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Abstract. We are studying the electronic properties of DNA by looking at a tight-binding model and four DNA sequences.
The charge transfer is studied in terms of localisation lengths as a function of Fermi energy and backbone disorder. Onsite
potentials and different types of disorder account for different real environments. We have performed calculations on poly(dG)-
poly(dC), telomeric-DNA, random-ATGC DNA andλ -DNA. We find that random andλ DNA have localization lengths
allowing for electron motion among a few dozen base pairs only. However, an enhancement of localisation lengths is observed
at particular energies for an increasing binary backbone disorder.

The question on whether DNA can conduct electric-
ity, and if so how this can be utilized, has been a sub-
ject of discussion particularly since direct experimen-
tal results became available [1]. Part of the motivation
for such studies is the potential use of DNA in nan-
otechnology and also the possibility of DNA damage-
repair mechanisms via electron transfer [2]. Various ex-
periments, models and ideas exist that aim to describe
its electronic transport properties and these have recently
been reviewed in Refs. [3, 4]. Despite the enhanced ac-
tivity in both experimental and theoretical studies, the
complexity of DNA is still preventing us from forming
a consistent understanding.

In most models [5, 6] it has been assumed that elec-
tronic transport takes place along the long axis of the
DNA molecule and that the conduction path is due to
π-orbital overlap between consecutive bases; density-
functional calculations [7] have shown that the bases, es-
pecially Guanine, are rich inπ-orbitals. Quantum me-
chanical approaches to the problem use standard one-
dimensional (1D) tight-binding models [8]. Of particular
interest to us is a 1D model [5] which includes the back-
bone structure of DNA explicitly and exhibits a semicon-
ducting gap.

In this paper, we extend this 1D model to a bio-
logically more relevant ladder structure, as shown in
Fig. 1 and study its electronic properties for various
DNA sequences, including poly(dG)-poly(dC), telom-
eric, random-ATGC andλ - (bacteriophage) DNA. Our
approach uses standard transfer-matrix techniques [9]
which give estimates of the localisation lengths of a sin-
gle electronic excitation averaged over the DNA strand at
zero temperature. The ladder model is a planar projection
of the structure of the DNA-the helix being unwound.
There are two connected central branches with sites that
represent the DNA bases. These central branches are the
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FIGURE 1. Ladder model of DNA corresponding to the
Hamiltonian (1).

π-orbital conduction pathways for the electrons and their
sites are additionally linked to upper and lower sites cor-
responding to the upper and lower backbones; backbone
sites are not interconnected. The Hamiltonian for the lad-
der model is given by:

H =
L

∑
i=1

(
∑

τ=1,2
ti,τ |i,τ〉〈i +1,τ|+ εi,τ |i,τ〉〈i,τ|

+ ∑
q=↑,↓

tq
i |i〉〈i,qi |+ t1,2|i,1〉〈i,2|+ εq

i |i,q〉〈i,q|
)

+h.c. (1)

whereti,τ ,τ = 1,2, is the hopping amplitude along the
τ-branch,tq

i gives the hopping to the upper (q =↑) and
lower (q =↓) backbone,t1,2 represents the hopping be-
tween the two central branches;εi,τ is the onsite potential
energy on each site along the two central branches andεq

i
gives the onsite energy at the sites of the backbone.

In Ref. [5], it has been argued thatti,τ ≈ tq
i /2∼ 0.5eV

can describe experimental results in poly(dG)-poly(dC)
DNA for a simplified one-chain version of the ladder
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FIGURE 2. Localisation lengths as a fucntion of energy
for poly(dG)-poly(dC), telomeric, random-ATGC, andλ -DNA
as described in the text. The energy is measured in units of
hopping strength between like base pairs. The spectrum is
symmetric in energy. Lines are guides to the eye only.

model. Semi-empirical calculations on DNA base pairs
using the SPARTAN package have shown that the wave-
function overlap between a base pair is weak and there-
fore we take it to bet1,2 = ti,τ/10. We make the fur-
ther assumption that the wavefunction overlap between
consecutive bases along the DNA strand is weaker be-
tween unlike and non-matching bases, for which we thus
chooseti,τ = tq

i /4, whereasti,τ = tq
i /2 between identical

and matching bases (i.e. AT/TA, GC/CG, AA, TT, GG,
CC). Initially, all small onsite potential fluctuations due
to differences in base-ionization energies are ignored. In
Fig. 2, the energy dependence of the localisation lengths
computed using model (1) is shown for four different se-
quences of DNA, namely, poly(dG)-poly(dC) DNA with
10,000 base pairs, a telomeric DNA (repetitions of pat-
tern TTAGGG truncated at 6000 base pairs), random-
ATGC DNA with 10,000 bases andλ -DNA (bacte-
riophage) with 48,502 bases. As expected, poly(dG)-
poly(dC) and telomeric DNA give rise to perfect conduc-
tivity, due to their periodic electronic structure, within
small minibands centered aroundE = 0. On the other
hand, random-ATGC andλ -DNA give two bands with
finite localisation lengths in the energy regions(−4,−1)
and(1,4). The localisation lengths, which roughly equal
the average distance an electron would be able to travel
(conduct), are close to the distance of20 bases within
the band, with a maximum of∼ 30bases at the centre of
each band.

In vivo and most experimental situations, DNA is ex-
posed to diverse environments. The solution, the ther-
mal effects and the available space (causing the DNA to
bend) are factors that alter the structure and properties
that one is measuring [10, 11]. Here, we model this by
introducing various types of disorder into the hopping (t)
and onsite-energy parameters (ε). In general, this leads to
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FIGURE 3. Localisation lengths as a function of binary
backbone disorder for poly(dG)-poly(dC), telomeric, random-
ATGC, andλ -DNA at energyE = 0. The disorder corresponds
to a situation when50%of all backbone sites are occupied, e.g.,
by a salt ion.

a reduction of the localisation lengths and a gradual fill-
ing of the gap. A particularly intriguing result emerges
when usingbinary onsite disorder at the backbone, in
order to model the random adhesion of saline solvents
[11]. In Fig. 3, we show that at energyE = 0, the local-
isation length increases with increasing disorder. This is
also true for the model of Ref. [5]. Thus, it appears that
adding binary disorder leads topartial delocalisation.
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