LEARNING THE RELATIONSHIP BETWEEN A GALAXIES SPECTRA AND ITS STAR FORMATION HISTORY

Christopher C. Lovell Prof. Viviana Acquaviva

Kartheik Iyer, Prof. Eric Gawiser, Prof. Peter Thomas, Dr. Stephen Wilkins

OUTLINE

Introduction

Spectral Energy Distribution Fitting
Star Formation Histories

Method

Convolutional Neural Networks
Hydrodynamic Simulations

Results

Error estimation
SDSS predictions, VESPA comparison

Conclusions & Questions

(please ask questions anytime)

GALAXY SPECTRAL ENERGY DISTRIBUTION

HAVE:

Flux at different wavelengths / bands

Spatially unresolved

WANT:

Physical properties

Age, Mass, *Star Formation History*,
Dust Content,
Metallicity...

Hayward & Smith, 2014

SED FITTING

- Use models with known properties, fit to observational data
 - → infer properties
- There are a **lot** of codes for doing this

GalMC, Interrogator, BEAGLE, Prospector, VESPA, MAGPHYS, BayeSED, CIGALE, SEABASs, FAST, BAGPIPES.....

ASSUMPTIONS DOMINATE OVER ERRORS

- Choice of SPS model, extinction law, IMF...
- Simplistic SFHs lead to high bias in derived quantities
- All methods biased toward young stellar populations (outshining)

GalMC, Acquaviva et al. (2011)

ASSUMPTIONS DOMINATE OVER ERRORS

- Choice of SPS model, extinction law, IMF...
- Simplistic SFHs lead to high bias in derived quantities
- All methods biased toward young stellar populations (outshining)

lyer & Gawiser (2017)

A DIFFERENT APPROACH TO ESTIMATING THE SFH...

- Take SFHs from simulations (Illustris & EAGLE)
- Generate realistic synthetic SEDs
- Teach a machine the relationship between the spectra and the histories
- Test within and between simulations to evaluate generalisation properties

MACHINES OF LOVING GRACE

 Learn from single objects and the whole population

Analogous in Bayesian parameter estimation to learning the **likelihood** and the **priors**

- Highly non-linear model
 Able to discern higher level features
- Flexible SFH parametrisation

RAGE AGAINST THE MACHINE

- Less transparent generalisation properties
- Supervised machine learning methods limited by training data

Observational training data limited, must use simulations

State of the art simulations volume limited

Agreement between Hydrodynamic simulations still not great

COSMOLOGICAL HYDRODYNAMIC SIMULATIONS

EAGLE

Schaye+14

Vogelsberger+14

MOTIVATION FOR MULTIPLE SIMULATIONS

- Get a much larger training sample of galaxies
 - → helpful for the most massive objects with lower number densities
- Avoid overfitting to a single galaxy evolution model
 - → use combined training set
- Can evaluate generalisation properties
 - → train on a single simulation, test on another
 - → Assess whether we are learning the intrinsic relationship between galaxy SEDs and their SFHs, rather than overfitting to a particular simulation

SELECTION

- 10^{10} < M^* / M_{\odot} < $10^{10.8}$ stratified sample in stellar mass
 - → avoid overfitting to low mass galaxies that dominate the mass function
- Number of galaxies selected:
 - ~2900 Illustris
 - ~1000 EAGLE

GALAXY STELLAR MASS FUNCTION

Illustris GSMF has a higher normalisation at low and high masses, but fits the knee well → this is where most of the stellar mass is

SPECIFIC STAR FORMATION RATE

GENERATING SYNTHETIC SPECTRA

- Star particles represent ~106 solar masses
- Combination of the initial mass, age and metallicity, coupled with assumed IMF, determines intrinsic SED
- Dust in the ISM leads to attenuation. Amount of dust linked to mass and metallicity of star forming gas
- Young star particles (Age < 100 Myr) are still enshrouded in their birth clouds
 - → leads to nebular attenuation + further dust attenuation
- Ignore the contribution of AGN

SPS MODELLING

- Treat each particle as a Simple Stellar Population (SSP)
- Resample recent star formation, as Poisson noise can significantly affect colours
- Flexible Stellar Population Synthesis (FSPS; Conroy+09, Foreman-Mackay+14)
- Includes nebular attenuation contribution for young populations (< 100 Myr); function of incident ionising radiation, computed using CLOUDY (Byler+17)

Cloudy

DUST MODELLING

- Two component Charlot
 & Fall screen model as
 in Trayford+15
 - → Orientation independent, can be applied to EAGLE and Illustris equally
- Attenuation coefficient dependent on **total** mass and metallicity of star forming gas

$$\gamma = \frac{Z_{\rm SF}}{Z_{\rm Z14}} \left(\frac{M_{\rm SF}}{M_*} \frac{1}{\beta} \right) \qquad T(\lambda, t) = \exp \left[-\tau(t) \left(\frac{\lambda}{\lambda_{\nu}} \right)^{\alpha(t)} \right]$$

$$t \leqslant t_{\mathrm{disp}}: \ \tau = \gamma \tau_{\mathrm{cloud}} + \gamma \tau_{\mathrm{ISM}}; \ \alpha = -0.7$$

 $t \geq t_{\mathrm{disp}}: \ \tau = \gamma \tau_{\mathrm{ISM}}; \ \alpha = -1.3$

CNN ARCHITECTURE

- 2 x Convolutional layers
 - First applied direct to standardised (mean zero, unit variance) 1D spectra
 - Second applied to output of first, to learn higher order features
- 1x max-pooling layer
 - Reduces dimensionality → reduced training time
- Traditional fully connected network
 - 'shallow and wide'
- Hyperparameter optimisation with HYPERAS *github:maxpumperla/hyperas*

Talk to me after for further details

EXTRA DETAILS

- 10 uniform bins in log lookback time
- → encoded bias towards more recent bins where greater constraints possible
- Spectral coverage matched to SDSS DR7
 - ~ 3000 8000 Å
- 30 pkpc aperture to match SDSS Petrosian aperture at z = 0.1
- Evaluate with Symmetric Mean Absolute Percentage Error (SMAPE)

$$SMAPE = \frac{\Sigma_{i} | Y_{i}^{true} - Y_{i}^{pred} |}{\Sigma_{i} (Y_{i}^{true} + Y_{i}^{pred})}$$

RESULTS

EXAMPLE FIT

Illustris galaxy

In top quartile of SMAPE distribution

- Intrinsic + Dust attenuated
 SEDs
 - → SMAPE for dust attenuated spectra higher than intrinsic

EXAMPLE FIT

Intrinsic (Green)
Dust (Red)

Median of SMAPE distribution

EXAMPLE FIT

Intrinsic (Green)
Dust (Red)

Bottom quartile of SMAPE distribution

SMAPE DISTRIBUTION

- Median shown by arrows at bottom
- CNN outperforms
 Extremely
 Randomised Trees,
 an ensemble decision
 tree method

PHYSICAL CORRELATIONS

- SMAPE negatively correlated with recent SFR
 - → Opposite to expectation from outshining bias
- Small negative correlation with stellar mass

ESTIMATING ERRORS

- We identify two main sources of error:
 - → Spectral errors
 - → Model errors
- For **spectral** errors, use average SDSS DR7 error spectrum from sample (details later)
- Create N_{err} realisations of each spectra + sampled noise, propagate through model

$$C_{ij} = \langle (x_i - \hat{x}_i)(x_j - \hat{x}_j) \rangle$$

$$\sigma_i = \sqrt{C_{ij}}$$

$$r_{ij} = \frac{C_{ij}}{\sigma_i \sigma_j} \qquad r_{ij} \in [-1,1]$$

CORRELATION MATRICES

Neighbouring bins correlated

Recent star formation negatively correlated with early star formation

MODELLING ERRORS

~ 10000 parameters in CNN

Impossible to estimate errors on all

Empirical approach:

Use residuals in test set

Estimate of total error from quadrature sum of spectra & model errors

TEST RESIDUALS

INTRA-MODEL PERFORMANCE

Model trained on one simulation then used to predict SFHs from another

→ suggests we are learning the general relationship, and not overfitting to a single simulation

- Expanded wavelength range to NIR
 - → leads to much improved fit, particularly for older stellar populations

SDSS DR7

- Select sample based on g & r absolute magnitudes (colour + magnitude selection)
- 2400 galaxies
- t-distributed
 Stochastic Neighbour
 Embedding

t-SNE

 Non-linear dimensionality reduction for visualisation

MPA-JHU MASS COMPARISON

Apply recycling fraction correction to SFH

Bias at higher masses

NEXT STEPS...

- Photometry using ERT
- More sophisticated dust modeling
 - → Line of sight, e.g. LOSER (Davé+18)
 - → full radiative transfer e.g. SKIRT (Camps+17, Trayford+17)
- Feature Importance
- More simulations (MUFASA, SAMs...)

CONCLUSIONS

- We have used supervised machine learning + cosmological simulations to estimate star formation histories
- We generated realistic spectra for EAGLE and Illustris simulations, including the effects of dust + nebular attenuation
- We achieved high accuracy in intra-simulation tests, suggesting good generalisation properties
- We estimate the error contribution from both the spectra and the model
- We applied the model to SDSS DR7 data and compared to the VESPA catalogue

Thanks for listening!

COSMOLOGICAL HYDRODYNAMIC SIMULATIONS

EAGLE

Schaye+14

- Smoothed Particle
 Hydrodynamics (GADGET-3)
- Pressure-dependent star formation recipe
- 100 Mpc³

Illustris

Genel+14

- Adaptive Mesh Refinement (AREPO)
- Fixed density-dependent star formation recipe
- 106.5 Mpc³

Typical gas element masses ~ 10⁶ solar masses Subgrid models for stellar and AGN feedback