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Rigid spherical particles in oscillating fluid flows form interesting structures as a result of fluid mediated
interactions. Here we show that spheres under horizontal vibration align themselves at right angles to the
oscillation and sit with a gap between them. The details of this behavior have been investigated through
experiments and simulations. We have carried out experiments in which a pair of stainless steel spheres is
shaken horizontally in a cell filled with glycerol-water fluid mixtures of three different viscosities, at various
frequencies and amplitudes of oscillation. There is an equilibrium gap between the particles resulting from a
long-range attraction and a short-range repulsion. The size of the gap was found to depend on the fluid
viscosity and the vibratory parameters, and we have identified two distinct scaling regimes for the dependence
of the gap on the system parameters. Using a Navier-Stokes solver the same system was simulated. The
interaction force between the spheres was measured and the streaming flows induced by the motion were
determined.
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I. INTRODUCTION

Granular systems are widespread in nature; the ability to
understand and control their dynamical behavior is of central
importance in many industrial processes �1�. A large number
of granular phenomena occur as a result of the interaction
between the grains and the fluid in which they are immersed,
phenomena which range from simple sedimentation �2� to
Faraday tilting �3,4� and stripe formation in oscillatory fluid
flows �5�. However, the way in which rigid particles interact
with each other within an oscillating fluid is still a challeng-
ing problem, involving as it does the nonlinear terms of the
Navier-Stokes’ equations.

The hydrodynamic interaction between isolated spheres in
steady fluid flows is a well-known problem �6�. It can be
solved analytically for low or high Reynolds’ number, Re, by
omitting either the inertial or the viscous terms from the
Navier-Stokes’ equations. Numerical methods have been
used in the intermediate Re range where no term can be
dropped �7,8�. The motion and flows of an isolated single
sphere subjected to an oscillating fluid flow have also been
studied both analytically and numerically �9–12�. In such a
system there is a nonzero, time-averaged fluid flow around
the sphere, called steady streaming, with two distinct regions
of vorticity. It has been reported that when a single sphere is
placed close to a boundary surface in the presence of an
oscillating fluid flow, the sphere is attracted to the surface
�13–15�. Other workers have found both an attractive and a
repulsive force depending upon the sphere-surface separation
�16�. The influence of the boundary on streaming flow pat-
terns generated by spheres has also been investigated experi-
mentally �17�.

Recently, there has been an increasing interest in the in-
teraction between a small number of spheres held in oscilla-
tory fluid flows. Wunenburger et al. �18� have reported ex-
periments in which small metal spheres were held in a
shallow water-filled cell which was undergoing horizontal,
sinusoidal vibration. The spheres were observed to form
equally spaced chains, each oriented perpendicular to the di-

rection of oscillation. Voth et al. �19� observed clusters and
hexagonal lattices of lead spheres in a vertically vibrated cell
filled with a glycerol-water mixture. Thomas and Gollub �20�
studied the chaotic fluctuations of these clusters and con-
cluded that the interparticle forces are not simply pairwise
additive. A number of mechanisms, including the influence
of steady streaming �18,19,21�, have been proposed as the
main source for these interactions. However, the exact details
are still far from understood.

Here we present an experimental and computational study
of the interaction between a pair of spherical metal spheres
held in a liquid-filled cell which is undergoing horizontal
vibration. Over a range of experimental conditions the
spheres align themselves so that the line joining their centers
is perpendicular to the direction of oscillation; they are
spaced so that a gap is found between them. We investigate
experimentally how the vibratory conditions and the fluid
viscosity affect this spacing. The experimental results are
compared with the predictions of a numerical model based
on the Navier-Stokes’ equations. The model allows us to in-
vestigate the spatial range of the interaction forces and to
study in detail the fluid flow around the particles. We identify
two distinct scaling regimes for the dependence of the gap on
the system parameters and show how the scaling behavior is
related to the streaming flow patterns generated by the
spheres’ motion.

II. EXPERIMENTAL DETAILS AND PRELIMINARY
OBSERVATIONS

In all our experiments we used a liquid-filled cell formed
by two 3 mm thick glass sheets. Each sheet was glued into an
aluminum alloy frame. The two frames were separated by a
butyl rubber gasket to form a liquid tight cell 135 mm long
and 95 mm wide. The uniform spacing between the glass
sheets could be varied but was set at 3 mm in the majority of
the experiments reported below. The cell was mounted be-
tween two long-throw loudspeakers so that the plane of the
glass sheets was accurately horizontal during vibratory mo-
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tion and only one-dimensional motion in the horizontal plane
occurred. The sinusoidal motion may be characterized by the
frequency, f , and by the dimensionless acceleration of the
cell, �=A�2 /g, which was determined using capacitive ac-
celeration sensors. Here A is the amplitude of the vibration,
�=2�f is the angular frequency, and g is the gravitational
acceleration.

The experiments have been conducted using three
different glycerol-water mixtures having kinematic
viscosities �=2.0�10−6 m2 s−1, 4.5�10−6 m2 s−1, and 9.4
�10−6 m2 s−1 at 22 °C. These mixtures have corresponding
densities of 1060 kg m−3, 1110 kg m−3, and 1150 kg m−3.
The cell was filled with the selected liquid and sealed so that,
ideally, no air was trapped in the cell. The laboratory tem-
perature was controlled to avoid viscosity fluctuations.

In the majority of the experiments reported here the par-
ticles used were nonmagnetic, stainless-steel spheres, 1 mm
in diameter and of density �=7950 kg m−3. An additional 1
mm diameter magnetic sphere was also placed in the cell.
This sphere could be moved using a magnet positioned close
to one of the glass sheets so that the pair under investigation
could be repositioned. Alternatively, the magnetic sphere
could be incorporated as one of the pair which could then be
moved using the magnet. The principal results which we
report here are for a pair of nonmagnetic spheres.

A high speed camera �up to 1000 frames per second� was
mounted directly above the cell and the motion of the
spheres was displayed on a monitor screen and recorded. In
order to visualize the flow patterns of the liquid, we some-
times added marker particles to the solution �22�. Since the
fluid viscosity is a strong function of temperature, the cell
was force cooled with laboratory air when strong illumina-
tion was used.

In early experiments, small air bubbles formed in the cell
under vigorous vibration. Their presence enabled us to ob-
serve that spheres do not roll appreciably during vibration,
since the attached air bubbles maintain the same orientation
with respect to the cell. This observation is in agreement
with the calculations of Wunenburger �18� who concluded
that, under oscillatory liquid flow, spheres slip on the bottom
of the cell rather than roll. Since the source of these air
bubbles was the air dissolved in the liquid, in the majority of
our experiments the liquid was pumped just prior to use,
using a rotary vacuum pump. The air bubbles did not then
form.

Initially, a pair of spheres was placed in a liquid with �
=2.0�10−6 m2 s−1. Vibration at a frequency of 50 Hz and
with �=5 was then applied. The spheres rapidly attracted
each other as soon as the vibration began, moving to sit with
a small gap between them, their line of centers being perpen-
dicular to the oscillation. The variation in this gap during
each vibration cycle is very small. During their motion the
spheres remain very close to the lower glass sheet. A pair of
spheres will only interact and move to this equilibrium con-
figuration if they are initially placed sufficiently close to one
another. On the other hand, if the vibration begins when they
are in contact, they repel one another and move to the same
preferred configuration.

The alignment of the spheres perpendicular to the flow
results from the oscillatory nature of the flow. Were one

sphere to be displaced relative to the other in the flow direc-
tion, it would experience a greater drag force over part of the
cycle, tending to bring it back into line. Over the second part
of the cycle, the other sphere is also brought back into line.

The fluid movement induced by the spheres’ motion could
be inferred by observing marker particles. The movement
consists principally of steady streaming flow. The form
shown in Fig. 1 is typical: There is vigorous flow away from
the spheres along the axis of vibration, the fluid returning
along the orthogonal axis. The gap between the spheres is
visible in the figure. Soon after the vibration is applied, fluid
motion occurs close to the spheres. However, after a time of
the order of tens of seconds this flow extends to many times
the sphere diameter, as is also clear from the figure.

Wide ranging measurements of the gap were conducted.
In our experiments the cell was vibrated within the range of
frequencies 10–70 Hz and within a range of � between 1 and
9, corresponding to the amplitude A in the range 0.2–6.6
mm. For each frequency there is a range of values of �
within which the interaction between the particles is strong
and a stable gap may be observed. Below this range, the
spheres drift apart, usually at an oblique angle to the direc-
tion of oscillation, indicating that the interaction is too weak

FIG. 1. Liquid flow patterns induced by a pair of 1 mm diameter
spheres, in a cell vibrated at 50 Hz and with �=5. The liquid used
was a glycerol-water mixture with �=2.0�10−6 m2 s−1. The white
arrows indicate the direction of streaming flow on the upper side of
the diagram; the flow on the lower side is the mirror image. The
black, arrowed line indicates the direction of the oscillation.
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to hold them at right angles to the oscillation. On the other
hand, as the upper end of the range of � is approached, the
motion of the spheres becomes increasingly erratic and the
gap fluctuates. Beyond this upper limit the pair of spheres
does not stay together.

The experiments were repeated using the more viscous
fluids, with �=4.5�10−6 m2 s−1 and 9.4�10−6 m2 s−1. Ex-
periments were also conducted in which the cell spacing was
varied, through the use of different thickness gaskets. It was
found that the behavior depended very little on the cell spac-
ing provided that the spacing is at least twice the sphere
diameter. In all of the experiments reported here this condi-
tion is met.

III. RESULTS

First we report the variation of the equilibrium gap, s,
with �, f , and �. In Figs. 2 and 3, we show how s depends on
�, for �=9.4�10−6 m2 s−1 and for �=4.5�10−6 m2 s−1, re-
spectively. It may be seen that, in each case, s grows rapidly
with increasing � at low frequencies, but that the strength of

this dependence falls rapidly with increasing frequency until
at the highest frequencies studied there is very little depen-
dence of s upon �. It is evident that the gap depends on
viscosity since Figs. 2 and 3 differ. In these figures the scat-
ter in the positions of the data points gives a good indication
of the measurement errors.

A. Relative amplitudes

When a cell full of liquid is subjected to vibration, the
liquid, being close to incompressible, moves with the cell.
Since a sphere has a different density to the liquid, the
sphere’s inertia causes it to oscillate with respect to the cell
and therefore with respect to distant liquid. In order to un-
derstand the motion of the spheres in detail, the relative am-
plitude of the spheres with respect to the cell, Ar, must be
determined. For each of the viscosities used and for a range
of values of f and �, we have filmed a number of cycles of
oscillation of a pair of spheres and, from the camera images,
we have determined Ar.

Figure 4 shows Ar plotted against � for a number of fre-
quencies and viscosities. It may be seen that, in each case,
the variation of Ar with � is very close to linear, with no sign
of curvature at upper values of �. However, the sphere only
moves with respect to the liquid when a critical value of � is
exceeded, this value depending somewhat upon � and �. The
data may be fitted by the expression

Ar =
K��,��g

�2 �� − �0��,��� , �1�

where K�� ,�� is a complicated function which varies slowly
with � and �. The onset value, �0�� ,��, lies typically in the
range 0.2–0.8: It has a low dependence upon the viscosity, �,
but increases with increasing �. The presence of an onset
and its frequency dependence have been considered in detail
by Wunenburger et al. �18� in terms of a model based on
static friction and the viscous forces due to the translation
and rotation of the sphere. Wunenburger et al.’s findings are
consistent with our own observations. They conclude that for
the values of � and � considered here, each sphere slips
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FIG. 2. Experimentally determined equilibrium gap, s, between
a pair of 1 mm diameter spheres as a function of � for �=9.4
�10−6 m2 s−1. The frequencies used are shown in the legend.
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FIG. 3. Experimentally determined equilibrium gap, s, between
a pair of 1 mm diameter spheres measured as a function of � for
�=4.5�10−6 m2 s−1. The frequencies are shown in the legend.
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FIG. 4. Movement of the 1 mm diameter spheres relative to the
cell, Ar, plotted against � for various values of the viscosity and
frequency. The lines shown are best linear fits to the data.
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across the surface rather than rolling upon it, for almost all of
the vibration cycle. Their observation is consistent with our
own, that the motion of small air bubbles trapped on a
sphere’s surface indicates a lack of rotation.

B. Collapse of the data under scaling

We have seen that the equilibrium gap, s, between two
spheres depends upon the frequency, f , the viscosity, �, and
upon the motion of the spheres relative to the cell, Ar. From
additional experiments using spheres of diameters 0.5 and 2
mm we have also found that s is dependent upon the sphere
diameter d. It is informative to determine whether dimen-
sionless ratios of these parameters may be used to collapse
the data. It is natural to select a Reynolds’ number as one of
these ratios; we use Re=Ar�d /�. In our studies, Re ranges
between about 5 and 120, a range intermediate between
laminar flow and full turbulence, whereas the sphere size
ranges over a factor of 4 and the viscosity and frequency
each vary by a factor of 5. If Ar is used to scale the gap and
s /Ar is plotted versus Re, it is found that the data lies close to
a single curve. This collapse is shown in Fig. 5. Figure 6
shows the same collapse plotted on a log-log scale. Most of
the data lies reasonably close to a line with a gradient of
−1.0. This data may therefore be described approximately by
the relationship s=C� / ��d�, where C is a numerical con-
stant. A fit using the value C=13±1 is shown as the broken
line in the figure. It is noteworthy therefore that, for this data,
the equilibrium separation does not depend upon Ar.

It may also be seen from Fig. 6 that some of the data at
higher values of Re do not scale in the way we have just
described, the data points lying well above the broken line.
The distinction between the two classes of data is very evi-
dent from Figs. 2 and 3. The data which undergoes the scal-
ing collapse which we have just described occurs for higher
frequencies where the gap is not dependent upon � and thus
upon Ar. However, these figures show that at the lowest fre-
quencies, where Ar is large, the gap is extremely dependent

both upon Ar and also upon frequency; the dependence upon
Ar disappears very quickly as the frequency is raised. It is
this lower frequency data, corresponding to the high Re data
of Fig. 6, which does not undergo the scaling collapse just
described. However, this data may be collapsed by plotting
the gap, s, against l= �Ar /d��� /� as may be seen in the inset
of Fig. 6. On this log-log plot the collapse is close in form to
a straight line with gradient of unity. For this data, therefore,
s�C��Ar /d��� /�, where C� is a constant equal to 1.8±0.2.

The crossover from one form of scaling to the other is
relatively abrupt. The condition for the crossover may be
obtained by equating the gaps in two scaling regimes. This
gives the condition Ar= �C /C���� /��7�� /�. We note that
the length �� /��1/2 is the oscillatory boundary layer param-
eter associated with streaming flow �23�.

It is also interesting to note that, in the low amplitude
regime, the gap scales in the same way as the distance of the
stagnation point from the surface, for streaming flows around
an isolated sphere �24�.

IV. COMPUTER SIMULATIONS

To gain insight into the physical mechanisms which lead
to the formation of a gap, and in order to be able to study
features not readily accessible from experiment, we have
also carried out numerical simulations. The fluid and the
spheres are modeled using a simplified version of the method
developed by Kalthoff et al. �25�. The fluid is assumed to be
incompressible and described by the 3D Navier-Stokes’
equations

�v

�t
+ �v · ��v = −

1

�
� P + ��2v − g , �2�

� · v = 0. �3�

Here v is the fluid velocity, P is the fluid pressure, � is the
fluid density, and g is the acceleration due to gravity. These
equations are discretized on a staggered marker and cell
�MAC� mesh �26� and solved using the projection method
�27�.
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FIG. 5. �Color online� Collapse of the experimental data when
plotted as s /Ar against the Reynolds number, Re, for the various
viscosities, frequencies, and sphere diameters shown in the legend.
In the table the viscosity � is in units of 10−6 m2 s−1, the frequency
f is in Hz, and the sphere diameter, d, is in units of mm.
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FIG. 6. �Color online� Collapse of the experimental data shown
in Fig. 5 when replotted on a log-log scale. The dotted line is the fit
described in the text. The collapse of the high Re data when the gap,
s, is plotted versus l= �Ar /d��� /� is shown in the inset.
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The spheres are treated as solid objects surrounded by the
fluid, and the fluid-solid coupling is introduced by enforcing
the no-slip boundary condition on the surface of the spheres.
This is achieved numerically by representing the spheres as
fluid moving with the instantaneous sphere velocity. At each
time step, the spheres’ velocities are transferred to the fluid at
the sites occupied by the spheres and the fluid evolves under
the Navier-Stokes’ equations, ensuring that the continuity
equation is satisfied. The force on each sphere, F, is then
calculated from

F = �
i

�− �P + ���2v� , �4�

where the sum is over all fluid sites occupied by a sphere and
the derivatives are calculated using finite difference approxi-
mations. This force is then used to update the spheres’ posi-
tions using molecular dynamics techniques �28�. Full details
of the method can be found in �29�.

Our 3D Navier-Stokes’ solver simulates motion of the
fluid and particles in a container of dimensions 21 mm
�10.5 mm�3 mm. The grid size used was �x=7.5
�10−5 m, giving a system of size 280�140�40 lattice
points. The spheres, typically 1 mm in diameter, occupy
about 1200 lattice points. A time step of �t=10−6 s was used
throughout. All other fluid and particle parameters were cho-
sen to be the same as in the experimental systems described
above. As in experiments, the spheres are influenced by grav-
ity in the vertical direction, aligned perpendicular to the larg-
est faces of the container. As a result, the spheres ride on the
lower surface. However, to avoid the complications associ-
ated with lubrication forces, the spheres are prevented from
reaching the outer cells of the fluid grid by a contact force
which restrains them to be at least one lattice spacing from
the true cell boundary.

If, in simulation, the fluid-particle system is subjected to
horizontal oscillation, the spheres are found to align perpen-
dicular to the flow direction and to sit at a well defined spac-
ing, as observed experimentally. However, as we have not
dealt fully with the interaction with the surface, which is
known to be complex �18�, the simulated relative amplitude
Ar is somewhat different from the experimentally measured
value for a given set of driving conditions. In order to make
a more direct comparison with experiment, while keeping the
model computationally simple, we have proceeded as fol-
lows.

Initially the fluid is at rest and the spheres are positioned
across the cell at a spacing s=d. While maintaining the walls
of the cell at rest, both spheres are then oscillated along the
longest horizontal dimension of the cell as Ar sin��t�, using
the experimentally measured values of Ar appropriate to the
particular parameters being used. The fluid moves in re-
sponse to the spheres’ motion while the spheres are free to
move without rotation, vertically and along the line joining
their centers, under the influence of the fluid force, gravity,
and the surface contact force in the vertical direction. In
practice, we find little movement in the vertical direction, the
spheres remaining one grid cell from the lower surface

during their motion. Each simulation is continued until a
steady gap and an equilibrium fluid flow pattern is achieved.

A. Estimates of the gap from simulations

We find that the simple simulation technique which we
have described above is able to capture the principle feature
of the phenomena observed in experiment: A pair of spheres
displays a gap which depends upon the system parameters.
Figure 7 shows simulation data for the equilibrium gap pre-
sented in the same way as the experimental data in Fig. 6.
The similarity is evident. When plotted as s /Ar versus Re, on
a log-log plot, the lower amplitude simulation data falls on a
straight line with a gradient close to −1. For this simulation
data the constant C is close to 18. As in experiment, the
higher amplitude data scales differently, the inset showing its
behavior. For this simulation data the constant C� is close to
1.8. Although C� is the same as the corresponding value for
the experimental data, the constant C is somewhat higher in
simulation. For comparison, the mean position of the experi-
mental data is shown in Fig. 7 as the broken line. The simu-
lation data also show a relatively abrupt transition from one
scaling regime to the other, the transition occurring when
Ar�10�� /�. Here the numerical constant is greater than
from experiment, because of the higher value of C.

We believe that the discrepancy between the simulated
gap data and the corresponding experimental data is partly
due to the way we have treated the interaction of the spheres
with the surface and partly due to computational limitations.
As stated above, we have constrained the bottom of the
spheres to remain at least one lattice spacing above the lower
surface of the cell. We note that if the spheres are held fur-
ther above the lower surface, the agreement with experiment
is not as good, due to the influence of the lower surface on
the streaming flow. We therefore infer that better agreement
could be obtained if the spheres were brought closer to the
surface by reducing the lattice size. However, such a refine-
ment becomes increasingly computationally prohibitive.
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FIG. 7. Scaling collapse of the simulation data, presented in the
same way as the experimental data shown in Fig. 6. The symbols
correspond to the system parameters given in the legend to Fig. 5.
The dashed line indicates the mean position of the experimental
data.

INTERACTION OF SPHERES IN OSCILLATORY… PHYSICAL REVIEW E 76, 056314 �2007�

056314-5



Nevertheless, it is clear that the simple model given here is
able to capture, semiquantitatively, the main features of the
experimental observations, giving us the confidence to use
our model to investigate the fluid-driven mechanisms respon-
sible for the gap.

B. Force measurements

From simulation, it is possible to determine the forces on
the spheres due to their motion with respect to the surround-
ing fluid. We will consider the force on one sphere in the
direction of the other, Fr, as a function of the spacing be-
tween the spheres, r. This can be obtained by keeping the
spheres at a fixed separation while oscillating them in the
direction perpendicular to the line joining their centers. The
time-averaged force as a function of separation is shown in
Fig. 8 for a typical set of driving conditions.

At large separations the force is attractive, whereas at
small separations it becomes repulsive. The separation for
which the force is zero corresponds to the equilibrium gap
described above. At large separations the attractive force de-
cays approximately as r−�, with � close to 2. As Re is re-
duced, this attraction becomes increasingly weak.

C. Fluid flows

The simulations also allow us to determine the fluid flows
generated by the oscillatory motion of the spheres. Here we
consider the time-averaged streaming component of the flow,
obtained by averaging the flow over one cycle of vibration
once an equilibrium flow pattern has been reached. In simu-
lation, the flow is generated by moving the spheres in a static
box. However, for clarity, we will present the streaming flow
field relative to the spheres. For our container geometry, the
flow is predominantly two dimensional. This is in agreement
with the experimental finding that the behavior is not depen-
dent on the spacing between the upper and lower plates,
provided that the spacing is greater than about two particle
diameters.

The streaming flow generated by a single isolated sphere
is well known �10�. It typically consists of two inner vortex
loops with flow away from the sphere at the equator, and two
outer vortex loops with flow in toward the sphere at the
equator. A 2D slice through such a streaming flow pattern,
perpendicular to the equatorial plane and through the center
of the sphere, shows four inner vortices and four outer vor-
tices, as illustrated schematically in Fig. 9. For small ampli-
tude, low Re, oscillation, the inner vortices dominate and the
outer vortices are extremely weak. As Re increases, the inner
vortices shrink in size and the outer vortices strengthen
�10,30,31�. It should be noted that the instantaneous fluid
flow has only one inner vortex loop which oscillates back-
ward and forward around the sphere; the outer loops are
always present.

For a pair of spheres in our cell geometry, we have iden-
tified two distinct streaming flow patterns, corresponding to
the two different scaling regimes discussed above. Figures
10�a� and 10�b� show these flow diagrams at low and high
amplitudes, respectively. These slices are taken through the
center of the spheres, parallel to the lower surface of the
container. In each case the sphere separation is fixed at its
equilibrium value. For low amplitudes, the flow is dominated
by eight inner vortices close to the spheres. The flow around
each sphere is similar in structure to that expected for a
single sphere in isolation. However, the vortices close to the
gap are smaller than they would be for an isolated sphere.
Away from the spheres, the outer streaming flow is very
weak indeed.

In contrast, at high amplitudes, the dominant flow is as-
sociated with the outer vortices. The eight inner vortices
close to the spheres are still present. However, there are only
four outer vortices, shown in Fig. 10�b�, rather than the eight
which would be expected for two spheres in isolation. This
outer vortex pattern for the pair of spheres is similar to that
of a single sphere; however, the outward flow is now cen-
tered on the gap rather than on the poles of the spheres.
Because of the shift in the position of the outward flow, the
circulation of the inner vortices within the gap strengthens
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FIG. 9. Schematic diagram showing streaming flow around a
single isolated sphere. The arrowed straight line shows the direction
of oscillation. The crosses correspond to stagnation points.
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this outward flow, resulting in strong jets of fluid flowing
away from the gap. We have observed this behavior experi-
mentally; an example is shown in Fig. 1.

As the vibration parameters are varied from one regime to
the other, the streaming pattern crosses over from one form
to the other. This behavior is shown schematically in Fig. 11,
for parameters spanning the crossover region. Figure 11�a�
shows the low-amplitude behavior. The inner vortices close
to the gap are relatively weak and there is a stagnation point
nearby. As the amplitude increases, the inner vortices close

to the gap increase in magnitude and spatial extent, and the
stagnation point moves away. The resulting flow is shown in
Fig. 11�b�. At yet higher amplitudes, the outflow from the
gap is sufficiently strong to generate large outer vortices, as
shown in Fig. 11�c�. The outflow now can return along a line
joining the center of the spheres, until it approaches the stag-
nation point. As far as we can tell there is a smooth transition
from one regime to the other.

V. DISCUSSION

We have shown that two spheres subjected to oscillatory
fluid flow will attract each other and line up across the flow
with a well-defined equilibrium gap between them. From
both experiment and simulation we have identified two dis-
tinct dependencies of the gap on the system parameters.
Simulations also show that the force between the spheres is
attractive at large separations and repulsive for short separa-
tions. It is the balance between the attractive and repulsive
parts of the force that gives rise to the equilibrium gap.

What are the possible causes of the repulsion and attrac-
tion? Simulations suggest that the repulsion at short separa-
tions arises from the overlap of the inner vortices within the
gap, which tend to drive the particles apart. At large separa-
tions, the attractive nature of the interaction may result from
the inflow associated with the outer streaming around a
single sphere, as suggested in Refs. �18,19,21�. However, at
shorter separations, we still find an attractive force in simu-
lations, even though there is no observable inflow. An

+

+

(a)

++

++

+ +

(b)

FIG. 10. Vector plot taken from numerical simulation of the
average fluid flow for two 1 mm spheres at their equilibrium gap.
The system parameters used are �a� �=6.0, f =40 Hz, and �=9.4
�10−6 m2 s−1 and �b� �=4.5, f =20 Hz, and �=2.0
�10−6 m2 s−1. The open circles indicate the centers of vortices
while the crosses mark stagnation points.

(b)

(c)

(a)

FIG. 11. Schematic diagram showing streaming flow around
two spheres for �a� low amplitude ��=2�, �b� intermediate ampli-
tude ��=3�, and �c� high amplitude ��=4�. The figures are based on
simulations carried out at 50 Hz and with �=4.5�10−6 m2 s−1. For
clarity we have only drawn the lower streamlines. The arrowed line
on the right indicates the direction of oscillation.
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understanding of this behavior based simply on streaming
flows may not be possible.

Despite the lack of a complete understanding of the forces
involved, the present work has shed some light on the com-
plex nature of the interaction between particles in oscillatory
fluid flows.

ACKNOWLEDGMENTS

We are grateful to the Engineering and Physical Sciences
Research Council for support, and to the workshop staff of
the School of Physics and Astronomy for their skills and
enthusiasm.

�1� H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Rev. Mod.
Phys. 68, 1259 �1996�.

�2� For a review, see S. Ramaswamy, Adv. Phys. 50, 297 �2001�.
�3� M. Faraday, Philos. Trans. R. Soc. London 52, 299 �1831�.
�4� R. J. Milburn, M. A. Naylor, A. J. Smith, M. C. Leaper, K.

Good, M. R. Swift, and P. J. King, Phys. Rev. E 71, 011308
�2005�.

�5� P. Sanchez, M. R. Swift, and P. J. King, Phys. Rev. Lett. 93,
184302 �2004�.

�6� For a review, see J. F. Brady and G. Bossis, Annu. Rev. Fluid
Mech. 20, 111 �1988�.

�7� I. Kim, S. Elghobashi, and W. A. Sirignano, J. Fluid Mech.
246, 465 �1993�.

�8� R. Folkersma, H. N. Stein, and F. N. van de Vosse, Int. J.
Multiphase Flow 26, 877 �2000�.

�9� N. Riley, Annu. Rev. Fluid Mech. 33, 43 �2001�.
�10� N. Riley, Q. J. Mech. Appl. Math. 19, 461 �1966�.
�11� H. M. Blackburn, Phys. Fluids 14, 3997 �2002�.
�12� R. S. Alassar and H. M. Badr, Comput. Fluids 26, 661 �1997�.
�13� S. Hassan, T. P. Lyubimova, D. V. Lyubimov, and M. Kawaji,

Trans. ASME, J. Appl. Mech. 73, 72 �2006�.
�14� S. Hassan, T. P. Lyubimova, D. V. Lyubimov, and M. Kawaji,

Int. J. Multiphase Flow 32, 1037 �2006�.
�15� D. V. Lyubimov, A. A. Cherepanov, T. P. Lyubimova, and B.

Roux, J. Phys. IV 11, 83 �2001�.
�16� A. A. Ivanova, V. G. Kozlov, and A. F. Kuzaev, Dokl. Akad.

Nauk 402, 488 �2005� �Dokl. Phys. 50, 311 �2005��.

�17� F. Otto, E. K. Riegler, and G. A. Voth, e-print
arXiv:0709.4305v1�cond-mat.soft�.

�18� R. Wunenburger, V. Carrier, and Y. Garrabos, Phys. Fluids 14,
2350 �2002�.

�19� G. A. Voth, B. Bigger, M. R. Buckley, W. Losert, M. P. Bren-
ner, H. A. Stone, and J. P. Gollub, Phys. Rev. Lett. 88, 234301
�2002�.

�20� C. C. Thomas and J. P. Gollub, Phys. Rev. E 70, 061305
�2004�.

�21� L. Petit and P. Gondret, J. Phys. II 2, 2115 �1992�.
�22� Kalliroscope Corporation, www.kalliroscope.com
�23� G. K. Batchelor, An Introduction to Fluid Dynamics �Cam-

bridge University Press, Cambridge, UK, 1967�.
�24� C. K. Kotas, M. Yoda, and P. H. Rogers, Exp. Fluids 42, 111

�2007�.
�25� W. Kalthoff, S. Schwarzer, and H. J. Herrmann, Phys. Rev. E

56, 2234 �1997�.
�26� F. H. Harlow and J. E. Welch, Phys. Fluids 8, 2182 �1965�.
�27� K. Höfler and S. Schwarzer, Phys. Rev. E 61, 7146 �2000�.
�28� M. P. Allen and D. J. Tildesley, Computer Simulations of Liq-

uids �Clarendon Press, Oxford, 1987�.
�29� R. Milburn, Ph.D. thesis, School of Physics and Astronomy,

University of Nottingham, 2006.
�30� J. M. Andres and U. Ingard, J. Acoust. Soc. Am. 25, 932

�1953�.
�31� J. M. Andres and U. Ingard, J. Acoust. Soc. Am. 25, 928

�1953�.

KLOTSA et al. PHYSICAL REVIEW E 76, 056314 �2007�

056314-8


