Automated searches for low surface brightness (LSB) galaxies in wide area surveys

Daniel J. Prole

Supervisors: J. I. Davies (Cardiff), Michael Hilker & Remco van der Burg (ESO)

The low surface brightness Universe

Tidal Streams
Cooper et al. +10

LSB Galaxies
van Dokkum et al. 2018

Ultra-diffuse galaxies (UDGs)

Milky way sized (effective radii > 1.5 kpc)

Stellar masses more like dwarfs (M_{*}~10⁷ M_o)

Renewed interest after detection of high abundance in Coma cluster

Formation mechanisms:

"Failed L*" galaxies (van Dokkum et al. +15)

High-spin dwarfs (Amorisco & Loeb +16)

Tidal formation (Carleton et al. +18)

12/09/2018

van Dokkum et al. +15

PRIFYSGOL

UDGs: Properties

Abundance as a function of environment tells us something about the nature of UDGs.

Key observations:

Surprising abundance in dense environments

Halo mass similar to dwarf galaxies

Most cluster UDGs are red / quiescent

Formation efficiency increases with group mass

Little is known about field population...

Prole et al. (2018, in prep.)

D. J. Prole

Science goals & data

+		GAMA (Driver et al. 2011)		Studentship until February 2019	
	UDGs in the field	KiDS (Kuijken et al. 2015) +		Abundance & formation efficiency	
		Virgo (NGVS; Ferrarese et al. 2012)		2)	Globular cluster populations*
	LSB galaxies in clusters	Hydra (VEGAS; Capaccioli et al. 20)15)	Nucleation fractions	
		Fornax (FDS; lodice et al. 2016))	Size / mass distributions	

*Prole et al. (2018, in prep)

dprole@eso.org

UDG field abundance with KiDS

N (R<R₂₀₀)

How efficiently do UDGs form in the field?

Want to constrain UDG abundance in low-density environments...

→ Need large sample of field sources

Data:

KiDS r-band, GAMA group catalogue ~250 square degrees

Measurements:

Sersic profile fits (+ nucleus)
Recovery efficiency (from synthetic sources)

PRIFYSGOL

(`AERDYB

Detection

Detection & segmentation software

Source Extractor (Bertin & Arnouts 1996)

NoiseChisel (Akhlaghi & Ichikawa 2015)

-Non-parametric, noise based detection / segmentation

DeepScan (Prole et al. 2018)

-Density-based detection of extended LSB structure

MTObjects (Teeninga et al. 2016)

-Continuous threshold + max-tree from attribute filtering

ProFound (Robotham et al. 2018)

-Watershed deblend + iterative segment dilation

Detection software: SExtractor

Blue: SExtractor segmentation map

Unbroken red: SExtractor effective radius (FLUX RADIUS)

Orange: Masked

Detection software: DeepScan

Sky measurement:

- Mesh grid + interpolation
- Iterative pixel masking with DBSCAN
- Custom estimators

Lower bias vs. SExtractor

- **Source masking** (optional):
 - Python interface to SExtractor

Automatic mask creation

- **DBSCAN** pixel clustering
 - Identifies over-densities of thresholded pixels within radius ϵ

22

15

Detection software: DeepScan

PSF limited

21

20

19

https://github.com/ danjampro/DeepScan

17

16

Prole et al. (2018), MNRAS

ProFit

residuals

Detections

PRIFYSGOL CAERDYD

Detection software: ProFound

- Sky estimate (mesh)
- Watershed segment pixels above threshold
- Measure segment stats
- Segment dilation
- Remeasure sky

Iterative

https://github.com/asgr/ProFound

Right Ascension / H:M:S

Robotham et al. (2018)

Detection software: MTObjects

- Global sky estimate
- Hierarchical image representation
- Source identification (significant nodes)
- Segment measurement

SExtractor MTObjects

Teeninga et al. (2016)

Segmentation methods: Comparison

Original

ProFound (close to defaults)

MTObjects (default parameters)

Which is the best *?

	The Good	The Bad
DeepScan	Efficient python implementation	Confusion in crowded fields
Deepocan	Detection of ultra-faint extended features	No segmentation / source nesting
Des Formed	Well developed / documented	Long runtime / memory intensive
ProFound	Useful segment measurements	Halo fragmentation (+no nesting)
	Efficient implementation	LSB halo confusion
MTObjects	Identification of nested LSB sources	Measurement uncertainty in crowded fields

* Quantative analysis in prep.

PRIFYSGOL

CAERDYAD

Measuring LSB galaxies (KiDS)

Automatic detection / measurement pipeline:

Run MTObjects

Preselect segments based on MTO size and SB

Run GALFIT on preselected sources

- → Mask all other segments
- → Fit combined Sersic + sky model
- → Fit combined Sersic + sky + nuclear PSF

Select final sources from GALFIT models

Recovery efficiency much worse for nucleated sources - are we systematically missing nucleated LSBs?

SExtractor

Ca^eRDYD

Measuring LSB galaxies (KiDS)

Measuring synthetic LSB galaxies (KiDS)

Measuring LSB galaxies... with ML?

ML can offer several advantages over standard galaxy fitting approaches...

- Significant speed increase
- Reduction of pre-selection bias
- Automatic recognition of nuclear point sources(?)

But has its own set of disadvantages...

- Training sets required (that don't exist yet)
- Need robust testing so that measurements can be trusted
- Not clear how to deal with blended sources (big issue for LSST)

In general ML could be used to provide initial guesses for fit parameters (at least)

Early efforts

Convolutional Neural Networks (CNNs) are well suited for image analysis...

Can we use them to measure galaxies?

Network architecture (tflearn):

Input layer (28 x 28 pixel image, relu)

Convolution layer (11x11 pixels x 32 layers, relu)

Max pool

Convolution layer (5x5 pixels x 64 layers, relu)

Fully connected layer (128 inputs, relu)

Dropout

Fully connected layer (5 inputs, linear activation)

Early efforts: Training set

No sufficient training set exists for LSB galaxies (want >1E+4 samples)

For now we can use a purely synthetic dataset:

Generate 5E+4 synthetic galaxies (28x28 pixels)

Add noise

Add additional components (point sources)

Convert abs(ADU) to surface brightness and subtract

RMS in SB units

PRIFYSGOL CAERDYD

Early efforts: Results

Trained on 18 CPUs for 100 epochs (approx ~2hrs)

Batch size: 128

Optimiser: ADAM

~500 fits per second.

GALFIT: ~10 per second (2% failure rate)

Early efforts: Obvious criticisms

Training sources are always centred

Sky, RMS needs to be known before

Training sources are pure Sersic profiles

Training sources are all isolated

No parameter uncertainties

No PSF

Summary & Future work

Several alternatives to SExtractor now exist...

MTObjects is favourable over SExtractor DeepScan, ProFound (NoiseChisel untested) for wide field blind surveys.

The real problem is now source measurement:

Measurements from segment statistics are biased...

Pre-selection leads to a drop in recovery efficiency at the faint end!

Early efforts using CNNs show that they might be useful for estimating Sersic parameters in the future... but more work needed!

https://github.com/danjampro/DeepScan

PRIFYSGOL CAERDYD

UDGs: Halo mass

Several methods of measuring halo mass:

- Stellar kinematics (~30 hr integration times)
- Globular cluster kinematics
- Tidal features
- Weak lensing
- Spatial distributions
- Number of globular clusters

UDGs have dwarf sized halos that are relatively massive for their stellar mass

Prole et al. (2018, in prep.)

Detection methods: DeepScan

DeepScan is a Python package designed to identify extended LSB features (Prole et al. +18)...

At its core, using the DBSCAN algorithm (Esther et al. 1996) for detection...

\$pip install deepscan

DBSCAN

