
Learning the Relationship 
between a Galaxies Spectra 

and its Star Formation 
History

Christopher C. Lovell
Prof. Viviana Acquaviva

Kartheik Iyer, Prof. Eric Gawiser, 
Prof. Peter Thomas, Dr. Stephen Wilkins



Outline

Introduction
Spectral Energy Distribution Fitting

Star Formation Histories

Method
Convolutional Neural Networks

Hydrodynamic Simulations

Results
Error estimation

SDSS predictions, VESPA comparison

Conclusions & Questions 
(please ask questions anytime)



Galaxy Spectral Energy Distribution

● HAVE:

Flux at different 
wavelengths / 
bands

Spatially 
unresolved

● WANT:

Physical properties

Age, Mass, Star 
Formation History, 
Dust Content, 
Metallicity...

Hayward & Smith, 2014



SED fitting

● Use models with known 
properties, fit to 
observational data 

 → infer properties

● There are a lot of codes for 
doing this 

GalMC, Interrogator, BEAGLE, 
Prospector, VESPA, 
MAGPHYS, BayeSED, CIGALE, 
SEABASs, FAST, BAGPIPES…..

BAGPIPES
Carnell et al. (2014)



Assumptions dominate over errors

● Choice of SPS 
model, extinction 
law, IMF...

● Simplistic SFHs 
lead to high bias in 
derived quantities

● All methods 
biased toward 
young stellar 
populations 
(outshining)

GalMC, Acquaviva et al. (2011)



Iyer & Gawiser (2017)

● Choice of SPS 
model, extinction 
law, IMF...

● Simplistic SFHs 
lead to high bias in 
derived quantities

● All methods 
biased toward 
young stellar 
populations 
(outshining)

Assumptions dominate over errors



A Different Approach to estimating 
the SFH...

● Take SFHs from simulations (Illustris & EAGLE)

● Generate realistic synthetic SEDs

● Teach a machine the relationship between the spectra and 
the histories

● Test within and between simulations to evaluate 
generalisation properties



Machines of 
loving grace

● Learn from single objects and the 
whole population

Analogous in Bayesian parameter 
estimation to learning the 
likelihood and the priors

● Highly non-linear model

Able to discern higher level 
features

● Flexible SFH parametrisation

● Less transparent generalisation 
properties

● Supervised machine learning methods 
limited by training data

Observational training data limited, 
must use simulations

State of the art simulations volume 
limited

Agreement between Hydrodynamic 
simulations still not great

Rage against the 
machine



Cosmological Hydrodynamic 
Simulations

EAGLE                 Schaye+14 Illustris       Vogelsberger+14



Motivation for multiple 
simulations

● Get a much larger training sample of galaxies

 → helpful for the most massive objects with lower number densities
● Avoid overfitting to a single galaxy evolution model

 → use combined training set
● Can evaluate generalisation properties

 → train on a single simulation, test on another

 → Assess whether we are learning the intrinsic relationship 
between galaxy SEDs and their SFHs, rather than overfitting to 
a particular simulation



SELECTION
● 1010 < M* / M☉ < 1010.8 

stratified sample in 
stellar mass

 → avoid overfitting 
to low mass galaxies 
that dominate the 
mass function

● Number of galaxies 
selected: 

~2900 Illustris

~1000 EAGLE



Galaxy stellar 
mass function
Illustris GSMF has a 
higher 
normalisation at 
low and high 
masses, but fits the 
knee well  this is → 
where most of the 
stellar mass is



Specific star formation rate



Generating synthetic Spectra

● Star particles represent ~106 solar masses

● Combination of the initial mass, age and metallicity, 
coupled with assumed IMF, determines intrinsic SED

● Dust in the ISM leads to attenuation. Amount of dust 
linked to mass and metallicity of star forming gas

● Young star particles (Age < 100 Myr) are still 
enshrouded in their birth clouds

 → leads to nebular attenuation + further dust 
attenuation

● Ignore the contribution of AGN



SPS MODELLING

● Treat each particle as a Simple Stellar 
Population (SSP)

● Resample recent star formation, as 
Poisson noise can significantly affect 
colours

● Flexible Stellar Population Synthesis 
(FSPS; Conroy+09, Foreman-
Mackay+14)

● Includes nebular attenuation 
contribution for young populations (< 
100 Myr); function of incident ionising 
radiation, computed using CLOUDY 
(Byler+17)



DUST MODELLING

● Two component Charlot 
& Fall screen model as 
in Trayford+15

 → Orientation 
independent, can be 
applied to EAGLE and 
Illustris equally

● Attenuation coefficient 
dependent on total 
mass and metallicity of 
star forming gas



CNN architecture

● 2 x Convolutional layers
– First applied direct to standardised (mean zero, unit variance) 1D 

spectra
– Second applied to output of first, to learn higher order features

● 1 x max-pooling layer
– Reduces dimensionality  reduced training time→ 

● Traditional fully connected network
– ‘shallow and wide’

● Hyperparameter optimisation with HYPERAS github:maxpumperla/hyperas
Talk to me after for further details



EXTRA Details

● 10 uniform bins in log lookback time

●  → encoded bias towards more recent 
bins where greater constraints possible

● Spectral coverage matched to SDSS DR7

~ 3000 – 8000 Å

● 30 pkpc aperture to match SDSS 
Petrosian aperture at z = 0.1

● Evaluate with Symmetric Mean Absolute 
Percentage Error (SMAPE)



RESULTS



Example fit

● Illustris galaxy 

In top quartile of SMAPE 
distribution

● Intrinsic + Dust attenuated 
SEDs 

 → SMAPE for dust 
attenuated spectra higher 
than intrinsic



Example fit

Intrinsic (Green)
Dust (Red)

Median of SMAPE 
distribution



Example fit

Intrinsic (Green)
Dust (Red)

Bottom quartile of SMAPE 
distribution



SMAPE DISTRIBUTION

  

● Median shown by 
arrows at bottom

● CNN outperforms 
Extremely 
Randomised Trees, 
an ensemble decision 
tree method



● SMAPE negatively correlated with recent SFR

 → Opposite to expectation from outshining bias

● Small negative correlation with stellar mass

PHYSICAL 
CORRELATIONS



Estimating ERRORS

● We identify two main sources of 
error:

 → Spectral errors

 → Model errors

● For spectral errors, use average 
SDSS DR7 error spectrum from 
sample (details later)

● Create Nerr realisations of each 
spectra + sampled noise, propagate 
through model

C ij=⟨(x i− x̂ i)(x j− x̂ j)⟩

σ i=√C ij

r ij=
C ij

σ iσ j
r ij∈[−1,1]



Neighbouring 
bins correlated

Recent star 
formation 
negatively 
correlated with 
early star 
formation

Correlation matrices



~ 10000 parameters in CNN

Impossible to estimate errors 
on all

Empirical approach:

Use residuals in test set

Estimate of total error from 
quadrature sum of spectra & 

model errors

Modelling ERRORS



Test residuals



Model trained on one 
simulation then used to 
predict SFHs from 
another

 → suggests we are 
learning the general 
relationship, and not 
overfitting to a single 
simulation

Intra-model 
performance



● Expanded wavelength range to NIR

 → leads to much improved fit, 
particularly for older stellar populations



SDSS DR7
● Select sample based on 

g & r absolute 
magnitudes (colour + 
magnitude selection)

● 2400 galaxies

● t-distributed 
Stochastic Neighbour 
Embedding

t-SNE

● Non-linear 
dimensionality 
reduction for 
visualisation



MPA-JHU mass comparison

Apply recycling 
fraction correction to 
SFH

Bias at higher 
masses

 



Next steps...

● Photometry using ERT

● More sophisticated dust modeling

 → Line of sight, e.g. LOSER (Davé+18)

 → full radiative transfer e.g. SKIRT (Camps+17, Trayford+17)

● Feature Importance

● More simulations (MUFASA, SAMs…)



Conclusions

● We have used supervised machine learning + cosmological simulations 
to estimate star formation histories

● We generated realistic spectra for EAGLE and Illustris simulations, 
including the effects of dust + nebular attenuation

● We achieved high accuracy in intra-simulation tests, suggesting good 
generalisation properties

● We estimate the error contribution from both the spectra and the model
● We applied the model to SDSS DR7 data and compared to the VESPA 

catalogue

Thanks for listening!



Cosmological Hydrodynamic 
Simulations

EAGLE                 Schaye+14

● Smoothed Particle 
Hydrodynamics (GADGET-3)

● Pressure-dependent star 
formation recipe

● 100 Mpc3

Illustris                  Genel+14

● Adaptive Mesh Refinement 
(AREPO)

● Fixed density-dependent 
star formation recipe

● 106.5 Mpc3

Typical gas element masses ~ 106 solar masses
Subgrid models for stellar and AGN feedback
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