Contact
Biography
Dr. Stephen Grebby holds an MPhys (2005) in Physics with Space Science and Technology, an MSc (2006) in Physical Geography and PhD (2011) in Geological Remote Sensing from the University of Leicester. In 2011, he joined the British Geological Survey, where he took up a position as a Remote Sensing Geoscientist. Dr. Grebby was appointed as Assistant Professor in Earth Observation within the Faculty of Engineering in 2016 and then Associate Professor in 2022. He is affiliated with the GeoEnergy Research Centre (GERC) - a joint venture between The University of Nottingham and British Geology Survey.
Dr. Grebby is a member of the Nottingham Geospatial Institute research group.
Expertise Summary
Dr. Grebby's expertise is in the acquisition, analysis, investigation and visualisation of Earth Observation data for a wide variety of geoscience applications. Whilst broad-ranging, he has considerable experience in the development of innovative remote sensing techniques for application to geological mapping, natural resources exploration, mapping and monitoring of geohazards, and land use/land cover mapping. He has expertise in utilising a wide variety of Earth Observation datasets and techniques, including InSAR, airborne and terrestrial LiDAR, multi- and hyperspectral imagery, airborne radiometric and geophysical data, field spectroscopy, photogrammetry, geomorphometry, and advanced image classification (i.e., neural networks and other machine learning algorithms). Dr. Grebby is also interested in the application of sensor technologies (e.g., hyperspectral, ultrasound) and machine learning to chemometrics for food quality evaluation.
Research Summary
Dr. Grebby's current research interests are focused on the use of satellite, airborne (manned and UAV) and ground-based Earth Observation techniques for the natural resources exploration (i.e.,… read more
Selected Publications
MANN, SOPHIE, NOVELLINO, ALESSANDRO, HUSSAIN, EKBAL, GREBBY, STEPHEN, BATESON, LUKE, CAPSEY, AUSTIN and MARSH, STUART, 2024. Coastal sediment grain size estimates on gravel beaches using satellite Synthetic Aperture Radar (SAR). REMOTE SENSING. 16(10), 1763 DAS, SOURAV, PRIYADARSHANA, ANURADHA and GREBBY, STEPHEN, 2024. Monitoring the risk of a tailings dam collapse through spectral analysis of satellite InSAR time-series data. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT. 38(8), 2911-2926 YU, ZIYUE, DENG, XIANGZHENG, FU, PING, GREBBY, STEPHEN and MANGI, EUGENIO, 2024. Assessment of land degradation risks in the Loess Plateau. LAND DEGRADATION & DEVELOPMENT. 35(7), 2409-2424 VRÎNCEANU, CRISTINA A., GREBBY, STEPHEN and MARSH, STUART, 2023. The performance of speckle filters on Copernicus Sentinel-1 SAR images containing natural oil slicks. QUARTERLY JOURNAL OF ENGINEERING GEOLOGY AND HYDROGEOLOGY. 56(3), qjegh2022-046
Current Research
Dr. Grebby's current research interests are focused on the use of satellite, airborne (manned and UAV) and ground-based Earth Observation techniques for the natural resources exploration (i.e., geoenergy and minerals) and the monitoring of their exploitation. This includes identifying potential mineral deposits and geothermal energy resources by mapping anomalous mineral assemblages, determining key characteristics (e.g., porosity, permeability, fracture density) for reservoir modelling, and monitoring ground motion at sites associated with gas storage (i.e., CO2), energy production and mining using InSAR.
He also has a strong interest in the mapping and monitoring of geohazards, in particular landslides. His research concerns the development of algorithms to aid the rapid identification and mapping of landslides using airborne LiDAR and optical imagery. Such methods enables comprehensive landslide inventories to be generated, which can then be used to assess the future risk posed by landslides. Dr. Grebby was recently involved in building landslide inventories from very-high resolution satellite imagery, in order to help support the relief efforts following the 2015 Nepal and 2016 Ecuador earthquakes.
More recently, Dr. Grebby's multidisciplinary background has led to a growing interest in the application of sensor technologies (e.g., hyperspectral, ultrasound) and machine learning to chemometrics for food quality evaluation.
Future Research
I welcome enquiries from potential PhD candidates from Home, EU and International countries who are interested in the following research areas: Geological mapping, natural resources exploration, mapping and monitoring of geohazards, satellite, airborne and ground-based Earth Observation techniques, machine learning.