Bodo Ziegler AIfA Bonn & IAG Göttingen

«Galaxy interactions in distant clusters seen with 2D velocity fields and structure and compared to SPH simulations»

FORS/VLT

Goals:

- Quantify galaxy evolution
- Effect of environment
- Efficiency of interaction processes

Tools:

- Spectroscopy to get velocity fields
- HST imaging to get structure
- N-body/SPH simulations (Springel's Gadget2) for comparison

Targets:

- Galaxies in clusters at $z \approx 0.5$
- → close to assembly epoch
- → peak of infall rate & interaction frequency (?)

Local Tully-Fisher Relation

1200 spiral galaxies with cz<12.000km/s

 $v_{max} = mass scale: "normalization" for luminosity$

Tully-Fisher Relation of z≈0.5 *Field* Galaxies

Ziegler et al. 2002, 2005; Böhm et al. 2004, Böhm & Ziegler 2007

Tully-Fisher Relation of $z\approx 0.5$ *Cluster* Galaxies

Ziegler et al. 2003

Distribution of field & cluster spirals very similar! Effect of cluster-specific interactions?

Tully-Fisher Relation of $z\approx 0.5$ *Cluster* Galaxies

Bamford et al. 2005

Nakamura et al. 2006

Discrepant results for distribution of field & cluster spirals.

Rotation curves (PVDs) of MS1008 cluster spirals at z=0.3

Ziegler et al. 2003, Jäger et al. 2004

Many cluster spirals have distorted or peculiar kinematics!

Spiral Sample in Distant Clusters

<u>Cluster</u>	<u>Z</u>	<u>setups</u>
MS 1008-12	0.30	2 MOS
MS 2137-23	0.31	2 MXU
CI 1447+23	0.37	2 MXU
CI 0303+17	0.42	2 MOS
CI 0413-65	0.51	2 MOS
MS 0451-03	0.54	1 MXU
CI 0016+16	0.55	2 MXU

3d-spectroscopy ⇒2d-velocity fields

Vergani et al. 2005

VLT/FLAMES IFU spectroscopy of z=0.5 spirals

3d-spectroscopy ⇒2d-velocity fields

IFU "simulation":

- MXU masks of VLT/FORS2 for 3D-spectroscopy
- matched spatial coverage
- sufficient spatial resolution
- large wavelength coverage
- high efficiency: large target number
- economic exposure times
- •→ 4 nights VLT time spent
- •→ HST/ACS imaging of all cluster fields

Velocity Field of Regular Spiral Cluster Member

HST/ACS

VLT/FORS

Ziegler et al. 2006 Kutdemir et al. 2007

MS0451-03 Gal05 z=0.532

Kinemetry Analysis (Krajnović et al.)

Assumption: mean velocity of spiral disk galaxy best fitted by ellipses in projection:

$$V(a, \Psi) = V_0 + V_c(a)\cos\Psi$$

Best fitting ellipses as f(r) found for grid of position angles Γ and flattenings q.

Deviations from simple rotation quantized by harmonic expansion along ellipses:

$$V(a, \Psi) = \sum_{n=1}^{N} k_n(a) cos[n(\Psi - \phi_n(a))].$$

k₁ corresponds to bulk motion in velocity field: «rotation curve»

k₃ describes first correction to simple rotational motion

k₅ represents kinematic separate components in velocity field

Kinemetry of Regular Spiral Cluster Member

Reconstructed maps with best fitting ellipses using low (left) and higher order Fourier terms.

Simple rotation map fixing position angle and flattening to a global value & its residual map.

-1.0

Position angle & flattening fixed to global value.

0 arcsec

Stellar & Gas Rotation Curve of Spiral Cluster Member

Ziegler et al. 2006 Kutdemir et al. 2007

Velocity Field of Peculiar Spiral Cluster Member

Simulation of minor merger (8:1 mass ratio) seen after second passage

MS0451-03 Gal06 z=0.528

Velocity Field of Peculiar Spiral Cluster Member

Spiral member w. regular stellar structure but complex VF

Spiral member w. declining rotation curve

MS0451-03 Gal16 z=0.53

Spiral member without emission lines

stellar rotation curve

MS0451-03 Gal15 z=0.53

Field spiral w. counter rotating core

Gal20 z=0.1

Field spiral

Gal02 z=0.15

Field spiral w. complex stellar structure but regular VF

N-body/SPH simulations of galaxy collisions

Kapferer et al. 2006, Kronberger et al. 2006 Kronberger et al. 2007

Kronberger et al. 2007

z = 0.5

Star formation activity in distant cluster galaxies

Verdugo et al. 2007

Fraction of SF galaxies as f(distance) & f(density). 834 galaxy spectra out to 3-4 virial radii in $6 z\sim0.2$ clusters.

Summary

- TF analysis of regular symmetric spiral galaxies: similar distribution of field & cluster galaxies (?)
- Many spiral cluster members peculiar or distorted
- → 3D spectroscopy to probe 2D velocity field
- mismatch between photometric & kinematic axes/centers
- distortions indicating tidal interaction, minor merger etc.
- regular stellar structure but distorted gas velocity field (vv)

Look at poster by Kutdemir, Ziegler, Peletier for more information!