Galaxy merging in

Modified Newtonian Dynamics (MOND)

Carlo Nipoti

Dipartimento di Astronomia Università di Bologna

OUTLINE

- A brief intro to MOND
- Stellar dynamics in MOND
- Galaxy merging in MOND
- Conclusions

In collaboration with P. Londrillo and L. Ciotti (Bologna)

A brief intro to MOND

MOND as empirical law

Milgrom (1983):

Flat rotation curves of disk galaxies can be explained without Dark Matter modifying Newtonian gravity.

$$a_0 = 1.2 \times 10^{-10} m/s^2$$
 characteristic acceleration

$$\mathbf{g}_M \mu(\|\mathbf{g}_M\|/a_0) = \mathbf{g}_N$$

$$g_M \sim g_N$$
 if $g \gg a_0$
 $g_M \sim \sqrt{a_0 g_N}$ if $g \ll a_0$

Begeman 1987; Sanders & McGaugh 2002

$$\mu(y) = \frac{y}{\sqrt{1 + y^2}}$$

interpolating function

MOND as field theory

Classical field theory (modified Poisson equation)

Bekenstein & Milgrom (1984)

$$\nabla \cdot \left[\mu \left(\frac{\|\nabla \phi\|}{a_0} \right) \nabla \phi \right] = 4\pi G \rho$$

$$\mathbf{g}_M = -\nabla \phi$$

NON-linear!!!

Relativistic field theory (modified Einstein equations)

Bekenstein (2004) Sanders (2005) TeVeS / BSTV MOND behaviour on galactic scale

Why study MOND?

- 1. MOND+TeVeS/BSTV gravity is a serious alternative to Newton-Einstein gravity (cosmology, lensing...)
- 2. Many observational data are consistent with MOND
- 3. MOND has some problems (e.g. clusters), but MOND has NOT been disproven!
- 4. Also CDM has some problems... (e.g. DM cusps)

Stellar dynamics in MOND

Little is known on dynamical processes in MOND because of

- 1. NON-linearity
- 2. Lack of N-body simulations

Two-body problem in MOND

HARD!

No analytical expression for the force between two particles!

One must solve the field equation

$$abla \cdot \left[\mu \left(rac{\|
abla \phi \|}{a_0}
ight)
abla \phi
ight] = 4\pi G
ho$$

N-body simulations in MOND

NOT TRIVIAL:

you cannot just modify the force law in a Newtonian code!

NON-linear => NO DIRECT SUMMATION CODES!

NO TREECODE!

Need to solve the non-linear field equation

$$abla \cdot \left[\mu \left(rac{\|
abla \phi\|}{a_0}
ight)
abla \phi
ight] = 4\pi G
ho$$

A NEW 3D PARTICLE-MESH CODE WITH MOND POTENTIAL SOLVER
IN SPHERICAL COORDINATES

(Ciotti, Londrillo & Nipoti 2006, ApJ; Nipoti, Londrillo & Ciotti 2007, ApJ)

Only another MOND code: Brada & Milgrom (1999) + Tiret & Combes (2007)

Galaxy merging in MOND

Reasons to expect that galaxy merging is less effective in MOND:

1. Galaxies are expected to collide at high speed and there is no friction by DM haloes (e.g. Binney 2004; Sellwood 2004)

Newton :
$$\phi \propto -\frac{M_* + M_{DM}}{d_{rel}}$$
 MOND : $\phi \propto \sqrt{M_*} \ln d_{rel}$ (for large d_{rel})

2. Phase mixing and violent relaxation are slower in MOND (Nipoti, Londrillo & Ciotti 2007 ApJ; Ciotti, Nipoti & Londrillo 2007 astro-ph/0701826)

N-body simulations of galaxy merging in MOND

(Nipoti, Londrillo & Ciotti, submitted to MNRAS, arXiv:0705.4633v1)

Dissipationless, equal-mass merging between spherical Hernquist models:

- MOND systems (only baryons)

- Newtonian EQUIVALENT systems (baryons+DM)

$$ho_{DM} = rac{
abla^2 \phi_{MOND}}{4\pi G} -
ho_*$$

CODES: <

MOND PM CODE (Nipoti, Londrillo & Ciotti 2007)

 $N_{part} \sim 2 \times 10^6$

FVFPS TREECODE (Londrillo, Nipoti & Ciotti 2003; Dehnen 2000, 2002)

CASE 1: STANDARD HEAD-ON ENCOUNTER

Two galaxies start at rest with separation $\sim 90 r_{half}$

CASE 1: STANDARD HEAD-ON ENCOUNTER

Two galaxies start at rest with separation $\sim 90 r_{half}$

CASE 2: STANDARD OFF-CENTRE ENCOUNTER

Two galaxies start at rest with $\frac{1}{1}$ separation $\frac{1}{1}$ or $\frac{1}{1}$ or $\frac{1}{1}$ angular momentum

CASE 2: STANDARD OFF-CENTRE ENCOUNTER

Two galaxies start at rest with separation $\sim 90 \ r_{half}$ + orbital angular momentum

With fairly standard initial conditions

quick merging in Newtonian gravity

high-speed encounters in MOND

MERGING IS PROBLEMATIC FOR MOND!

Let's try initial conditions more favourable to merging.....

CASE 3: "SLOW" OFF-CENTRE ENCOUNTER

Two galaxies start at rest with separation $\sim 25~r_{half}$ + orbital angular momentum

CASE 3: "SLOW" OFF-CENTRE ENCOUNTER

Two galaxies start at rest with separation $\sim 25~r_{half}$ + orbital angular momentum

CENTRE OF MASS ORBITS

NEWTON + DM

MOND

MERGING TIMESCALES (k=1): $a_{int} \ll a_0$

$$\kappa \equiv rac{GM_*}{a_0r_*^2} = 1 \ M_{DM} = 30M_* \ .$$

RELATIVE SPEED

TIME

"Slow" encounters!

MERGING TIMESCALES (k=25): $a_{int} \geq a_0$

$$\kappa\equivrac{GM_*}{a_0r_*^2}=25 \ M_{DM}=5M_*$$

RELATIVE SPEED

TIME

"Slow" encounters!

MERGING END-PRODUCTS

When two galaxies eventually merge in MOND the end-product is hardly distinguishable from an equivalent Newtonian merger

Conclusions

Conclusions

- 1. Merging less effective in MOND than in Newtonian gravity with DM
- 2. Specific orbital properties to have mergers in t<t_{Hubble} in MOND
- 3. Repeated high-speed encounters are a common feature in MOND
- 4. MOND and Newtonian merging end-products are similar

Observational evidence of merging appears difficult to explain in MOND!

