and spatial volume encoded by nνδV , to extract the
energy density we need an object with two indices, T µν . This is the energy-momentum or
stress-energy tensor, and it enables us to write

δpµ = T µνnνδV (7.4)

Using an inertial frame in Minkowski space with coordinates (t, xi), the stress-energy tensor
decomposes as follows:

T tt = energy density T tj = energy flux

T it = momentum density T ij = stress tensor (7.5)

Energy flux and momentum density are always identical5, T ti = T it, and because the stress
tensor is symmetric T ij = T ji, we deduce that the full stress-energy tensor is symmetric,
T µν = T νµ. The stress tensor is hopefully familiar from classical mechanics. T ij measures
the ith component of the stress (force/area) exerted across a surface in the j direction. The
diagonal components are the components of pressure while the off-diagonal components are
usually referred to as anisotropic stress.

What is the conservation law for a relativistic fluid? Well, in flat space it is given by

∂µT
µν = 0 (7.6)

5energy flux=(energy density)×(velocity)=momentum density.
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The t component of this equation coincides with the conservation of mass equation, familiar
from fluid mechanics,

∂ρ

∂t
+ ~∇ · ~π = 0

where ρ is the energy density and ~π is the momentum density. The i component is a
statement of Newton’s second law,

∂πi

∂t
= −∂jT ij = f i

where f i is the force density (see Exercise 1).
All of this can be promoted to curved space, only now the stress-energy tensor, T µν , is a

(2, 0) tensor in a curved spacetime. The flat space conservation law (7.6) must be replaced
by its covariant counterpart,

∇µT
µν = 0 (7.7)

The precise form of the stress-energy tensor depends on the properties of the fluid. A partic-
ularly important example is a perfect fluid. This is a fluid that is completely characterised
by its energy density and pressure. If the fluid has four velocity uµ, normalised such that
gµνu

µuν = −1, then the stress-energy tensor is given by

T µν = ρuµuν + pγµν (7.8)

where γµν = gµν+uµuν is the projection operator on to the spatial surfaces orthogonal to uµ.
In cosmology, the stress-energy tensor takes the form of a perfect fluid, in accordance with
the assumption of homogeneity and isotropy. A fluid composed of non-relativistic matter
has p = 0, while radiation has p = ρ

3
. The vacuum energy, or cosmological constant, has

p = −ρ.

7.2 The Einstein equation

Remember, our goal was to find the covariant analogue of the Poisson equation (7.2). We
have already seen how the right hand side must be promoted to the stress-energy tensor.
What about the left hand side? Clearly we need a tensor with two indices, and in the spirit
of Wheeler’s statement, this should be related to curvature. Einstein’s original idea was to
use the Ricci tensor, and he proposed an equation of the form

Rµν = κTµν (7.9)

However, this is clearly wrong. The right hand side is divergence free by energy conservation,
∇µTµν = 0, but the left hand side is not, ∇µRµν 6= 0. Einstein corrected this mistake by
replacing the Ricci tensor with the Einstein tensor, which is divergence free. Thus we arrive
at Einstein’s equation in all its glory

Gµν = 8πGNTµν (7.10)

45



According to Einstein, this is how matter tells spacetime how to curve. Note that the
stress-energy tensor does not specify the geometry uniquely in four dimensions. This is easy
to see. There are 10 components of the energy momentum tensor, but, taking into account
its symmetries, there are 20 independent components of the Riemann tensor (see Misner,
Thorne and Wheeler, p220). In this sense Einstein’s theory is not completely Machian and
as we shall see later, it leaves room for gravitational waves. What Einstein’s equation does
give us is 10 coupled non-linear partial differential equations for the 10 components of the
metric. The name of the game in General Relativity is to try to solve for this metric. That
is obviously very difficult in general and typically we can only make progress in the following
cases

• plenty of symmetry (so the metric admits some killing vectors)

• perturbation theory (expand about a known solution, gµν = ḡµν︸︷︷︸
known

+ hµν︸︷︷︸
small

)

In a moment, we will consider some examples with plenty of symmetry. A study of pertur-
bation theory is postponed until section 8.

In any event, we end this section by noting that we can add a bare cosmological constant
term to the left hand side of Einstein’s equation without spoiling its covariance,.

Gµν + Λgµν = 8πGNTµν (7.11)

Indeed, in four dimensions, Lovelock’s theorem proves that a linear combination αGµν+βgµν
is the most general (0, 2) tensor that one can construct out of the metric and its first two
derivatives that is both symmetric and divergence free. Recall that the vacuum energy, ρvac,
contributes a similar term to the stress-energy tensor T vacµν = −ρvacgµν . Λ may therefore be

absorbed into a redefinition of ρvac → ρvac + Λ
8πGN

, or vice versa, Λ → Λ + 8πGNρvac. This
is important in understanding the cosmological constant problem.

7.3 Maximally symmetric solutions

Let us consider the vacuum Einstein’s equations in the presence of a cosmological constant,
Gµν+Λgµν = 0. An important class of solutions to this equation are the maximally symmetric
solutions. These have a maximal number of Killing vectors, and a Riemann tensor of the
form

Rµναβ = κ(gµαgνβ − gµβgνα) (7.12)

One can easily show that we must have κ = Λ
3
. In a static global coordinate system the

metric is given by

ds2 = −(1− κr2)dt2 +
1

1− κr2
+ r2(dθ2 + sin2 θdφ2) (7.13)

The solution with Λ > 0 is known as de Sitter (dS) space, while the one with Λ < 0 is known
as anti-de Sitter space (AdS). Of course, for Λ = 0 we have Minkowski space.
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7.4 Cosmological equations

In cosmology we have lots of symmetry: homogeneity and isotropy. For a spatially flat
cosmology we have a Friedmann-Robertson-Walker metric

ds2 = −dt2 + a(t)2δijdx
idxj (7.14)

We have already calculated the Riemann tensor for this metric and can use equations (6.43)
to compute the Einstein tensor,

Gtt = 3H2, Git = 0, Gij = −
(
H2 + 2

ä

a

)
gij

The cosmological fluid is a perfect fluid with 4-velocity uµ = (1, 0, 0, 0), so

Ttt = ρ, Tit = 0, Tij = pgij

The tt component of the Einstein equation now gives the Friedmann Equation,

H2 =
8πGN

3
ρ (7.15)

while the ij equation, combined with the Friedmann equation, gives the Raychauduri equa-
tion,

ä

a
= −4πGN

3
(ρ+ 3p) (7.16)

You will see how to solve these equations in certain cases in your cosmology course. Note
further that the energy conservation equation is given by

ρ̇+ 3H(ρ+ p) = 0 (7.17)

It is straightforward to check that Raychauduri eqn (12.10) can be derived from the Fried-
mann equation (7.15) and the energy conservation equation (7.17).

7.5 Birkhoff’s theorem

Birkhoff’s theorem states that in general relativity, any spherically symmetric solution of the
vacuum field equations must be static and asymptotically flat. This is an important result
and implies that any spherically symmetric vacuum solution must corresponds to a section
of the Schwarzschild geometry. Let’s prove this.

Since we are in vacuum, we have Tµν = 0 and our goal is simply to solve the vacuum
Einstein equation Gµν = 0. This is true if and only if Rµν = 0. Now consider a general
spherically symmetric metric in four dimensions. This has the form

ds2 = −A(t, r)dt2 +B(t, r)dtdr + C(t, r)dr2 +D(t, r)(dθ2 + sin2 θdφ2) (7.18)
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Actually, we can exploit some residual coordinate invariance to simplify the metric some
more. We don’t want to mess with the spherical symmetry, but we can use transformations
of the form

t→ α(t, r), r → β(t, r) (7.19)

for suitably chosen functions α and β, to reduce the metric to the following form6

ds2 = −e2a(t,r)dt2 + e2b(t,r)dr2 + r2(dθ2 + sin2 θdφ2) (7.20)

The non-trivial components of the Ricci tensor are now found to be

Rtt = b̈+ ḃ2 − ȧḃ+ e2(a−b)
(
a′′ + a′2 − a′b′ + 2

r
a′
)

(7.21)

Rrr = −
(
a′′ + a′2 − a′b′ − 2

r
b′
)

+ e2(b−a)
(
b̈+ ḃ2 − ȧḃ

)
(7.22)

Rtr =
2

r
ḃ (7.23)

Rθθ = 1− e−2b + re−2b(b′ − a′) (7.24)

Rφφ = Rθθ sin2 θ (7.25)

where dot denotes ∂t and prime denotes ∂r. Now Rtr = 0 implies that ḃ = 0. Plugging this
into Rθθ = 0, and differentiating with respect to time, we find that α̇′ = 0. Therefore, we
can write

b = b(r), a = f(r) + g(t) (7.26)

Also, we now have

0 = e2(b−a)Rtt +Rrr =
2

r
(a′ + b′)

which implies that b = c−f , where c is constant. We can eliminate c by redefiniing f → f+c
and g → g − c, so that we now have b = −f . Now the metric has the form

ds2 = −e2f(r)e2g(t)dt2 + e−2f(r)dr2 + r2(dθ2 + sin2 θdφ2) (7.27)

and it is clear that we can eliminate g(t) by means of a coordinate transformation of the
form t→ T (t). Setting g(t) = 0 we arrive at the static metric

ds2 = −e2f(r)dt2 + e−2f(r)dr2 + r2(dθ2 + sin2 θdφ2) (7.28)

It remains to show that this is equivalent to the Schwarzschild metric. From Rθθ = 0 we
have

e2f (2rf ′ + 1) = 1 =⇒ (re2f )′ = 1 =⇒ e2f = 1− µ

r
where µ is an integration constant.

We have thus proven that the solution is (a section of) the Schwarzschild geometry.

ds2 = −
(

1− µ

r

)
dt2 +

dr2

1− µ
r

+ r2(dθ2 + sin2 θdφ2) (7.29)

6Strictly speaking this is only true provided ∇µD is spacelike, thereby enabling us to identify D with a
spacelike component. One must deal with the alternative possibility separately and check that it does not
yield additional solutions.
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Exercises

1. Consider a volume V with surface S. Explain why the force acting on the volume due
to the anisotropic stress is

F j =

∫
S

dSn
(in)
i T ij

where n
(in)
i is the normal pointing into the volume. Use the divergence theorem to show

that the force density, f j defined by F j =
∫
V
dV f j, is given by

f j = −∂iT ij

2. Verify that the trace of the stress-energy tensor vanishes for radiation.

3. If the Riemann tensor is given by the maximally symmetric solution,

Rµναβ = κ(gµαgνβ − gµβgνα)

show that the Einstein tensor is given by Gµν = −3κgµν .

4. Use equations (6.43) to compute the Einstein tensor for a Friedmann-Robertson-Walker
metric,

Gtt = 3H2, Git = 0, Gij = −
(
H2 + 2

ä

a

)
gij

5. Verify that the energy-conservation equation ∇µTµν = 0 gives equation (7.17) in a
cosmological setting. Show further that equation that Raychauduri eqn (12.10) can
be derived from the Friedmann equation (7.15) and the energy conservation equation
(7.17).

6. Consider the cosmological equations sourced by vacuum energy, ρ > 0, with p = −ρ.
Show that ρ̇ = 0, and explain why the maximally symmetric de Sitter solution can be
written as

ds2 = −dt2 + e2Htδijdx
idxj (7.30)

where H2 = 8πGN
3
ρ = constant. This is known as a flat slicing of de Sitter space.

7. Show that a under the change of coordinates given by (7.19), the metric (7.18) trans-
forms into

ds2 = −Â(t, r)dt2 + B̂(t, r)dtdr + Ĉ(t, r)dr2 + D̂(t, r)(dθ2 + sin2 θdφ2)

where

Â(t, r) = A(α, β)α̇2 −B(α, β)α̇β̇ − C(α, β)β̇2 (7.31)

B̂(t, r) = B(α, β)(α̇β′ + α′β̇)− 2A(α, β)α̇α′ + 2C(α, β)β̇β′ (7.32)

Ĉ(t, r) = C(α, β)β′2 +B(α, β)α′β′ − A(α, β)α′2 (7.33)

D̂(t, r) = D(α, β) (7.34)

Convince yourself that one can choose α and β such that this metric now takes the
form given by equation (7.20), provided ∇µD is spacelike.
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8 Weak gravity

One of the most powerful tools in GR is perturbation theory. This is when we consider small
perturbations about a known background solution,

gµν = ḡµν + hµν , |hµν | � 1 (8.1)

Here ḡµν is some known metric that describes the geometry of the background spacetime.
Often this is taken to be a maximally symmetric space, or a Friedmann-Robertson-Walker
solution. hµν describes metric fluctuations on the background and is assumed to be small. We
can think of it as a spin 2 particle (the graviton) propagating on the background geometry.

The first thing to check is that the inverse metric

gµν = ḡµν − hµν +O(h2) (8.2)

where the indices on h are raised and lower using ḡµν and ḡµν . We can also compute the
leading order fluctuation in the connection and the Riemann tensor. For the connection, it
is convenient to go to Riemann normal coordinates on the background, as we demonstrate
below,

δΓαµν =
1

2
ḡαβ(hβµ,ν + hβν,µ −

1

2
hµν,β)− hαβ(ḡβµ,ν + ḡβν,µ − ḡµν,β)

=
1

2
ηαβ(hβµ,ν + hβν,µ − hµν,β) Riemann normal coordinates: ḡ → η

=
1

2
ḡαβ(hβµ;ν + hβν;µ − hµν;β)

In the last line we have promoted the right hand side to a tensor on the background, replacing
η → ḡ, and replacing partial derivatives with covariant derivatives. The semi-colon here
denotes a covariant derivative on the background, Q···...;µ = ∇̄µQ

···
.... Since we now have a

tensor equation, it holds in any coordinate system and we can write

δΓαµν =
1

2

(
hαµ;ν + hαν;µ − h;α

µν

)
(8.3)

A word of warning: Riemann normal coordinates are only suitable for computing quantities
containing up to one derivative. You cannot use them for second derivatives. Fortunately,
the Riemann tensor only contains first derivatives of the connection, which is now known up
to leading order. So, again, using Riemann normal coordinates we can show that

δRµνα
β = −2∂[µδΓ

β
ν]α + 2Γ̄σα[µδΓ

β
ν]σ + 2δΓσα[µΓ̄βν]σ

= −2∂[µδΓ
β
ν]α Riemann normal coordinates: Γ̄→ 0

= −2∇̄[µδΓ
β
ν]α

This is known as the Palatini identity. Again, in the last line we have promoted the right
hand side to a tensor, by replacing partial derivatives with covariant derivatives on the
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background. Furthermore, we have a tensor equation, and plugging in equation (8.3) we
find7

δRµνα
β = hβα;[µν] + hβ[µ;|α|ν] − hα[µ;

β
ν] (8.4)

The perturbed Einstein equation is, of course, given by

δGµν = 8πGNδTµν (8.5)

or equivalently

δRµν = 8πGNδ

[
Tµν −

1

2
Tgµν

]
(8.6)

where T = gµνTµν is the trace of the stress-energy tensor. Using the result (8.4) and
commuting some covariant derivatives we can show that

δRµν = −1

2
∆Lhµν (8.7)

where the Lichnerowicz operator,

∆Lhµν = �̄hµν − 2∇̄(µ∇̄αh̄ν)α − 2R̄α(µh
α
ν) + 2R̄µανβh

αβ (8.8)

and h̄µν = hµν − 1
2
hgµν is the trace reversed metric perturbation, and h = hαα is the trace.

Here R̄µναβ is the background Riemann tensor, and �̄ = ∇̄α∇̄α.
It follows that the perturbed Einstein equations are equivalent to

−1

2
∆Lhµν = 8πGNδ

[
Tµν −

1

2
Tgµν

]
(8.9)

8.1 Choosing a gauge

The perturbed Einstein equations are a tensor equation, which means they hold in any
coordinate system. Now, under an infinitesimal change of coordinates, xµ → xµ − ξµ, we
know that

δgµν → δgµν + Lξḡµν (8.10)

or equivalently
hµν → hµν + ∇̄µξν + ∇̄νξµ (8.11)

Here we have used the fact that

Lξḡµν = ∇̄µξν + ∇̄νξµ

We can use this freedom to change coordinates to place restrictions on hµν that render the
equations of motion easier to solve. This is called choosing the gauge. For example, a popular
gauge choice is called de donder or harmonic gauge. This corresponds to setting

∇̄µh̄µν = 0

7Note that the vertical lines around the index α in the middle term indicates that it is not included in
the antisymmerization.
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To see why this is possible we note that under xµ → xµ − ξµ, we have

∇̄µh̄µν → ∇̄µh̄µν + �̄ξν − R̄µνα
µξα

Thus we see that for a suitable choice of ξµ we can set everything to vanish to the right of
the arrow. Of course, other gauge choices are possible. Another gauge that is commonly
used on static backgrounds is synchronous gauge. This corresponds to

htt = hti = 0

where we have explicitly separated our background coordinates into time and space xµ =
(t, xi).

Let us see how de donder gauge is used on maximally symmetric backgrounds. Since

R̄µναβ = κ(ḡµαḡνβ − ḡµβ ḡνα),

the Lichnerowicz operator is given by

∆Lhµν = �̄hµν − 4κ

(
hµν −

1

4
hgµν

)
Note that the contribution from −2∇̄(µ∇̄αh̄ν)α vanishes on account of the gauge condition.
The stress-energy tensor is given by Tµν = − 3κ

8πGN
gµν +τµν , where we identify the fluctuation

as

δTµν = − 3κ

8πGN

hµν + τµν

It follows from the perturbed Einstein equation (8.9) that

−1

2
�̄hµν + 2κ

(
hµν −

1

4
hgµν

)
= 3κhµν + 8πGN

(
τµν −

1

2
τ ḡµν

)
(8.12)

where τ = ḡµντµν . This equation can be split into its trace and traceless parts,

−1

2
(�̄+ 2κ)

(
hµν −

1

4
hḡµν

)
= 8πGN

(
τµν −

1

4
τ ḡµν

)
−1

2
(�̄+ 6κ)h = −8πGNτ (8.13)

It follows that8

hµν = −16πGN

�̄+ 2κ

[
τµν −

1

2

(
�̄+ 4κ

�̄+ 6κ

)
τ ḡµν

]
(8.14)

On Minkowski space, this reduces to the oft quoted result,

hµν = −16πGN

�̄

[
τµν −

1

2
τηµν

]
(8.15)

If the gravitational field is sourced by stress-energy, τ sµν , then the gravitational potential
energy of a probe of stress-energy, τ pµν is given by

V = −1

2

∫
d3xhsµν(x)τµνp (x) = 8πGN

∫
d3x

[
τµνp (x)

1

�̄
τ sµν(x)− 1

2
τp(x)

1

�̄
τ s(x)

]
(8.16)

8For an operator such as �+ 2κ, the operator 1
�+2κ denotes the inverse.
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8.2 Decomposing into tensors, vectors and scalars

In your Modern Cosmology course you will study perturbations upon cosmological back-
grounds

ḡµνdx
µdxν = −dt2 + a(t)2δijdx

idxj

It is convenient to classify these perturbations with respect to the diffeomorphism group
on the spatial slices (in this case, coordinate transformations on 3 dimensional Euclidean
space). We therefore write the metric perturbations as

htt = −2φ

hti = a(βi + ∂iβ),

hij = a2

[
h̃ij + 2∂(iνj) + 2

(
∂i∂j −

δij
3

∆

)
α + 2ψδij

]
(8.17)

where ∆ = ∂k∂k. Here we have four scalars:

φ(t, x), β(t, x), α(t, x), ψ(t, x)

two vectors:
βi(t, x), νi(t, x)

and one tensor:
h̃ij(t, x)

The vectors are divergence free (ie ∂iβi = ∂iνi = 0) and as a result each encode two degrees
of freedom. The tensor is transverse-tracefree (ie ∂jh̃ij = 0 = δijh̃ij) and as a result also
encodes two degrees of freedom. In total, then we have 4×scalar+4×vector+2×tensor=10
degrees of freedom, which is exactly what we expect.

Having done this, it is natural to decompose the infinitesimal coordinate transformations
in the same way. We therefore write these as

t→ t− ε, xi → xi − ξi − ∂iξ (8.18)

where ε(t, x) and ξ(t, x) correspond to the scalar transformations, and ξi(t, x) corresponds
to the vector transformation (there is no room for a tensor transformation). One can also
decompose the components of the stress-energy tensor in this way.

The reason all of this is a good thing to do is that to linear order the different classes do
not mix. In other words, scalars only couple to scalars, vectors only couple to vectors, and
tensors only couple to tensors. To convince yourself that this must be true try to imagine
how, say, a vector could source a scalar. The only operators we have available are derivative
operators with respect to time and space. To get a scalar from the vector you would need
to take the divergence, but by construction the vectors are divergence free, so this is futile.
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8.2.1 Linearised gravity around a non-relativistic source

Let us proceed with the following example. Consider perturbations on a Minkowski back-
ground (a(t) ≡ 1) in the presence of a non-relativistic source

δTtt = ρ(x), δTti = 0, δTij = 0

The stress-energy tensor contains a single scalar component. The perturbed Einstein equa-
tions can be decomposed into the scalar, vector and tensor equations. The scalar equations
of motion are given by

∆Φ− 3Ψ̈ = 4πGNρ (8.19)

−2∂iΨ̇ = 0 (8.20)

−(−∂2
t + ∆)Ψδij − ∂i∂j(Φ + Ψ) = 4πGNρδij (8.21)

where we have introduced

Φ(t, x) = φ+ β̇ − α̈, Ψ(t, x) = ψ − ∆

3
α (8.22)

The vector equations of motion, meanwhile, are given by

−1

2
∆Bi = 0 (8.23)

−∂(iḂj) = 0 (8.24)

where we have introduced
Bi(t, x) = βi − ν̇i (8.25)

Finally the tensor equations of motion are given by

−1

2
(−∂2

t + ∆)h̃ij = 0 (8.26)

These equations of motion have been written explicitly in terms of gauge invariants, Φ, Ψ, Bi

and h̃ij. These are quantities that are invariant under the transformations (8.18). Because
the Einstein equation is a covariant equation, we can always write the perturbative equations
in terms of gauge invariants. To see how the gauge invariants come about consider the action
of (8.18) on each mode,

φ→ φ+ ε̇, β → β + ξ̇ − ε, α→ α + ξ, ψ → ψ + ∆
3
ξ (8.27)

βi → βi + ξ̇i, νi → νi + ξi (8.28)

h̃ij → h̃ij (8.29)

We immediately see that the tensor mode is gauge invariant (as it always is!), and it is
straightforward to check that the combinations given by Φ, Ψ and Bi are also gauge invariant,

Φ→ Φ, Ψ→ Ψ, Bi → Bi
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To solve the system, it suffices to solve for the gauge invariants. The tensor equation permits
wave solutions for the tensor mode, h̃ij. These are gravitational waves. We are currently on
the lookout for evidence of these in Nature, through gravitational wave experiments such as
LIGO.

Now consider the vectors. Assuming asymptotically vanishing boundary conditions, equa-
tions (8.23) and (8.24) suggest that there can be no vector modes, Bi = 0.

Finally, we consider the scalars. The traceless part of (8.21) implies that

Φ + Ψ = 0

where we have once again assumed asymptotically vanishing boundary conditions. This
result is typical of GR. It is violated in some modified theories of gravity and is often used
as a means to look for experimental evidence of modified gravity. The remaining scalar
equations combine to give, Φ = Φ(x) (ie independent of time), and

∆Φ = 4πGNρ

This is just Poisson’s equation (7.2). How remarkable! Linearised gravity on Minkowski space
with a non-relativistic source reproduces the fundamental equation of Newtonian gravity
from first principles. You’ve got to admit, Einstein really was a genius.

Finally, we note that the scalar mode is not freely propagating (there is no wave compo-
nent). In GR there are only two freely propagating degrees of freedom in four dimensions,
and these are contained within the gravitational waves.

Exercises

1. If the metric is given by gµν = ḡµν +hµν , where h is small, prove that the inverse metric
is given by gµν = ḡµν − hµν to leading order.

2. Given the form of the perturbed Riemann tensor (8.4), show that the perturbed Ricci
tensor is given by

δRµν = −1

2
∆Lhµν

where the Lichnerowicz operator,

∆Lhµν = �̄hµν − 2∇̄(µ∇̄αh̄ν)α − 2R̄α(µh
α
ν) + 2R̄µανβh

αβ

Hint: you will need to commute some covariant derivatives.

3. Prove that the perturbed Ricci scalar is given by

δR =
(
∇̄µ∇̄ν − ḡµν�̄− R̄µν

)
hµν

Hence show that if hµν → hµν + ∇̄µξν + ∇̄νξµ that δR→ δR + LξR̄.

4. Prove that
Lξḡµν = ∇̄µξν + ∇̄νξµ

Hint: use Riemann normal coordinates
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5. Prove that on a maximally symmetric space with cosmological constant Λ, the Lich-
nerowicz operator is given by

∆Lhµν = �̄hµν − 2∇̄(µ∇̄αh̄ν)α −
4Λ

3

(
hµν −

1

4
hgµν

)
6. Derive the transformation laws (8.27) to (8.29) and hence show that the following

quantities are gauge invariant,

Φ = φ+ β̇ − α̈, Ψ = ψ − ∆

3
α, Bi = βi − ν̇i

9 The gravitational action

As with any theory we would like to be able to derive the Einstein’s equations from an
action principle. Treating the metric as our fundamental field, we therefore wish to derive
an action, S = S[gµν , . . .] for which

δS

δgµν
= 0 =⇒ Gµν = 8πGNTµν

9.1 The measure

Now the first thing to realise is that d4x is not a suitable measure. This is because it is not
covariant, transforming under a general coordinate transformation xµ → x̂µ(x) as

d4x→ d4x̂ = | det Jµν |d4x (9.1)

where the Jacobian matrix

Jµν =
∂x̂µ

∂xν

However, we also know that the metric transforms such that

gµν(x̂) =
∂x̂α

∂xµ
∂x̂β

∂xν
ĝαβ(x̂) = Jαµ J

β
ν ĝαβ(x̂)

and therefore
det gµν = | det Jµν |2 det ĝµν

Combining this with (9.1) we immediately see that

d4x
√
− det gµν = d4x̂

√
− det ĝµν

In other words, the quantity d4x
√
− det gµν transforms as a scalar under a general coordinate

transformation, and is therefore a suitable measure. We often use the following shorthand
for the determinant of the metric g = det gµν , and the covariant measure is written as

d4x
√
−g (9.2)
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This generalises to any dimension and any signature as dnx
√
|g|. Furthermore, the “volume”

of a manifold M is now given by V =
∫
M
dnx
√
|g|. Let us consider an illustrative example.

Take three dimensional Euclidean space written in a spherically symmetric coordinate system

ds2 = dr2 + r2(dθ2 + sin2 θdφ2)

The measure now takes the form

d4x
√
|g| = drdθdφr2 sin θ

which we recognise as the appropriate measure used for integration with spherical polars.

9.2 The Einstein-Hilbert action

Now that we have a covariant measure, we seek a scalar Lagrangian density. The simplest
scalar we can think of that is built out of the curvature is the Ricci scalar. We therefore
propose the following action

S = SEH + Sm (9.3)

where

SEH [gµν ] =
1

16πGN

∫
d4x
√
−gR (9.4)

is known as the Einstein-Hilbert action, and Sm = Sm[gµν ; Ψn] is the action for the matter
fields, Ψn, coupled to gravity.

Let us consider the variation of the Einstein-Hilbert action. Well,

δSEH =
1

16πGN

∫
d4xδ
√
−gR +

√
−gδR (9.5)

The variation of the metric determinant is easily obtained using the general relation, detX =
exp(tr logX). It follows that

δ
√
−g =

1

2

√
−ggµνδgµν

Furthermore, since δgµν = −gµαgµβδgαβ, we also have that

δ
√
−g = −1

2

√
−ggµνδgµν

The variation of the Ricci scalar was derived in Exercise 3 of the previous chapter. We can
use that result to infer the following

δR = (∇µ∇ν − gµν�−Rµν) δgµν = (−∇µ∇ν + gµν�+Rµν) δg
µν

Plugging all of this in we find that

δSEH =
1

16πGN

∫
d4x
√
−g
(
Rµν −

1

2
Rgµν

)
δgµν −

√
−g(∇µ∇ν − gµν�)δgµν

=
1

16πGN

∫
d3x
√
−gGµνδg

µν −
√
−g∇α

[
(δα(µ∇ν) − gµν∇α)δgµν

]
(9.6)
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What do we do with the last term? Fortunately there exists the following useful relation,

∇µF
µ =

1√
−g

∂µ(
√
−gF µ) (9.7)

and we recognise the last term in (9.6) as a total derivative that may be discarded. Returning
to the full action, we now have that

δS

δgµν
=

1

16πGN

√
−g
(
Gµν +

16πGN√
−g

δSm
δgµν

)
(9.8)

Therefore, if we identify the stress-energy tensor with,

Tµν = − 2√
−g

δSm
δgµν

(9.9)

then we do indeed have that

δS

δgµν
= 0 =⇒ Gµν = 8πGNTµν

The Einstein-Hilbert action has the unusual feature that one can treat the metric and the
connection as independent fields and still obtain the same dynamics. Variation with respect
to the metric yields the Einstein equations while variation with respect to the connection
forces the Levi-Civita connection dynamically. This procedure is known as the Palatini
variation. For further details see Wald p454. A word of warning though. The Einstein-
Hilbert action is rather special in having this property. In a generic alternative gravity
theory, changing the variational principle will change the dynamics.

9.3 The matter action

We now turn our attention to the matter action. The simplest source one can imagine is the
vacuum energy, or cosmological constant. This makes a constant contribution to the matter
action, of the form

Svac
m = −σ

∫
d4x
√
−g =⇒ T vac

µν = −σgµν (9.10)

Now consider a scalar field. In flat space, a canonical scalar field with a potential V (φ) has
an action

S =

∫
d4x− 1

2
∂µφ∂

µφ− V (φ)

There are many ways in which we might promote this to curved space. The minimal approach
involves introducing the covariant measure and promoting partial derivatives into covariant
derivatives

Sscalar
m =

∫
d4x
√
−g
[
−1

2
∇µφ∇µφ− V (φ)

]
=⇒ T scalar

µν = ∇µφ∇νφ− gµν
[

1

2
(∇αφ)2 + V (φ)

]
(9.11)
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We say that the scalar field is minimally coupled to gravity. One can consider more exotic
scenarios in which the scalar couples to the curvature at the level of the action, eg terms like√
−gGµν∇µφ∇νφ or

√
−gRφ2. This is called non-minimal coupling.

What about Maxwell fields? Again, in flat space, these are described by the following
action,

S = −1

4

∫
d4xFµνF

µν

where the field strength Fµν = ∂µAν − ∂νAµ. To promote this to curved space we once
again take the minimal approach, introducing the covariant measure and promoting partial
derivatives into covariant derivatives

SMaxwell
m = −1

4

∫
d4x
√
−gFµνF µν , Fµν = ∇µAν −∇νAµ

=⇒ TMaxwell
µν = FµαFν

α − 1

4
gµνFαβF

αβ (9.12)

Actually, the connection drops out of the defintiion of the field strength due to the antisym-
metrization. Also. note that the trace of the energy-momentum tensor is zero. This is an
important property of the Maxwell field in four dimensions, and is related to the fact that
it is a conformally invariant theory. One can also consider non-minimally coupled Maxwell
theory.

Fermions are a little trickier. In flat space a fermion of mass, m, is described by an
action,

S = −
∫
d4xψ̄(γa∂a +m)ψ

where ψ̄ = iψ†γ0 and γa are the Gamma matrices. To promote this to curved space we need
to define the covariant derivative acting on fermions

∇µψ = ∂µψ − Γµψ

where Γµ = 1
4
γaγbg

αβeaα∇µe
b
β, and ∇µe

b
ν = ∂µe

b
ν − Γαµνe

b
α. The fermion action becomes

Sfermion
m = −

∫
d4x
√
−gψ̄(γaea

µ∇µ +m)ψ (9.13)

For further details see Parker & Toms

9.4 The Gibbons-Hawking term

We now return to the Einstein-Hilbert action. Recall that in varying this action, we threw
away a total derivative term of the form,

− 1

16πGN

∫
d4x
√
−g∇α(

[
δα(µ∇ν) − gµν∇α)δgµν

]
= − 1

16πGN

∫
d4x∂α

[√
−g(δα(µ∇ν) − gµν∇α)δgµν

]
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What happens if the spacetime manifold, M has a non-trivial boundary ∂M? Then, taking
nµ to be the (spacelike) outward pointing unit normal to the boundary, we pick up a boundary
term,

δSboundaryEH = − 1

16πGN

∫
M

d4x∂α
[√
−g(δα(µ∇ν) − gµν∇α)δgµν

]
= − 1

16πGN

∫
∂M

d3x
√
−γnα(δα(µ∇ν) − gµν∇α)δgµν

= − 1

16πGN

∫
∂M

d3x
√
−γ(n(µ∇ν) − gµνnα∇α)δgµν

=
1

16πGN

∫
∂M

d3x
√
−γ(n(µγ

α
ν)∇α − γµνnα∇α)δgµν

=
1

16πGN

∫
∂M

d3x
√
−γ(n(µγν)α − γµνnα)∇αδgµν

Here γµν = gµν − nµnν is the induced metric on the boundary (this just means the metric
for the boundary manifold). It corresponds to a projection operator that projects out the
components normal to the boundary. We have also used the fact that

∇ν = γαν∇α + nνn
α∇α

as well as the relation √
−g|∂M =

√
−γ (9.14)

This is easily proven using Gaussian-Normal coordinates adapted to the boundary. Gaussian-
Normal coordinates are defined as xµ = (z, xi), with the boundary at z = constant, and

gzz = 1, gzi = 0

Then the unit normal to the boundary is given by nz = 1, ni = 0, and we have

γzz = 1, γzi = 0, γij = gij

The result (9.14) now follows trivially.
The boundary term, δSboundaryEH , does not vanish with respect to Dirichilet boundary

conditions in which the metric is taken to be fixed on the boundary, owing to the presence of
the normal derivative. This fact has been noticed by Gary Gibbons and Stephen Hawking,
and they proposed adding the following boundary term to the Einstein-Hilbert action9,

SGH =
1

8πGN

∫
∂M

d3x
√
−γK (9.15)

This is known as the Gibbons-Hawking term. K = γµνKµν is the trace of the extrinsic
curvature of the boundary. The extrinsic curvature is defined as the Lie derivative of the
induced metric with respect to the outward pointing normal,

Kµν =
1

2
Lnγµν (9.16)

9For spacelike boundaries (initial and final surfaces) this term was proposed a little earlier, by York
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In Gauss-Normal coordinates it is easy to convince yourself that

Kzz = 0, Kzi = 0, Kij =
1

2
∂zgij

To see why the Gibbons-Hawking term helps, we first note that

δSGH =
1

8πGN

∫
∂M

d3x
√
−γ (Kµν −Kγµν) δγµν +

√
−γγµν

(
δKµν −

1

2
Kδγµν

)
(9.17)

To proceed, we work exclusively in Gaussian-Normal coordinates, noting that

γµν
(
δKµν −

1

2
Kδγµν

)
+

1

2
(n(µγν)α − γµνnα)∇αδgµν

=
1

2
gij
(
∂zδgij −

1

2
δgijg

kl∂zgkl

)
− 1

2
gij∂zδgij +

1

2
δgijg

jkΓijz

= −1

4
δgijg

ijgkl∂zgkl +
1

4
δgijg

jkgil∂zglj

=
1

2
δgij

(
Kij −Kgij

)
=

1

2
δγµν (Kµν −Kγµν)

= −1

2
(Kµν −Kγµν) δγµν

Plugging all this together, we see that,

δSboundaryEH + δSGH =
1

4πGN

∫
∂M

d3x
√
−γ (Kµν −Kγµν) δγµν (9.18)

The normal derivatives have dropped out completely. The full gravitational action

Sgrav =
1

16πGN

∫
M

d4x
√
−gR +

1

8πGN

∫
∂M

d3x
√
−γK (9.19)

is well defined for Dirichilet boundary conditions, such that

δSgrav =
1

16πGN

∫
M

d4x
√
−gGµνδg

µν +
1

4πGN

∫
∂M

d3x
√
−γ (Kµν −Kγµν) δγµν (9.20)

Exercises

1. Prove the following relation

∇µF
µ =

1√
−g

∂µ(
√
−gF µ)

Hint: you should make use of equation (8.3) and the fact that δ
√
−g = 1

2

√
−ggµνδgµν.
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2. Prove each of the following results:

(a) Sscalar
m =

∫
d4x
√
−g
[
−1

2
∇µφ∇µφ− V (φ)

]
=⇒ T scalar

µν = ∇µφ∇νφ−gµν
[

1
2
(∇αφ)2 + V (φ)

]
(b) SMaxwell

m = −1
4

∫
d4x
√
−gFµνF µν =⇒ TMaxwell

µν = FµαFν
α − 1

4
gµνFαβF

αβ

3. Prove that in Gauss-Normal coordinates (z, xi) adapted to a surface with z = constant,
we have

Kzz = 0, Kzi = 0, Kij =
1

2
∂zgij

10 Brans-Dicke gravity

Whilst General Relativity is a remarkable theory, it does have its limitations as we saw in
chapter 3. Furthermore a theory is only a great theory in comparision to other theories.
With all this is mind it is well worth considering alternatives to GR.

Perhaps the most well known alternative to GR is a theory proposed by Brans and Dicke.
Motivated by Dirac’s large number hypothesis10, they promoted Newton’s constant to a field
and proposed a theory described by the following action,

SBD =
1

16π

∫
d4x
√
−g
[
φR− w

φ
(∇φ)2

]
+ Sm[gµν ; Ψn] (10.1)

The field equations for this theory are given by

φGµν −∇µ∇νφ−
w

φ
∇µφ∇νφ+ gµν

(
�φ+

w

2φ
(∇φ)2

)
= 8πTµν (10.2)

(2w + 3)�φ = 8πT (10.3)

One of the features of Brans-Dicke theory is that we can perform a conformal transformation
of the metric so that its looks more like the Einstein-Hilbert action. To this end we make
the following field redefinitions

gµν = e2αφg̃µν , φ = e−2αψ, α =

√
4π

2w + 3
(10.4)

The action then takes on the more familiar form of GR + a minimally coupled scalar,

SBD =
1

16π

∫
d4x
√
−g̃
[
R̃− 1

2
(∇̃ψ)2

]
+ Sm[e2αψg̃µν ; Ψn] (10.5)

Because of this, the metric g̃µν is referred to as the Einstein frame metric, while its cousin, gµν ,
is referred to as the Jordan frame metric. Classically, all physical observables are completely
independent of the choice of frame, as of course they must be.

In the Einstein frame, we explicitly see that matter now couples to the scalar, φ as well
as the new metric g̃µν . This means we have a fifth force mediated by φ acting on standard
model fields, and results in the violation of the strong equivalence principle. The strength of
the force is controlled by α. Fifth force tests constrain α to be very small, or equivalently,
w to be very large. The current limit has w & 40000.

10Dirac had noticed that GN ∝ 1/tU and MU ∝ t2U where tU is the age of the Universe and MU is its
mass.
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10.1 Weak Brans-Dicke gravity

Let us now consider linearised theory in Brans-Dicke gravity. We will work in the Jordan
frame and begin by rewriting the field equations as

Rµν −
∇µ∇νφ

φ
=

8π

φ

[
Tµν −

(
w + 1

2w + 3

)
Tgµν

]
+
w

φ2
∇µφ∇νφ (10.6)

(2w + 3)�φ = 8πT (10.7)

We now perform linearised perturbation theory about a Minkowski vacuum with constant
φ = φ0. In other words we take,

gµν = ηµν + hµν , φ = φ0 + δφ, |hµν |, |δφ|, |Tµν | � 1

This gives

δRµν −
∂µ∂νδφ

φ0

=
8π

φ0

[
Tµν −

(
w + 1

2w + 3

)
Tηµν

]
(10.8)

By choosing a gauge ∂ah̄αν = ∂νδφ
φ0

, we arrive at the following result,

hµν = − 16π

φ0�̄

[
Tµν −

(
w + 1

2w + 3

)
Tηµν

]
(10.9)

This should be compared with the equivalent result in General Relativity given by equation
(8.15). Furthermore, if the gravitational field is sourced by stress-energy, τ sµν , then the
gravitational potential energy of a probe of stress-energy, τ pµν is given by

V = −1

2

∫
d3xhsµν(x)τµνp (x) =

8π

φ0

∫
d3x

[
τµνp (x)

1

�̄
τ sµν(x)−

(
w + 1

2w + 3

)
τp(x)

1

�̄
τ s(x)

]
(10.10)

Again, this should be compared with corresponding result in GR (8.16). In fact, let us be a
little more precise. We know that GR gives a very accurate prediction to planetary orbits
and for light bending in the solar system. The Sun can be treated as a non-relativistic source
with τ sµν = ρsδ

t
µδ

t
ν . For light bending, the probe is a photon whose stress-energy tensor is

traceless τp = 0. The GR result gives

V photon
GR = 8πGN

∫
d3xτµνp (x)

1

�̄
τ sµν(x) (10.11)

while the BD result gives

V photon
GR =

8π

φ0

∫
d3xτµνp (x)

1

�̄
τ sµν(x) (10.12)

We can match the two by simply taking φ0 = 1/GN .
Now consider the planets. These are also non-relativistic and have τ pµν = ρpδ

t
µδ

t
ν . In GR

we have

V planet
GR = −8πGN

∫
d3xρp(x)

1

�̄
ρs(x) (10.13)
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whereas in BD gravity we have

V planet
BD = −16π

φ0

(
w + 2

2w + 3

)∫
d3xρp(x)

1

�̄
ρs(x) (10.14)

As we have already set φ0 = 1/GN in order to be compatible with light bending, we note
that

V planet
BD − V planet

GR

V planet
GR

=
1

2w + 3
(10.15)

So unless w is very large we see that the theory deviates considerably from GR. Of course,
we could have chosen φ0 differently so that the planetary results matched, but then we would
have run into problems with light bending. The deviation from GR is greatest as w → −3/2.
This is the strong coupling limit of Brans-Dicke gravity when matter couples to the scalar
with infinite strength.

10.2 Chameleons

We have seen that fifth force tests constrain the Brans Dicke scalar to be very weakly coupled
to matter. However, this is not the only way to screen a fifth force. We can tolerate a much
stronger matter coupling provided we introduce a mass for the scalar. If the mass exceeds
meV then the range of the fifth force is pushed down below ~c

meV
∼ 0.2 mm, making it

inaccessible to table top tests of gravity.
Quintessence scenarios correspond to the BD theories in the presence of a quintessence

potential, V (ψ)

Sψ =

∫
d4x
√
−g̃
[
M2

pl

2
R̃− 1

2
(∇̃ψ)2 − V (ψ)

]
+ Sm[e2αψ/Mpl g̃µν ; Ψn] (10.16)

where we have explicitly included some factors of Mpl to make contact with the literature.
Note that matter is minimally coupled to the Jordan frame metric gµν = e2αψ/Mpl g̃µν .

In order for the quintessence field to mimic dark energy the potential must be sufficiently
flat, and in particular, the mass m2(ψ) = V ′′(ψ) . H2

0 where H0 ∼ 10−33 eV is the current
Hubble scale. Such a light mass would allow a long range force to be mediate and one is
tempted to conclude that the coupling to matter should be extremely weak in order pass
fifth force constraints. However, this statement is too quick. One should not neglect the role
played by the environment. Environmental effects alter the form of the effective potential
and it is possible for the field to pick up a large mass in a dense region of matter.

To see, we note that the equations of motion are given by

M2
plG̃µν = ∂µψ∂νψ −

[
1

2
(∂ψ)2 + V

]
gµν + T̃µν , (10.17)

∇2ψ = V ′(ψ)− α

Mpl

T̃ µµ , (10.18)
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where T̃µν = 2√
−g̃

∂Sm
∂g̃µν

is the energy momentum tensor in the Einstein frame. This is related

to the energy momentum tensor in the Jordan frame, Tµν = 2√
−g

∂Sm
∂gµν

, as follows

T̃µν = e2αψ/MplTµν . (10.19)

For our purposes, it is sufficient to approximate the geometry in the Einstein frame as
Minkowski space, g̃µν ≈ ηµν . We will also assume a non-relativistic matter distribution,
so that gµνTµν ≈ −ρ. It is convenient to use the energy density ρ̃ = ρe3αψ/Mpl , which is
conserved in the Einstein frame11 , so that equation (10.18) now gives

∇2ψ = V ′(ψ) +
α

Mpl

ρ̃eαψ/Mpl . (10.20)

Now let us define the effective potential

Veff (ψ) = V (ψ) + ρ̃eαψ/Mpl , (10.21)

so that the scalar equation of motion (10.20) now reads ∇2ψ = V ′eff (ψ). In a stationary,
homogeneous distribution of matter, the field ψ will sit at the minimum of the effective
potential, ψ∗, where V ′eff (ψ∗) = 0. In general, the field now picks up an effective mass,
given by m2

eff = V ′′eff (ψ∗). However, the depth and position of this minumum changes
over with the sourounding density of matter, hence providing of a mechanism to have light
fields on cosmological scales but heavy near the Earth. In the space of solutions, there are
configurations of the field which interpolate between the cosmological minimum and the
Earth’s one. We call these chameleons because they change their character depending on
their environment.

10.3 f(R) gravity

Another popular alternative to GR is f(R) gravity, describe by the following action

S =

∫
d4x
√
−gf(R) + Sm[gµν ; Ψn] (10.22)

where f is some function. This is entirely equivalent to a BD theory with w = 0 and a
potential. To show this we simply rewrite the action using a Lagrange multiplier, φ and an
auxiliary field λ,

S =

∫
d4x
√
−g [f(λ) + φ(R− λ)] + Sm[gµν ; Ψn] (10.23)

The λ equation of motion gives, φ = f ′(λ). Plugging this back in we get

S =

∫
d4x
√
−g [φR− V (φ)] + Sm[gµν ; Ψn] (10.24)

where
V (φ) = φλ(φ)− f(λ(φ))

and λ(φ) is given by inverting the relation

φ = f ′(λ)

11To see this we note that ρ× spatial volume = constant, and that spatial volume scales like (eαψ/Mpl)3.
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11 Kaluza Klein gravity

Kaluza-Klein (KK) theory grew out of an attempt to unify gravity and electrodynamics.
The basic idea was to consider General Relativity on a 4+1 dimensional manifold where one
of the spatial dimensions was taken to be small and compact. One can perform a harmomic
expansion of all fields along the extra dimension, and compute an effective 3+1 dimensional
theory by integrating out the heavy modes. This idea has been embraced by string theorists
who compactify 10 dimensional string theories and 11 dimensional supergravity/Mtheory
on compact manifolds of 6 or 7 dimensions respectively, often “switching on fluxes” and
“wrapping branes” on the compact space. Each different compactification gives a different
effective 4-dimensional theory, so much so that we now talk about an entire landscape of
effective theories.

To understand the generic features of KK compactifications, it is sufficient to describe
the dimensional reduction of General Relativity on a circle, S1. We first define General
Relativity in D = d+ 1 dimensions, via the generalised Einstein-Hilbert action

S[γ] =
1

16πGD

∫
dDX

√
−γR (11.1)

where GD is Newton’s constant in D dimensions, γAB is the D dimensional metric with
corresponding Ricci tensor,RAB and Ricci scalar,R = γABRAB. Note that we are neglecting
the matter Lagrangian for brevity. We are assuming that one of the spatial dimensions is
compactified on a circle of radius L/2π. To this end we can define coordinates XA = (xµ, z),
where the coordinate z lies along the compact direction, such that 0 ≤ z < L

We can expand the metric as a Fourier series of the form

γAB(x, z) =
∑
n

γ
(n)
AB(x)einz/L. (11.2)

We find that we get an infinite number of fields in d dimensions. Modes with n 6= 0 correspond
to massive fields with mass |n|/L, whereas the zero mode corresponds to a massless field.
As we take L to be smaller and smaller we see that the mass of the first massive field
becomes very large. This means that if we compactify on a small enough circle we can
truncate to massless modes in the 4-dimensional theory. Massive modes will only get excited
by scattering processes whose energy lies at or above the compactification scale 1/L. This
also applies to matter fields arising in particle physics. Indeed, particle physics imposes by
far the strongest constraints on the size of the extra dimension. Standard Model processes
have been well tested with great precision down to distances of the order, (TeV)−1 with no
evidence of extra dimensions emerging. Assuming that the extra dimensions are universal,
that is the Standard Model fields can extend all the way into them, we infer that L . 10−19

m. The natural scale of the compact dimensions is usually taken be Planckian, L ∼ lpl.

Let us now focus on the zero modes, γ
(0)
AB(x). We could define γ

(0)
µν , γ

(0)
µz and γ

(0)
zz to be

the d-dimensional fields gµν(x), Aµ(x) and φ(x). In effective field theory language, these will
correspond to the metric, gauge field, and dilaton respectively. In order that our results are
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more transparent we will actually define the components of the metric in the following way:

γ(0)
µν = e2αφgµν + e2βφAµAν , γ(0)

µz = e2βφAµ, γ(0)
zz = e2βφ. (11.3)

where α = 1/
√

2(d− 1)(d− 2) and β = −(d− 2)α. Since we have truncated to the massless
fields, we can integrate out the z part of the action (11.2). We find that the d-dimensional
effective action is given by

Seff[g, A, φ] =
L

16πGD

∫
ddx
√
−g
(
R− 1

2
(∇φ)2 − 1

4
e−2(d−1)αφF 2

)
(11.4)

where F 2 = FµνF
µν and Fµν = ∇µAν − ∇νAµ is the electromagnetic field strength. The

curvature associated with the d dimensional metric, gµν , is described by the Ricci tensor, Rµν

and Ricci scalar, R = gµνRµν . What we now have is an Einstein-Maxwell-Dilaton system
in d dimensions. Of course, Kaluza and Klein were particularly interested in the case of
d = 4. They were frustrated by the presence of the dilaton, φ, in the resulting 4-dimensional
effective theory. The point is that one cannot simply set the dilaton to zero and retain a
non-trivial Maxwell field, since this would be in conflict with the field equations arising from
(11.2),

Gµν =
1

2

[
∇µφ∇νφ−

1

2
(∇φ)2gµν + e−2(d−1)αφ

(
FµαFν

α − 1

4
F 2gµν

)]
(11.5)

∇µ
(
e−2(d−1)αφFµν

)
= 0 (11.6)

�φ = −1

2
(d− 1)αe−2(d−1)αφF 2 (11.7)

where Gµν is the Einstein tensor in d dimensions. Making use of the appropriate jargon, we
say that switching off the dilaton does not represent a consistent truncation of the higher
dimensional theory. We should also note that the physical size of the compact dimension is
not necessarily given by L but by Leβφ(x). If L is to represent an accurate measure of the
compactification scale, we are therefore implicitly assuming that φ is stabilised close to zero.
For this to happen we need to generate a potential for φ that admits a stable solution– this
is known as the problem of moduli stabilization.

12 Braneworld gravity

The braneworld paradigm represents a radical alternative to the standard Kaluza-Klein
scenario discussed in the previous section. In the KK scenario, the extra dimensions must
be small and compact, the size of the internal space constrained by collider experiments to be
below the inverse TeV scale. In the braneworld scenario the extra dimensions can be much
larger, perhaps even infinite in extent! This is made possible by relaxing the assumption of
universal extra dimensions.

In the braneworld picture the Standard Model fields are not universal, rather they are
confined to lie on a 3 + 1 dimensional hypersurface, known as the brane, embedded in some
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higher dimensional spacetime, known as the bulk. Tests of Standard Model processes can
only constrain how far the brane may extend into the bulk, or in other words, the brane
thickness. They do not constrain the size of the bulk itself. These can only come from
gravitational experiments, since gravity is the only force that can be mediated through the
bulk spacetime. As is well known, on small scales gravity is much weaker than the other
three fundamental forces. This makes it difficult to test at short distances. In fact, the
gravitational interaction has only been probed down to ∼ 0.1 mm, with torsion-balance
tests of the inverse square law. It is too simplistic to suggest that this translates into an
upper bound on the radius of the bulk. Gravity is intimately related to geometry, and one
can even warp the bulk geometry such that an infinitely large extra dimension is still allowed
by experiment.

Let us give an overview of the governiing equations in a generic five dimensional braneworld
model (there are many!) Imagine we have a five dimensional bulk space split into a series of
domains separated from one another by 3-branes12. The 3-branes may be thought of as the
boundaries to the various domains. It is convenient to label each brane, Σi, by an index i,
so that the action is given by

S =

∫
bulk

d5x
√
−γ
(
M3

5

2
R+ Lbulk

)
+
∑
branes

∫
brane

d4x
√
−g
[
−∆

(
M3

5K
)

+ Lbrane
]

(12.1)

where γab is the bulk metric with corresponding Ricci scalar, R, M5 is the bulk Planck
scale, and Lbulk is the Lagrangian density describing the bulk field content. In principle both
M5 and Lbulk can vary from domain to domain. For each brane, gµν is the induced metric
and Lbrane is the Lagrangian density describing the field content on that particular brane.
K = gµνKµν is the trace of extrinsic curvature, Kµν . This should be evaluated on either side
of the brane as it can differ from side to side. Labelling the two sides of a given brane using
L and R, we define Kµν |L,R = 1

2
Ln|L,Rgµν , ie the Lie derivative of the induced metric, with

respect to the unit normal na|L,R. The unit normal on both sides points from L to R. Note
that what appears in the action is the jump13

∆
(
M3

5K
)

= M3
5K|R −M3

5K|L

This corresponds to the Gibbons-Hawking boundary term for the bulk domains on each side
of the brane.

Now there are two (completely equivalent) ways to treat the brane contributions at the
level of the field equations. One approach is to treat them as delta-function sources in
the Einstein equations. However, our preferred approach is to explicitly separate the field
equations in the bulk from the boundary conditions at the brane. Then the bulk equations
of motion are given by the bulk Einstein equations

Gab = Rab −
1

2
Rγab =

1

M3
5

T bulkab (12.2)

12A p-brane is a timelike hypersurface of p+ 1 dimensions.
13We define the jump of any quantity Q across a brane as ∆Q = Q|R −Q|L.
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where T bulkab = − 2√
−γ

δ
δγab

∫
bulk

d5x
√
−γLbulk is the bulk energy momentum tensor. The bound-

ary conditions at Σi are given by the Israel junction conditions

∆
[
M2

5 (Kµν −Kgµν)
]

= −T braneµν (12.3)

where T
(i)
µν = − 2√

−g
δ

δgµν

∫
brane

d4x
√
−gLbrane is the brane energy momentum tensor. The

Israel equations can be obtained from variation of the action with respect to the induced
metric on the brane.

12.1 Randall-Sundrum gravity

Randall-Sundrum gravity was originally proposed to explain the hierarchy between the
Planck scale and the electoweak scale, but it soon developed into an alternative to com-
pactification. In this model, we have up to two 3-branes separated by a section of five
dimensional anti-de Sitter space. The branes are located at the boundaries z = 0, zc, and
we impose Z2 symmetry across each brane. In the first Randall-Sundrum model, dubbed
RS1, zc is finite, whereas in the second model, RS2, we take zc →∞, so we effectively have
a single brane.

Neglecting Gibbons-Hawking boundary terms for brevity, the action describing the Randall-
Sundrum model is given by

S =
M3

5

2

∫
d4x

∫ zc

−zc
dz
√
−γ (R− 2Λ)

− σ+

∫
z=0

d4x
√
−g(+) − σ−

∫
z=zc

d4x
√
−g(−) . (12.4)

where γab is the bulk metric and g
(+)
µν , g

(−)
µν are the metrics on the branes at z = 0, zc

respectively. M5 is the five dimensional Planck scale and is related to the five dimensional
Newton’s constant via the standard relation G5 = 1/8πM3

5 . We also include a negative bulk
cosmological constant, Λ = −6k2. If we fine-tune the brane tensions against Λ, such that

σ+ = −σ− = 6M3
5k =

3k

4πG5

we admit a background solution in which the branes exhibit four-dimensional Poincaré in-
variance

ds2 = e−2k|z|ηµνdx
µdxν + dz2 for − zc ≤ z ≤ zc. (12.5)

The Z2 symmetry about z = 0 is explicit whereas the other boundary condition should be
understood. The metric (12.5) contains an exponential warp factor which is seen graphically
in figure 12.1. In between branes, we recognise this as a section of anti-de Sitter space,
written in Poincaré coordinates. Notice the peak in the warp factor at the positive tension
brane and the trough at the negative tension brane.

One can consider weak gravity around this solution. The analysis is rather complicated
as it corresponds to a coupled brane-bulk system governed by equations (12.2) and (12.18).
We don’t have time for that here, so let us simply quote some results.
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z

cz = 0 z = z

Figure 12.1: The behaviour of the warp factor in the Randall-Sundrum model. The positive
tension brane is at z = 0, while the negative tension brane is at z = zc.

By integrating out the 4D zero mode we are able to derive the 4D effective Planck scale
on a given brane

M2
± = ±M

3
5

k

(
1− e∓2kzc

)
(12.6)

where ± labels the sign of the corresponding brane tension. In terms of the effective Newton’s
constants, we have

G± = G5k

(
±1

1− e∓2kzc

)
(12.7)

The low energy 4D effective theory on either brane is not GR but Brans-Dicke gravity. The
extra scalar comes from fluctuations in the brane separation and is sometimes referred to as
the radion . The value of the Brans-Dicke parameter depends on the brane, and is given by,

w(±) =
3

2

(
e±2kzc − 1

)
(12.8)

We know that observations require this parameter to be large w > 40000. This is problematic
for RS1 gravity (two branes), so we must generate a mass for the radion to suppress its
fluctuations. The Goldberger-Wise mechanism does exactly that and the distance between
the branes is stabilised.

In contrast, GR can be recovered on the one remaining brane (with positive tension) in

the RS2 model. This is easily seen from the fact w
(+)
BD can be made arbitrarily large with

increasing brane separation.

12.2 Brane cosmology

There are two obvious reasons why cosmology offers an interesting arena in which to develop
the braneworld paradigm. The first is that cosmological branes possess a high degree of
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symmetry, and this makes it possible to solve the field equations. The second is that cosmo-
logical physics can be tested by a number of observations, ranging from supernova data to
the abundance of light elements. In this section we will study the cosmology of co-dimension
one branes, focusing on the RS2 scenario with a single Z2 symmetric brane.

Braneworld cosmology can be studied using two different formalisms: The brane based
formalism, and the bulk based formalism. These two approaches are completely equivalent
and yield a background cosmology governed by the following Friedmann equations

H2 +
κ

a2
=

Λ4

3
+

8πG4

3
ρ
(

1 +
ρ

2σ

)
+
µ

a4
, (12.9)

Ḣ − κ

a2
= −4πG4(ρ+ P )

(
1 +

ρ

σ

)
− 2µ

a4
, (12.10)

where H = ȧ/a is the Hubble parameter along the brane, a(t) is the scale factor, and
κ = 0,±1 describes the spatial curvature. The brane is sourced by a tension, σ, and a
cosmological fluid with energy density, ρ(t), and pressure, P (t). The parameters Λ4 and G4

denote the effective cosmological constant and Newton’s constant on the brane, respectively.
As in the standard scenario, the Raychaudhuri Equation (12.10) follows from the Friedmann
Equation (12.9) and energy conservation,

ρ̇+ 3H(ρ+ P ) = 0. (12.11)

We will review the derivation of this cosmology using the bulk based formalism. For the
moment, however, let us comment on a few of its important features. From Equations (12.9)
and (12.10) we see that the corrections to the standard cosmology manifest themselves in
a term ∝ ρ2, and a dark radiation term µ

a4 = 8πG4

3
ρweyl. The latter corresponds to a non-

local “Weyl” contribution and can only be fixed by specifying the bulk geometry. In the
holographic description of RS2, the ρ2 corrections contribute to the conformal anomaly, while
the dark radiation is identified with thermal excitations of the CFT.

We will now develop the bulk based formalism for cosmological brane, assuming Z2

symmetry. brevity. The bulk based formalism requires us to solve for the bulk geometry.
Since we are interested in cosmological branes (with constant curvature Euclidean 3-spaces),
we study the Einstein equations, Rab − 1

2
Rγab = 6

l2
γab, with the following metric ansatz

ds2 = γabdx
adxb = e2νA−2/3(−dt2 + dz2) + A2/3qijdx

idxj, (12.12)

where A and ν are undetermined functions of t and z, and as before qij(x) is the metric of
a hyper-surface of constant curvature, κ = 0,±1. Now, in an extremely elegant calculation,
Bowcock et al. were able to prove a generalised form of Birkhoff’s theorem, showing that
the bulk geometry is necessarily given by

ds2 = −V (r)dτ 2 +
dr2

V (r)
+ r2qijdx

idxj, (12.13)

where

V (r) =
r2

l2
+ κ− µ

r2
. (12.14)
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For µ > 0, the metric in Eq. (12.13) takes the form of a (topological) Schwarzschild black hole
in anti-de Sitter space. Here we have written the solution in an explicitly time independent
coordinate system, meaning that we can no longer say that we have a static brane sitting at a
fixed coordinate position. On the contrary, we now have a dynamic brane, whose trajectory
in the these coordinates is more complicated.

To construct the brane solution, we treat it as an embedding,

τ = τ(t), r = a(t), (12.15)

of the bulk geometry given in Eq. (12.13). The induced metric on the brane is then

ds2 = gµνdξ
µdξν =

(
−V (a)τ̇ 2 +

ȧ2

V (a)

)
dt2 + a2(t)qijdx

idxj (12.16)

where over-dots denote ∂/∂t. We are free to choose t to correspond to the proper time with
respect to an observer comoving with the brane. This imposes the condition

−V (a)τ̇ 2 +
ȧ2

V (a)
= −1, (12.17)

ensuring that the brane takes the standard FLRW form.. The function a(t) is then immedi-
ately identified with the scale factor along the brane.

The boundary condition at the brane are given by the so-called Israel junction conditions

Kµν −Kγµν = 3σ∗gµν − 4πG5Tµν , (12.18)

with σ∗ = 4πG5σ
3

, where σ is the brane tension and Tµν is the energy-momentum tensor of
additional matter excitations. We must compute the extrinsic curvature, Kµν = 1

2
Lngµν ,

defined as the Lie derivative of the normal pointing into the bulk. Assuming we cut away
the AdS boundary and retain the region r < a(t), we find that the inward pointing unit
normal is given by

na = (−ȧ, τ̇ , 0, 0, 0), (12.19)

where we are free to specify that τ̇ > 0. The components of extrinsic curvature are then
given by

Ki
j =

V τ̇

a
δij, Kt

t = −
(
ä+ V ′/2

V τ̇

)
. (12.20)

In the presence of a cosmological fluid T µν = diag(−ρ, P, P, P ), the junction conditions in
Eq. (12.18) yield the following:

V τ̇

a
= σ∗(1 +

ρ

σ
), (12.21)

ä+ 1
2
V ′

V τ̇
= σ∗

[
1− 2

ρ

σ
− 3

P

σ

]
. (12.22)

Making use of Equation (12.17) we then arrive at the modified Friedmann Equations (12.9)
and (12.10).
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