Fossil Groups in the

Millennium Simulation

AD

ARDUA ALTA

Frazer Pearce
Will Hartley
Department of Astronomy, Univ. of Nottingham

Fossil groups/clusters

- The end result of galaxy merging
- Dominated by a single giant elliptical galaxy at the centre of an extended bright X-ray halo
- $L_X \ge 10^{42} h_{50}^{-2} erg s^{-1}$
- Within $0.5R_{vir} \Delta M_{R12} \ge 2$ mag

(Jones et al.2003)

Khosroshahi et al. 2004

Fossils in the Millennium Observation vs. Simulation

Motivation

- To what extent do simulations reproduce observed properties of fossils?
- Since fossils are extreme objects, comparison of properties provides a useful test of the physics in the millennium simulation
- Use simulation to study formation of fossils

What sort of information do we need?

The mixed Catalogue Is Based on The Millennium Simulation

Dark matter

Springel et al.05 M≥10¹³ M_☉

Galaxy

Croton et al.06
The semi-analytic catalogue

Gas

Pearce et al.07

Halo properties

Optical, X-ray Fossils & Control groups

X-ray fossils

$$\Delta M_{R12} \geqslant 2$$
 mag (within $0.5r_{vir}$) $L_X \geqslant 10^{42} h_{50}^{-2} erg s^{-1}$

Optical fossils

$$\Delta M_{R12} \geqslant 2$$
 mag (within $0.5r_{vir}$)

Control groups1 & 2

```
0.8 \leqslant \Delta M_{R12} \leqslant 1 , 0.1 \leqslant \Delta M_{R12} \leqslant 0.3 (within 0.5 r_{vir}) L_X \!\geqslant\! 10^{42}~h_{50}^{-2} erg s<sup>-1</sup>
```

Space density of X-ray fossils

$L_X{}^a$	$N_f^{\ b}$	Density C	Reference d	Present study ^c
> 0.25	5	320^{+216}_{-144}	J03	104 ± 3
> 2.5	3	$16^{+15.2}_{-8.8}$	J03	22.4 ± 1.3
> 2.5	4	$36.8^{+47.2}_{-18.4}$	V99	22.4 ± 1.3
> 2.5	3	~ 160	R00	22.4 ± 1.3
> 5.0	4	$19.2^{+24.8}_{-9.6}$	V99	12.8 ± 1.0

 $[^]a$ In units of $10^{42}h^{-2}~{\rm erg~s^{-1}}$

b Number of fossils

 $[^]c$ In units of $10^{-7}h^3$ Mpc⁻³

 $d\,$ V99:Vikhlinin et al. (1999), R00:Romer (2000), J03:Jones et al. (2003)

5 Mpc

Results

- The space density of X-ray fossil groups is in remarkably good agreement to the observed space density of fossils. Although for low luminosity fossils we find roughly 1/3 of the (very uncertain) observed fossil space density.
- The probability of finding optical fossils with mass M, i.e,
 P_f (M; optical) is a decreasing function of:
- (a) group dark matter halo mass and,
- (b) the fraction of the virial radius within which the second brightest galaxy is searched for.
- As dark matter halo mass become small, the probability P_f (M;X-ray) for X-ray fossils decreases, due to the low L_x of low mass halos.
- More massive X-ray fossil groups are found to have assembled 90% of their final mass by a redshift of z = 0.24. The corresponding mass fraction is about 70-80% for two different sets of control samples.