Merger Rate Evolution for Dry, Wet, and Wet-Dry Mergers from DEEP2 Redshift Survey

Lihwai Lin UC Santa Cruz

Collaborators: David Patton, David Koo, Kevin Casteels, + DEEP2 team

m~3 vs m~0?

assuming merger rate $\sim (1+z)^m$

- Theoretical Predictions
 - Rapid evolution:
 Governato et al. 2000;
 Gottlober et al. 2001
 - Mild evolution:Berrier et al. 2006
 - =>consistent with Lin et al.2004

- Observational Results
 (also see O. Le Fevre's talk)
 - Rapid evolution:
 Zept & Koo 89; Burkey et al. 94;
 Yee & Ellinson 95; Le Fevre et al. 0
 Patton et al. 02; Conselice et al. 03
 Cassata et al. 05; Kampczyk et al. 07; Kartaltepe et al. 07
 - Constant/Mild evolution:
 Carlberg et al. 00; Bundy et al. 04;
 Lin et al. 04; Lotz et al. 06

Halo merger rates vs Subhalo merger rates

Lin et al. 04, ApJ, 617, L9

$$M_B^e = M_B + Q^*z$$
--Fixing luminosity range $-22 < M_B < -20$ at $z \sim 1$

Model	M _B e Range	m
Q=0	-22 ~ -20	1.60 ± 0.29
Q=0.5	-21.5 ~ -19.5	0.86 ±0.29
Q=1.0	-21 ~ -19	0.41 ± 0.30
Q=2.0	-20 ~ -18	-0.24 ± 0.35

Dry Mergers; Wet Mergers; Dry-Wet Mergers

 Different types of mergers result in different star formation histories, stellar mass buildup, and morphologies in the remnants

Wet Mergers (Gas Rich Mergers)

- Enhanced star formation rates are shown during mergers of gas-rich systems:
 - Barton et al. 00 (CfA2)
 - Lambas et al. 03 (2dF)
 - Nikolic et al. 2004 (5DSS)
 - Lin et al. 07 (DEEP2)
- Continuous SF post mergers

Jonsson et al. 05

Lin et al. 07, ApJ, 660, L51

Dry Mergers

- Little SF going on before, during, or post mergers
- They are likely responsible for the growth of massive ellipticals in the present day (Van Dokkum et al. 05)

Wet-Dry Mergers

Unclear about their behavior---need model predictions

Samples

- 0.4 < z < 1.2
 - DEEP2 Redshift Survey
 - 4 Fields: each 30'by 120' (15'by 120' for EGS)
 - 1417 +5230 (EGS)
 - 1652 +3455
 - 2330 0000
 - 0230 0000
 - Sample size: ~ 50,000 galaxies at 0.2<z<1.4
 - Grating and Spectra: 1200/mm
 - 6000A~9000A
 - [OII] doublet is visible at 0.7<z<1.4
 - Resolution: 1.0" slits; FWHM=1.7A~68/(1+z) km/s (R=5000)
 - Supplemented by TKRS in GOODS-N
- 0.05 < z < 0.4
 - Millennium Galaxy Catalog
 - CNOC2 Redshift Survey

DEEP2 Sample

- Galaxies on average are brighter by 1.3 mag per redshift unit (Faber et al. 07) => Q=1.3
- Color Separation: $U-B = 0.032*(M_B+21.62)+1.035$

- 5 log h

 $M_R = 5 \log h$

Pair Selection Criterion

1. Magnitude range:

$$M^*(z) = M^*(z=0) - Qz$$

$$M_B^e \equiv M_B + Qz$$
, with Q=1.3 (Patton 2002)

 $-21 < M_{\rm R}^{\rm e} < -19$

to select galaxies of the same type

2. 3D separation:

$$10 \text{ h}^{-1}\text{kpc} < \Delta r < r_{\text{max}}$$
, with $r_{\text{max}} = 30, 50$

 $\Delta v \leq 500 \text{ km/s}$

with $r_{\text{max}} = 30, 50$, and $100 \text{ h}^{-1}\text{kpc}$

reduce the line of sight projection effect

Pair Fraction

Definition:

(averaged number of companion per galaxy)

 $N_{c} \equiv \frac{\sum_{i=1}^{N_{sam}} n_{i}}{N_{sam}}$

Selection function

weighting with angular separation of each pair

⇒ refine the weighting of density fluctuation (cosmic variance).

Number of gal with spectral-z

Pair Fraction vs Redshift

•Nc: averaged number of companion per galaxy

•m \sim 0.36+-0.21, consistent with mild evolution from Lin et al. 04

Blue: deep2; red: TKRS;

green: MGC+CNOC2

Lin et al. 07, in prep.

Pair Fraction vs Redshift

Blue galaxies : m ~1.44+- 0.36

Red galaxies have m<=0

Lin at al O7 in prop

Pair Fraction vs Redshift

 The mixed pairs have -0.5<m<-1.57

Lin et al. 07, in prep.

Nc vs 2-point correlation function

$$?(r) = (\frac{r}{r_0})^{-?}$$

r: comoving length
$$r = \frac{x}{a} = x(1+z)$$

pair fraction
$$\sim n(z) \int_0^{R/a} ?(r) 4 pr^2 dr$$

$$=4\mathbf{p}n(z)\frac{r_0^{\mathbf{g}}}{3-\mathbf{g}}(\frac{R}{a})^{3-?}=4\mathbf{p}n(z)\frac{r_0^{\mathbf{g}}}{3-\mathbf{g}}R^{3-\mathbf{g}}(1+z)^{3-?}$$

Comoving Merger Rate

Definition:

(number of mergers per comoving volume per time period)

fraction of pair to become actual merger $N_{mg}(z) = \frac{f_m n(z) N_c(z) * (0.5 + G)}{T_{mg}}$ Pair fraction = # of companion/galaxy

the time scale of being close pair Assuming $f_m = 0.5$

 $T_{mg} = 0.5 G$

Comoving Merger Rates

Blue mergers: Red mergers: Blue-Red mergers
 ~ 6:1:2 at z~0.8

Summary

- The frequency of galaxy interactions depends on galaxy properties (luminosity/mass) at a given redshift, therefore it is crucial to specify clearly the sample selection when discussing the evolution of galaxy merger rates with redshifts.
- For galaxies brighter than 0.4L*, we find a mild increase of pair fraction as a function of redshift for all types of galaxies from DEEP2 Redshift Survey (+ CNOC2 + MGC Samples); The pair fraction from blue-blue pairs (wet mergers) has steeper slope while the the pair fraction from red-red pairs (dry mergers) has negative or constant evolution depending on how the correction of incompleteness is applied. Blue-red (wet-dry) pairs also give negative evolution:
 - m~ 0.4 for all types of pairs
 m~ 1.4 for blue-blue pairs
 M<=0 for red-red pairs
 - m< 0 for blue-red pairs</p>
- The redshift evolution of pair fraction can be understood in the context of the evolution of two-point correlation function, although more carefully comparisons are required.
- The ratio of galaxy merger rates (# of merger events per unit comoving volume per unit time) for wet-wet, dry-dry, and wet-dry mergers ~ 6:1:2 at z~0.8 if assuming same merger time scale. But the relative fractions of dry mergers and wet-dry mergers become higher at low redshifts. Suggestions of more careful modeling of merger time scale are welcome!

Thank You

