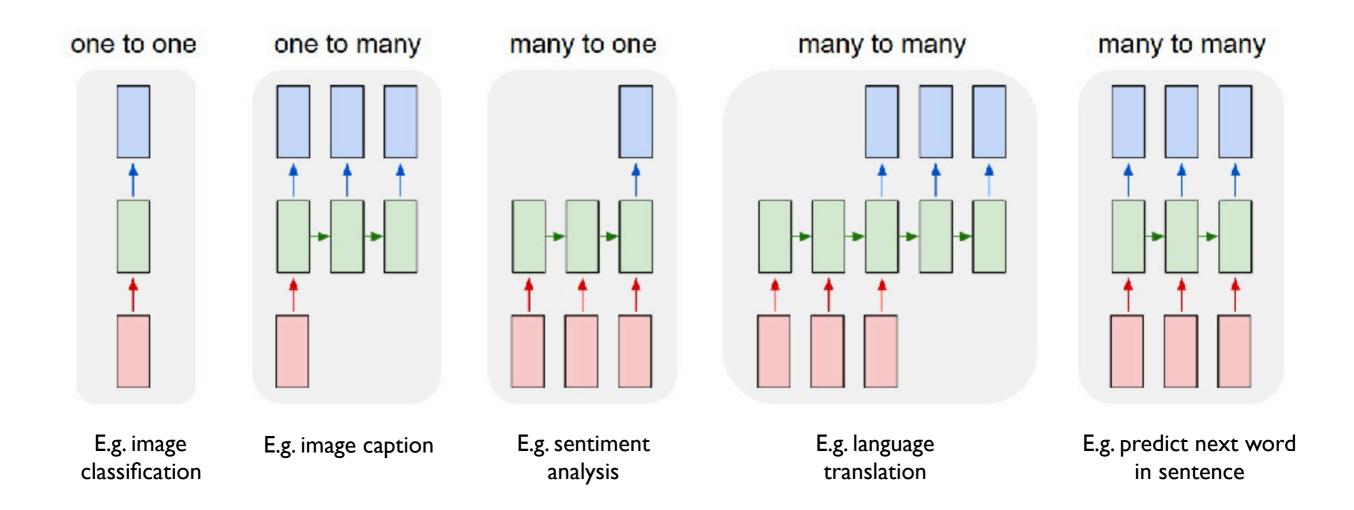
Deep Learning: Supernovae Classification

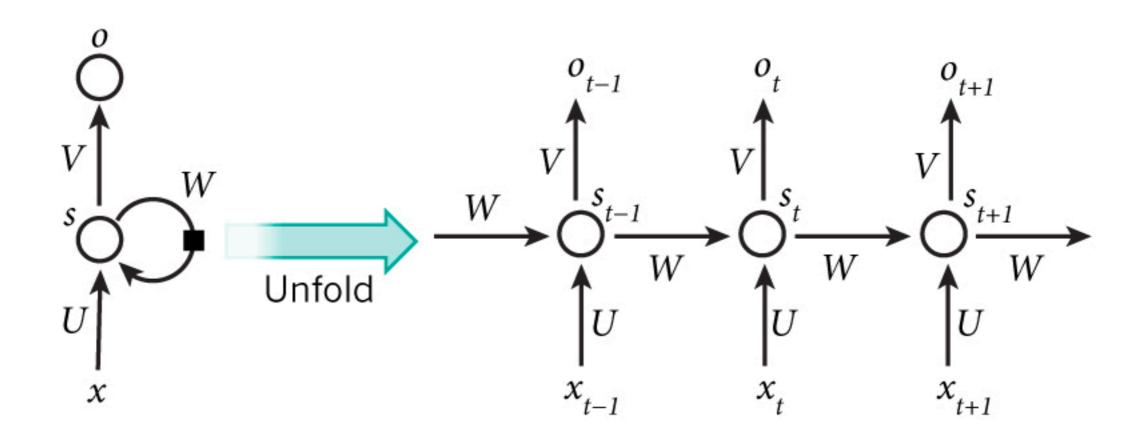
Adam Moss
School of Physics and Astronomy
adam.moss@nottingham.ac.uk

Recurrent Network

► Recurrent neural networks (RNNs) are a class of neural network that can learn about sequential data (e.g. time series, natural language)

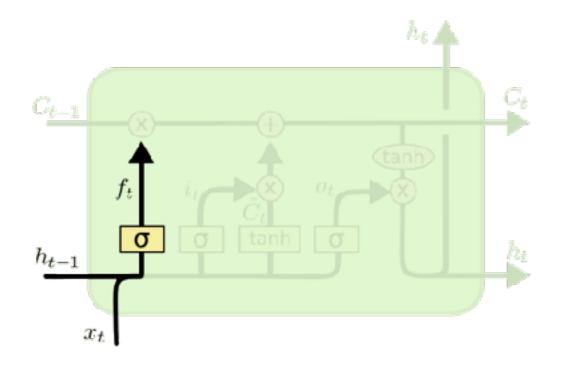


Many to Many

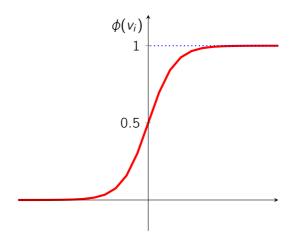


- ► Weights U, V, W are shared across all steps
- ► Hidden state calculated by $s_t = f(Ux_t + Ws_{t-1})$ where f is non-linear activation function
- Vanilla RNNs have problems learning long-term dependencies

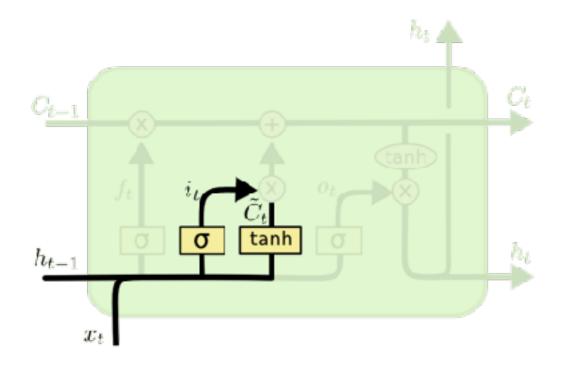
► First step is "forget gate" which learns how much information to throw away from existing cell state



$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$



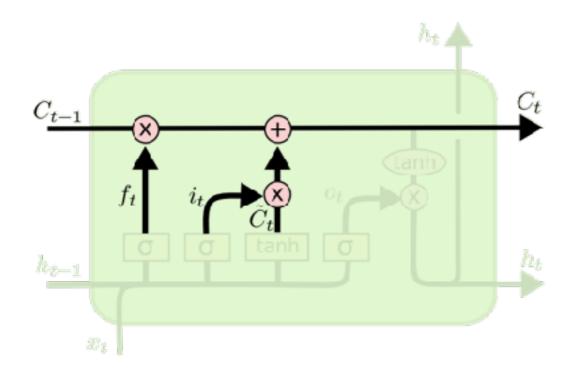
"Input gate" decides which new information to store in the cell state by generating candidate state and filtering (using sigmoid)



$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

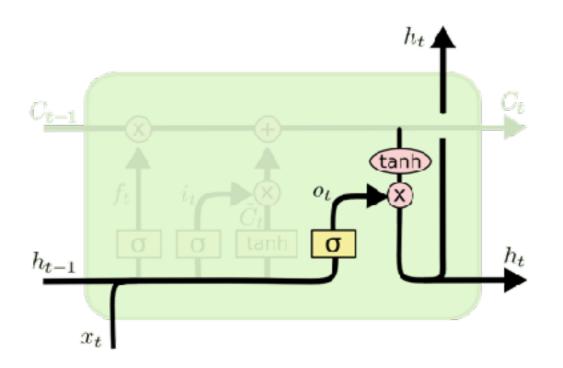
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

► Next add old and new cell states



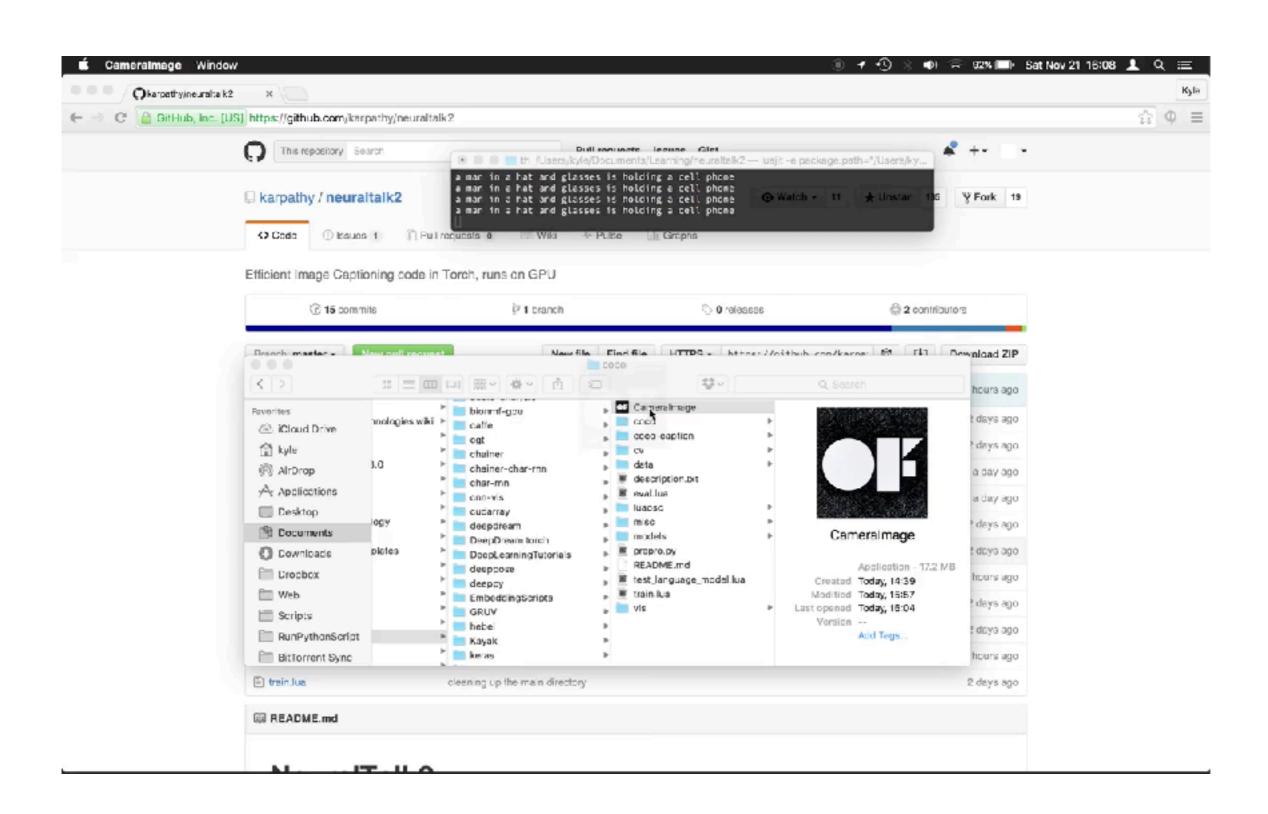
$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Finally decide what to output - based on filtered version (using sigmoid) of cell state



$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Example



Example

Proof. Omitted.

Lemma 0.1. Let C be a set of the construction.

Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We have to show that

$$\mathcal{O}_{\mathcal{O}_X} = \mathcal{O}_X(\mathcal{L})$$

Proof. This is an algebraic space with the composition of sheaves \mathcal{F} on $X_{\acute{e}talc}$ we have

$$\mathcal{O}_X(\mathcal{F}) = \{morph_1 \times_{\mathcal{O}_X} (\mathcal{G}, \mathcal{F})\}\$$

where G defines an isomorphism $F \to F$ of O-modules.

Lemma 0.2. This is an integer Z is injective.

Proof. See Spaces, Lemma ??.

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open covering. Let $U \subset X$ be a canonical and locally of finite type. Let X be a scheme. Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.

Let X be a scheme. Let X be a scheme covering. Let

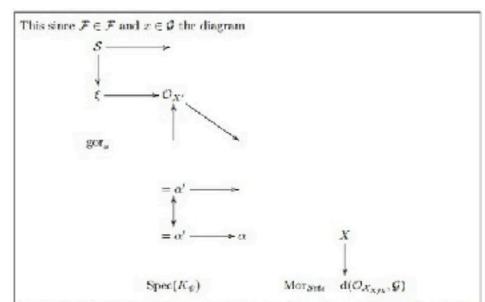
$$b: X \to Y' \to Y \to Y \to Y' \times_X Y \to X.$$

be a morphism of algebraic spaces over S and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let \mathcal{F} be a quasi-coherent sheaf of \mathcal{O}_X -modules. The following are equivalent

- F is an algebraic space over S.
- (2) If X is an affine open covering.

Consider a common structure on X and X the functor $\mathcal{O}_X(U)$ which is locally of finite type.



is a limit. Then G is a finite type and assume S is a flat and F and G is a finite type f_{\bullet} . This is of finite type diagrams, and

- the composition of G is a regular sequence,
- O_Y is a sheaf of rings.

Proof. We have see that $X = \operatorname{Spec}(R)$ and \mathcal{F} is a finite type representable by algebraic space. The property \mathcal{F} is a finite morphism of algebraic stacks. Then the cohomology of X is an open neighbourhood of U.

Proof. This is clear that \mathcal{G} is a finite presentation, see Lemmas ??.

A reduced above we conclude that U is an open covering of C. The functor \mathcal{F} is a

$$\mathcal{O}_{X,x} \longrightarrow \mathcal{F}_{\mathbb{F}} -1(\mathcal{O}_{X_{talx}}) \longrightarrow \mathcal{O}_{X_{t}}^{-1}\mathcal{O}_{X_{t}}(\mathcal{O}_{X_{t}}^{y})$$

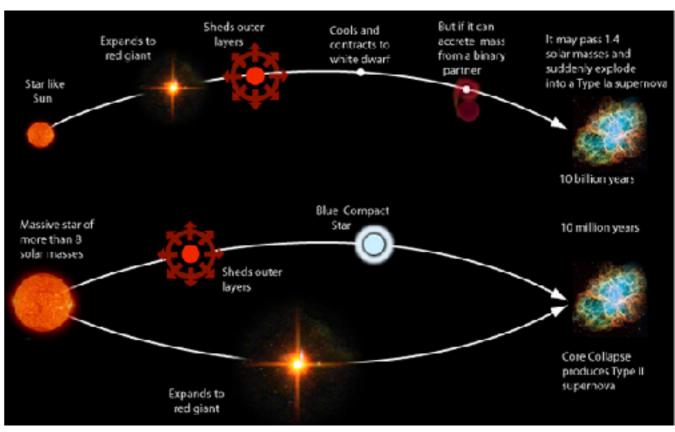
 $\mathcal{O}_{X,x} \longrightarrow \mathcal{F}_{\mathbb{F}} -1(\mathcal{O}_{X_{tails}}) \longrightarrow \mathcal{O}_{X_{t}}^{-1}\mathcal{O}_{X_{t}}(\mathcal{O}_{X_{\eta}}^{v})$ is an isomorphism of covering of $\mathcal{O}_{X_{t}}$. If \mathcal{F} is the unique element of \mathcal{F} such that X

The property \mathcal{F} is a disjoint union of Proposition ?? and we can filtered set of presentations of a scheme \mathcal{O}_X -algebra with \mathcal{F} are opens of finite type over S. If F is a scheme theoretic image points.

If \mathcal{F} is a finite direct sum $\mathcal{O}_{X_{\lambda}}$ is a closed immersion, see Lemma ??. This is a sequence of \mathcal{F} is a similar morphism.

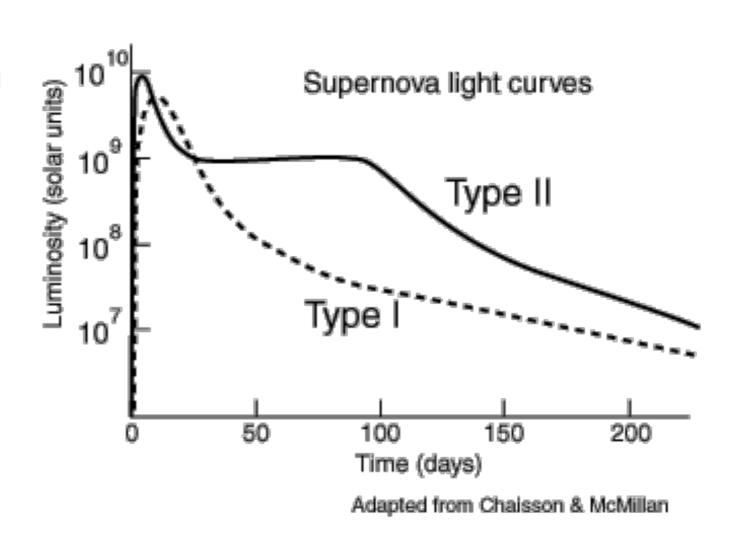
SN Classification

- Supernovae are one of the last possible stages of stellar evolution at the end of a massive stars life
- Two possible causes
- Binary star systems (e.g. white dwarf accretes matter from companion star) results in gravitational collapse and explosion
- Very massive stars may undergo core collapse as the star runs out of nuclear fuel



SN Classification

- Supernovae can be classified according to their light curves and absorption lines of chemical elements that appear in their spectra
- Type I and II are distinguished if they contain hydrogen or not
- Type I supernovae exhibit sharp maxima in their light curves and die away gradually
- Further subdivisions: Type1a have a singly ionisedsilicon line
- Subtle differences in light curves!

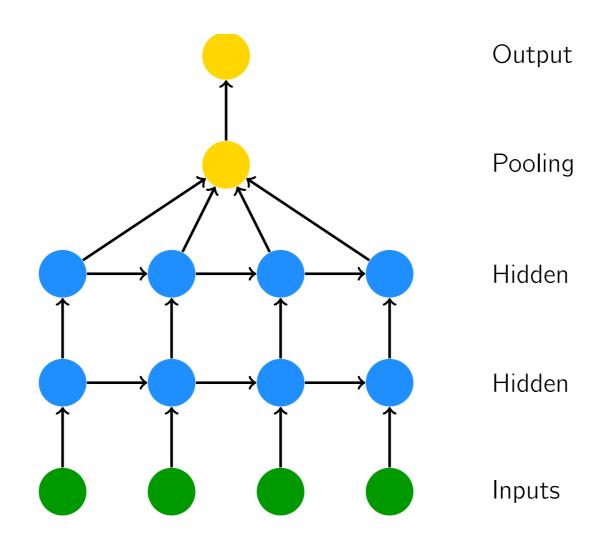


SN Classification

- ► Type 1a supernovae are particularly important in astronomy as they can be used as **standard candles**
- Provided evidence for accelerated expansion of the Universe (most likely caused by dark energy)
- ► Future surveys such as the Large Synoptic Survey Telescope (LSST) will measure the light curves ~10 million supernovae
- Only have the resources to spectroscopically confirm 5000 to 10,000 supernovae
- Supernovae Photometric Classification Challenge was designed to test classification algorithms
- ► Input data consisted of set of 21,319 simulated supernovae with a **time series** of flux measurements in several bands, along with the supernovae type
- Data is split into a training and test set

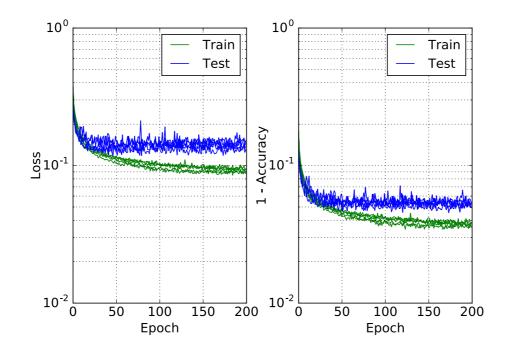
Recurrent Network

Use many-to-many LSTM with averaging over outputs at each timestep



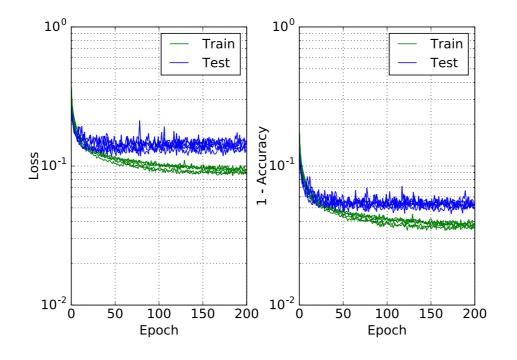
Training

- ► Use TensorFlow with Keras library (Python) to train the network
- Performance dramatically improved using GPU
- Training performed in epochs (epoch is a complete pass over the training data)
- Weights updated in mini-batches of 1000 samples
- Training continued until loss of test set doesn't improve
- ► Network architecture investigated (e.g. number of hidden layers, units)
- Care taken not to overfit!



Training

- Several metrics to assess performance (e.g. accuracy, confusion matrix, AUC score)
- ► Accuracy is ratio between the number of correct predictions and total number of predictions (a random classifier with 2 classes would have an accuracy of 0.5)
- ▶ With training fraction of 0.5, obtain accuracy of 94.8%
- Competitive with highly tuned feature extraction classifiers



Classification

- Other novel use is that a pre-trained network can give very fast evaluation of supernovae type
- Useful for early detection in future surveys

