
Deep Learning: Introduction

Adam Moss
School of Physics and Astronomy
adam.moss@nottingham.ac.uk

mailto:adam.moss@nottingham.ac.uk

Early Learning

► Feature extraction

► Perceptron (binary classifier). Mark 1 perceptron machine (1957) used
motors, potentiometers!

Y LeCun
55 years of hand-crafted features

The traditional model of pattern recognition (since the late 50's)
Fixed/engineered features (or fixed kernel) + trainable classifier

Perceptron

“Simple” Trainable
Classifier

hand-crafted
Feature Extractor

Hand crafted
feature

extraction

Trainable
classifier

Perceptron

► Simplest perceptron: set of inputs mapped to output xi

► Each input has a weight
►Weights are trained using supervised learning
► Training sets of where is the sample number and

the desired output for that sample
► Prediction is and weights are updated to minimise loss

wi

jD = {xi,j , yj} yj

X

j

(yj � ŷj)
2ŷ

ŷ

Perceptron

► The perceptron is only able to classify linearly separable training sets
► E.g. if two features are size and domestication

►May admit solutions of different quality (general
problem for machine learning if training data is not
representative)

Biological Neuron

Visual Cortex Y LeCun
The Mammalian Visual Cortex is Hierarchical

[picture from Simon Thorpe]

[Gallant & Van Essen]

The ventral (recognition) pathway in the visual cortex has multiple stages
Retina - LGN - V1 - V2 - V4 - PIT - AIT
Lots of intermediate representations

LGN=lateral geniculate nucleus
AIT=anterior inferior temporal cortex

PIT=posterior inferior temporal cortex

Shallow vs Deep

► A network is deep if it has
more than one layer of non-
linear feature abstraction

► Hierarchy of representations
with increasing levels of
abstraction (e.g. pixel ->
edge -> eye -> face)

► Deep networks can store
more memory than
equivalent number of units in
a single layer

Visualizing and Understanding Convolutional Networks

Layer 2

Layer 1

Layer 3

Layer 4 Layer 5

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.

MultiLayer Perceptron

► Type of feedforward artificial neural
network

► Can distinguish data which is not
linearly separable

► Some neurons use non-linear
activation functions (functions which
map the weighted input to the output
of a neuron)

► The brain is thought to work in a
similar way when biological neurons
are fired

►MLPs use supervised learning to
update network weights using back-
propagation

Back-propagation

►Weighted inputs

Neurons

Weighted inputs

I
vj = wijxi

Activation function, �(vj)

I �(vi) = tanh(vi)
I �(vi) = (1+ e�vi)�1

I �(vi) = Max(0, vi) or
�(vi) = ln(1+ evi)

Back propagation

I

I

xi

wij

Input

Tom Charnock (UoN) Machine learning in astronomy and cosmology

Neurons

Weighted inputs

I
vj = wijxi

Activation function, �(vj)

I �(vi) = tanh(vi)
I �(vi) = (1+ e�vi)�1

I �(vi) = Max(0, vi) or
�(vi) = ln(1+ evi)

Back propagation

I

I

xi

wij

Input

Tom Charnock (UoN) Machine learning in astronomy and cosmology

Back-propagation

►Weighted inputs
► Activation function

Neurons

Weighted inputs

I
vj = wijxi

Activation function, �(vj)

I �(vi) = tanh(vi)
I �(vi) = (1+ e�vi)�1

I �(vi) = Max(0, vi) or
�(vi) = ln(1+ evi)

Back propagation

I

I

xi

wij

Input

Tom Charnock (UoN) Machine learning in astronomy and cosmology

�(vj)
Neurons

Weighted inputs

I
vj = wijxi

Activation function, �(vj)

I �(vi) = tanh(vi)
I �(vi) = (1+ e�vi)�1

I �(vi) = Max(0, vi) or
�(vi) = ln(1+ evi)

Back propagation

I

I

�(vj)

xi

wij

Input

Hidden

Tom Charnock (UoN) Machine learning in astronomy and cosmology

Back-propagation

►Weighted inputs
► Activation function

Neurons

Weighted inputs

I
vj = wijxi

Activation function, �(vj)

I �(vi) = tanh(vi)
I �(vi) = (1+ e�vi)�1

I �(vi) = Max(0, vi) or
�(vi) = ln(1+ evi)

Back propagation

I

I

xi

wij

Input

Tom Charnock (UoN) Machine learning in astronomy and cosmology

�(vj)

Neurons

Weighted inputs

I
vj = wijxi

Activation function, �(vj)

I �(vi) = tanh(vi)

I �(vi) = (1+ e�vi)�1

I �(vi) = Max(0, vi) or
�(vi) = ln(1+ evi)

I

I

�1

1

�(vi)

Tom Charnock (UoN) Machine learning in astronomy and cosmology

Neurons

Weighted inputs

I
vj = wijxi

Activation function, �(vj)

I �(vi) = tanh(vi)

I �(vi) = (1+ e�vi)�1

I �(vi) = Max(0, vi) or
�(vi) = ln(1+ evi)

I

I

�1

1

�(vi)

Tom Charnock (UoN) Machine learning in astronomy and cosmology

Tanh function

Back-propagation

►Weighted inputs
► Activation function

Neurons

Weighted inputs

I
vj = wijxi

Activation function, �(vj)

I �(vi) = tanh(vi)
I �(vi) = (1+ e�vi)�1

I �(vi) = Max(0, vi) or
�(vi) = ln(1+ evi)

Back propagation

I

I

xi

wij

Input

Tom Charnock (UoN) Machine learning in astronomy and cosmology

�(vj)

Neurons

Weighted inputs

I
vj = wijxi

Activation function, �(vj)

I �(vi) = tanh(vi)

I �(vi) = (1+ e�vi)�1

I �(vi) = Max(0, vi) or
�(vi) = ln(1+ evi)

I

I

�1

1

�(vi)

Tom Charnock (UoN) Machine learning in astronomy and cosmology

Neurons

Weighted inputs

I
vj = wijxi

Activation function, �(vj)

I �(vi) = tanh(vi)
I �(vi) = (1+ e�vi)�1

I �(vi) = Max(0, vi) or
�(vi) = ln(1+ evi)

I

I

0.5

1

�(vi)

Tom Charnock (UoN) Machine learning in astronomy and cosmology

Neurons

Weighted inputs

I
vj = wijxi

Activation function, �(vj)

I �(vi) = tanh(vi)
I �(vi) = (1+ e�vi)�1

I �(vi) = Max(0, vi) or
�(vi) = ln(1+ evi)

I

I

0.5

1

�(vi)

Tom Charnock (UoN) Machine learning in astronomy and cosmology

Sigmoid function

Back-propagation

►Weighted inputs
► Activation function

► Loss function

Neurons

Weighted inputs

I
vj = wijxi

Activation function, �(vj)

I �(vi) = tanh(vi)
I �(vi) = (1+ e�vi)�1

I �(vi) = Max(0, vi) or
�(vi) = ln(1+ evi)

Back propagation

I

I

xi

wij

Input

Tom Charnock (UoN) Machine learning in astronomy and cosmology

�(vj)

Neurons

Weighted inputs

I
vj = wijxi

Activation function, �(vj)

I �(vi) = tanh(vi)

I �(vi) = (1+ e�vi)�1

I �(vi) = Max(0, vi) or
�(vi) = ln(1+ evi)

I

I

�1

1

�(vi)

Tom Charnock (UoN) Machine learning in astronomy and cosmology

Neurons

Weighted inputs

I
vj = wijxi

Activation function, �(vj)

I �(vi) = tanh(vi)
I �(vi) = (1+ e�vi)�1

I �(vi) = Max(0, vi) or
�(vi) = ln(1+ evi)

I

I

0.5

1

�(vi)

Tom Charnock (UoN) Machine learning in astronomy and cosmology

Neurons
Weighted inputs

I
vj = wijxi

Back propagation

I
ej = dj � �(vj)

I E = �
1

N

PN
j log2 ej

I �wij = �⌘
@E
@vj
�(vi)

I �
@E
@vj

= ej�0(vj)

I �
@E
@vj

= �0(vj)
P
k �
@E
@vk
wkj

Activation function, �(vj)

I �(vi) = tanh(vi)
I �(vi) = (1+ e�vi)�1

I �(vi) = Max(0, vi) or
�(vi) = ln(1+ evi)

xi

�(vj)

xi

wij

dj

Input

Hidden

Output

Tom Charnock (UoN) Machine learning in astronomy and cosmology

E =
X

j

e2j

ej = yj � �(vj)

Back-propagation

►Weighted inputs
► Activation function

► Loss function

► Back-propagation

Neurons

Weighted inputs

I
vj = wijxi

Activation function, �(vj)

I �(vi) = tanh(vi)
I �(vi) = (1+ e�vi)�1

I �(vi) = Max(0, vi) or
�(vi) = ln(1+ evi)

Back propagation

I

I

xi

wij

Input

Tom Charnock (UoN) Machine learning in astronomy and cosmology

�(vj)

Neurons

Weighted inputs

I
vj = wijxi

Activation function, �(vj)

I �(vi) = tanh(vi)

I �(vi) = (1+ e�vi)�1

I �(vi) = Max(0, vi) or
�(vi) = ln(1+ evi)

I

I

�1

1

�(vi)

Tom Charnock (UoN) Machine learning in astronomy and cosmology

Neurons

Weighted inputs

I
vj = wijxi

Activation function, �(vj)

I �(vi) = tanh(vi)
I �(vi) = (1+ e�vi)�1

I �(vi) = Max(0, vi) or
�(vi) = ln(1+ evi)

I

I

0.5

1

�(vi)

Tom Charnock (UoN) Machine learning in astronomy and cosmology

Neurons
Weighted inputs

I
vj = wijxi

Back propagation

I
ej = dj � �(vj)

I E = �
1

N

PN
j log2 ej

I �wij = �⌘
@E
@vj
�(vi)

I �
@E
@vj

= ej�0(vj)

I �
@E
@vj

= �0(vj)
P
k �
@E
@vk
wkj

Activation function, �(vj)

I �(vi) = tanh(vi)
I �(vi) = (1+ e�vi)�1

I �(vi) = Max(0, vi) or
�(vi) = ln(1+ evi)

xi

�(vj)

xi

wij

dj

Input

Hidden

Output

Tom Charnock (UoN) Machine learning in astronomy and cosmology

E =
X

j

e2j

�wij = �⌘
@E
@wij

�wij = �⌘
@E

@�(vj)

@�(vj)

@vj

@vj
@wij

ej = yj � �(vj)

Back-propagation

► Can the cortex do back-propagation?
►Maybe or maybe not!
►Many neuroscientists think the brain can’t back-propagate
➡ Source of supervision signal?
➡ Neurons send all-or-nothing spikes
➡ Neurons must be able to send different signals forward and backward

► But see work of Geoffrey Hinton (e.g. Lillicrap et. al., Nature
Communications 7, 2016) who presents arguments how the brain can
back-propagate

► How much should we be led by the function of the brain when
developing deep learning algorithms?

Gradient Descent (GD)

►Most supervised machine learning algorithms involve finding a set of
parameters Θ that minimise a cost/loss function

► Loss functions can be complicated non-convex functions with many local
minima

► Simplest algorithm that attempts to minimise the loss E(Θ) is gradient
descent

►Requires careful choice of learning rate
►Can become stuck in local minima
► Sensitive to initial conditions
► Learning rate is same for all gradients
► Long time to escape saddle points

14

developed a Jupyter notebook that allows the reader to
visualize how these algorithms perform on two dimen-
sional surfaces. The reader is encouraged to experi-
ment with the accompanying notebook whenever a new
method is introduced (especially to explore how changing
hyper-parameters can effect performance). The reader
may also wish to consult useful reviews that cover these
topics (Ruder, 2016) and this blog http://ruder.io/
optimizing-gradient-descent/.

A. Gradient Descent and Newton’s method

We begin by introducing a simple first-order gradient
descent method and comparing and contrasting it with
another algorithm, Newton’s method. Newton’s method
is intimately related to many algorithms (conjugate gra-
dient, quasi-Newton methods) commonly used in physics
for optimization problems. Denote the function we wish
to minimize by E(✓). In the context of machine learning,
E(✓) is just the cost function E(✓) = C(X, g(✓)). As we
shall see for linear and logistic regression in Secs. VI, VII,
this energy function can almost always be written as a
sum over n data points,

E(✓) =

nX

i=1

e
i

(x

i

,✓). (9)

For example, for linear regression e
i

is just the mean
square-error for data point i whereas, for logistic regres-
sion, it is the cross-entropy. To make analogy with phys-
ical systems, we will often refer to this function as the
“energy”.

In the simplest gradient descent (GD) algorithm, we
iteratively update the parameters according to the fol-
lowing rule. Initialize the parameters to some value ✓0

and iteratively update the parameters according to the
equation

v

t

= ⌘
t

r
✓

E(✓

t

),

✓

t+1 = ✓

t

� v

t

(10)

where r
✓

E(✓) is the gradient of E(✓) w.r.t to ✓ and we
have introduced a learning rate, ⌘

t

, that controls how big
a step we should take in the direction of the gradient
at time t. It is clear that for sufficiently small choice of
the learning rate ⌘

t

this methods will converge to a local
minimum of the cost function. However, choosing a small
⌘

t

comes at a huge computational cost. The smaller ⌘
t

,
the more steps we have to take to reach the local mini-
mum. In contrast, if ⌘

t

is too large, we can overshoot the
minimum and the algorithm becomes unstable (it either
oscillates or even moves away from the minimum). This
is shown in Figure 7. In practice, one usually specifies
a “schedule” that decreases ⌘

t

at long times. Common
schedules include power law and exponential decays in
time.

FIG. 7 Gradient descent exhibits three qualitatively
different regimes as a function of the learning rate.
Result of gradient descent on surface z = x2

+ 10y2 � 1 for
learning rate of ⌘ = 0.1, 0.9, 1.01. Notice that the trajectory
converges to the global minima in multiple steps for small
learning rates (⌘ = 0.1). Increasing the learning rate fur-
ther (⌘ = 0.9) causes the trajectory to oscillate around the
global minima before converging. For even larger learning
rates (⌘ = 1.01) the trajectory diverges from the minima. See
corresponding notebook for details.

To better understand this behavior and highlight some
of the shortcomings of GD, it is useful to contrast GD
with Newton’s method which is the inspiration for many
widely employed optimization methods. In Newton’s
method, we choose the step v for the parameters in such
a way as to minimize a second-order Taylor expansion to
the energy function

E(✓ + v) ⇡ E(✓) + r
✓

E(✓)v +

1

2

v

T H(✓)v,

where H(✓) is the Hessian matrix of second derivatives.
Differentiating this equation respect to v and noting that
for the optimal value vopt we expect r

✓

E(✓+vopt) = 0,
yields the following equation

0 = r
✓

E(✓) + H(✓)vopt. (11)

Rearranging this expression results in the desired update
rules for Newton’s method

v

t

= H�1
(✓

t

)r
✓

E(✓

t

) (12)
✓

t+1 = ✓

t

� v

t

. (13)

Since we have no guarantee that the Hessian is well con-
ditioned, in almost all applications of Netwon’s method,
one replaces the inverse of the Hessian H�1

(✓
t

) by some
suitably regularized pseudo-inverse such as [H(✓

t

)+✏I]

�1

with ✏ a small parameter (Battiti, 1992).
For the purposes of machine learning, Newton’s

method is not practical for two interrelated reasons.
First, calculating a Hessian is an extremely expensive
numerical computation. Second, even if we employ first-
order approximation methods to approximate the Hes-
sian (commonly called quasi-Newton methods), we must

⌘t = learning rate 15

store and invert a matrix with n2 entries, where n is the
number of parameters. For models with millions of pa-
rameters such as those commonly employed in the neu-
ral network literature, this is close to impossible with
present-day computational power. Despite these practi-
cal shortcomings, Newton’s method gives many impor-
tant intuitions about how to modify GD algorithms to
improve their performance. Notice that, unlike in GD
where the learning rate is the same for all parameters,
Newton’s method automatically “adapts” the learning
rate of different parameters depending on the Hessian
matrix. Since the Hessian encodes the curvature of the
surface we are trying to find the minimum of – more
specifically, the singular values of the Hessian are in-
versely proportional to the squares of the local curvatures
of the surface – Newton’s method automatically adjusts
the step size so that one takes larger steps in flat di-
rections with small curvature and smaller steps in steep
directions with large curvature.

Our derivation of Newton’s method also allows us to
develop intuition about the role of the learning rate in
GD. Let’s first consider the special case of using GD to
find the minimum of a quadratic energy function of a sin-
gle parameter ✓ (LeCun et al., 1998b). Given the current
value of our parameter ✓, we can ask what is the optimal
choice of the learning rate ⌘opt, where ⌘opt is defined as
the value of ⌘ that allows us to reach the minimum of the
quadratic energy function in a single step (see Figure 8).
To find ⌘opt, we expand the energy function to second
order around the current value

E(✓ + v) = E(✓
c

) + @
✓

E(✓)v +

1

2

@2
✓

E(✓)v2. (14)

Differentiating with respect to v and setting ✓min = ✓�v
yields

✓min = ✓ � [@2
✓

E(✓)]�1@
✓

E(✓). (15)

Comparing with (10) gives,

⌘opt = [@2
✓

E(✓)]�1. (16)

One can show that there are four qualitatively different
regimes possible (see Fig. 8) (LeCun et al., 1998b). If
⌘ < ⌘opt, then GD will take multiple small steps to reach
the bottom of the potential. For ⌘ = ⌘opt, GD reaches
the bottom of the potential in a single step. If ⌘opt <
⌘ < 2⌘opt, then the GD algorithm will oscillate across
both sides of the potential before eventually converging
to the minima. However, when ⌘ > 2⌘opt, the algorithm
actually diverges!

It is straightforward to generalize this to the multidi-
mensional case. The natural multidimensional general-
ization of the second derivative is the Hessian H(✓). We
can always perform a singular value decomposition (i.e.
a rotation by an orthogonal matrix for quadratic minima
where the Hessian is symmetric, see Sec. VI.B for a brief

E(θ)

θ
θmin

E(θ)

θ
θmin

E(θ)

θ
θmin

E(θ)

θ
θmin

η<ηopt η=ηopt

η>ηopt η>2ηopt

A B

C D

FIG. 8 Effect of learning rate on convergence. For a
one dimensional quadratic potential, one can show that there
exists four different qualitative behaviors for gradient descent
(GD) as a function of the learning rate ⌘ depending on the
relationship between ⌘ and ⌘

opt

= [@2

✓

E(✓)]�1. (a) For ⌘ <
⌘
opt

, GD converges to the minimum. (b) For ⌘ = ⌘
opt

, GD
converges in a single step. (c) For ⌘

opt

< ⌘ < 2⌘
opt

, GD
oscillates around the minima and eventually converges. (d)
For ⌘ > 2⌘

opt

, GD moves away from the minima. This figure
is adapted from (LeCun et al., 1998b).

introduction to SVD) and consider the singular values
{�} of the Hessian. If we use a single learning rate for all
parameters, in analogy with (16), convergence requires
that

⌘ <
2

�max
, (17)

where �max is the largest singular value of the Hessian.
If the minimum eigenvalue �min differs significantly from
the largest value �max, then convergence in the �min-
direction will be extremely slow! One can actually show
that the convergence time scales with the condition num-
ber  = �max/�min (LeCun et al., 1998b).

B. Limitations of the simplest gradient descent algorithm

The last section hints at some of the major shortcom-
ings of the simple GD algorithm described in (10). Before
proceeding, we briefly summarize these limitations and
discuss general strategies for modifying GD to overcome
these deficiencies.

• GD finds local minima of our function. Since the
GD algorithm is deterministic, if it converges, it
will converge to a local minimum of our energy
function. Because in ML we are often dealing with

Stochastic Gradient Descent (SGD)

► Stochasticity is added by approximating the gradient on a subset of data
called a mini batch

► Size of mini batch is smaller than dataset - typically 10’s to 100’s of data
points

► Full iteration using all mini batches of a dataset is called an epoch
► Update rule is now just

► Decreases chance of becoming stuck in local minima
► Also has been shown to help alleviate over-fitting

17

cycling over all M minibatches. A full iteration over all
n data points – in other words using all M minibatches
– is called an epoch. For notational convenience, we will
denote the mini-batch approximation to the gradient by

r
✓

EMB

(✓) =

MX

i2Bk

r
✓

e
i

(x

i

,✓). (19)

With this notation, we can rewrite the SGD algorithm as

v

t

= ⌘
t

r
✓

EMB

(✓),

✓

t+1 = ✓

t

� v

t

. (20)

Thus, in SGD, we replace the actual gradient over the
full data at each gradient descent step by an approxima-
tion to the gradient computed using a minibatch. This
has two important benefits. First, it introduces stochas-
ticity and decreases the chance that our fitting algorithm
gets stuck in isolated local minima. Second, it signifi-
cantly speeds up the calculation as one does not have to
use all n data points to calculate the gradient. Empirical
and theoretical work suggests that SGD has additional
benefits. Chief among these is that introducing stochas-
ticity is thought to act as a natural regularizer that pre-
vents overfitting in deep, isolated minima (Bishop, 1995a;
Keskar et al., 2016).

D. Adding Momentum

In practice, SGD is almost always used with a “mo-
mentum” or inertia term that serves as a memory of the
direction we are moving in parameter space. This is typ-
ically implemented as follows

v

t

= �v
t�1 + ⌘

t

r
✓

E(✓

t

)

✓

t+1 = ✓

t

� v

t

, (21)

where we have introduced a momentum parameter �,
with 0  �  1, and for brevity we dropped the ex-
plicit notation to indicate the gradient is to be taken
over a different mini-batch at each step. We call this al-
gorithm gradient descent with momentum (GDM). From
these equations, it is clear that v

t

is a running average
of recently encountered gradients and (1 � �)

�1 sets the
characteristic time scale for the memory used in the av-
eraging procedure. Consistent with this, when � = 0,
this just reduces down to ordinary SGD as described in
Eq. (20). An equivalent way of writing the updates is

�✓

t+1 = ��✓

t

� ⌘
t

r
✓

E(✓

t

), (22)

where we have defined �✓

t

= ✓

t

� ✓

t�1. In what should
be a familiar scenario to many physicists, momentum
based methods were first introduced in old, largely for-
gotten (until recently) Soviet papers (Nesterov, 1983;
Polyak, 1964).

Before proceeding further, let us try to get more in-
tuition from these equations. It is helpful to consider a
simple physical analogy with a particle of mass m moving
in a viscous medium with drag coefficient µ and potential
E(w) (Qian, 1999). If we denote the particle’s position
by w, then its motion is described by

m
d2w

dt2
+ µ

dw

dt
= �r

w

E(w). (23)

We can discretize this equation in the usual way to get

m
w

t+�t

� 2w

t

+ w

t��t

(�t)2
+ µ

w

t+�t

� w

t

�t
= �r

w

E(w).

(24)
Rearranging this equation, we can rewrite this as

�w

t+�t

= � (�t)2

m + µ�t
r

w

E(w) +

m

m + µ�t
�w

t

. (25)

Notice that this equation is identical to Eq. (22) if we
identify the position of the particle, w, with the parame-
ters ✓. This allows us to identify the momentum param-
eter and learning rate with the mass of the particle and
the viscous drag as:

� =

m

m + µ�t
, ⌘ =

(�t)2

m + µ�t
. (26)

Thus, as the name suggests, the momentum parameter
is proportional to the mass of the particle and effec-
tively provides inertia. Furthermore, in the large vis-
cosity/small learning rate limit, our memory time scales
as (1 � �)

�1 ⇡ m/(µ�t).
Why is momentum useful? SGD momentum helps

the gradient descent algorithm gain speed in directions
with persistent but small gradients even in the presence
of stochasticity, while suppressing oscillations in high-
curvature directions. This becomes especially important
in situations where the landscape is shallow and flat in
some directions and narrow and steep in others. It has
been argued that first-order methods (with appropriate
initial conditions) can perform comparable to more ex-
pensive second order methods, especially in the context
of complex deep learning models (Sutskever et al., 2013).
Empirical studies suggest that the benefits of including
momentum are especially pronounced in complex models
in the initial “transient phase” of training, rather than
during a subsequent fine-tuning of a coarse minimum.
The reason for this is that, in this transient phase, corre-
lations in the gradient persist across many gradient de-
scent steps, accentuating the role of inertia and memory.

These beneficial properties of momentum can some-
times become even more pronounced by using a slight
modification of the classical momentum algorithm called
Nesterov Accelerated Gradient (NAG) (Nesterov, 1983;
Sutskever et al., 2013). In the NAG algorithm, rather
than calculating the gradient at the current parameters,

SGD with momentum

► SGD with momentum adds an inertia term that retains some memory of
the direction being moved in

► SGD helps parameter updates gain ‘speed’ in persistent smaller
gradients while suppressing oscillatory high gradients

17

cycling over all M minibatches. A full iteration over all
n data points – in other words using all M minibatches
– is called an epoch. For notational convenience, we will
denote the mini-batch approximation to the gradient by

r
✓

EMB

(✓) =

MX

i2Bk

r
✓

e
i

(x

i

,✓). (19)

With this notation, we can rewrite the SGD algorithm as

v

t

= ⌘
t

r
✓

EMB

(✓),

✓

t+1 = ✓

t

� v

t

. (20)

Thus, in SGD, we replace the actual gradient over the
full data at each gradient descent step by an approxima-
tion to the gradient computed using a minibatch. This
has two important benefits. First, it introduces stochas-
ticity and decreases the chance that our fitting algorithm
gets stuck in isolated local minima. Second, it signifi-
cantly speeds up the calculation as one does not have to
use all n data points to calculate the gradient. Empirical
and theoretical work suggests that SGD has additional
benefits. Chief among these is that introducing stochas-
ticity is thought to act as a natural regularizer that pre-
vents overfitting in deep, isolated minima (Bishop, 1995a;
Keskar et al., 2016).

D. Adding Momentum

In practice, SGD is almost always used with a “mo-
mentum” or inertia term that serves as a memory of the
direction we are moving in parameter space. This is typ-
ically implemented as follows

v

t

= �v
t�1 + ⌘

t

r
✓

E(✓

t

)

✓

t+1 = ✓

t

� v

t

, (21)

where we have introduced a momentum parameter �,
with 0  �  1, and for brevity we dropped the ex-
plicit notation to indicate the gradient is to be taken
over a different mini-batch at each step. We call this al-
gorithm gradient descent with momentum (GDM). From
these equations, it is clear that v

t

is a running average
of recently encountered gradients and (1 � �)

�1 sets the
characteristic time scale for the memory used in the av-
eraging procedure. Consistent with this, when � = 0,
this just reduces down to ordinary SGD as described in
Eq. (20). An equivalent way of writing the updates is

�✓

t+1 = ��✓

t

� ⌘
t

r
✓

E(✓

t

), (22)

where we have defined �✓

t

= ✓

t

� ✓

t�1. In what should
be a familiar scenario to many physicists, momentum
based methods were first introduced in old, largely for-
gotten (until recently) Soviet papers (Nesterov, 1983;
Polyak, 1964).

Before proceeding further, let us try to get more in-
tuition from these equations. It is helpful to consider a
simple physical analogy with a particle of mass m moving
in a viscous medium with drag coefficient µ and potential
E(w) (Qian, 1999). If we denote the particle’s position
by w, then its motion is described by

m
d2w

dt2
+ µ

dw

dt
= �r

w

E(w). (23)

We can discretize this equation in the usual way to get

m
w

t+�t

� 2w

t

+ w

t��t

(�t)2
+ µ

w

t+�t

� w

t

�t
= �r

w

E(w).

(24)
Rearranging this equation, we can rewrite this as

�w

t+�t

= � (�t)2

m + µ�t
r

w

E(w) +

m

m + µ�t
�w

t

. (25)

Notice that this equation is identical to Eq. (22) if we
identify the position of the particle, w, with the parame-
ters ✓. This allows us to identify the momentum param-
eter and learning rate with the mass of the particle and
the viscous drag as:

� =

m

m + µ�t
, ⌘ =

(�t)2

m + µ�t
. (26)

Thus, as the name suggests, the momentum parameter
is proportional to the mass of the particle and effec-
tively provides inertia. Furthermore, in the large vis-
cosity/small learning rate limit, our memory time scales
as (1 � �)

�1 ⇡ m/(µ�t).
Why is momentum useful? SGD momentum helps

the gradient descent algorithm gain speed in directions
with persistent but small gradients even in the presence
of stochasticity, while suppressing oscillations in high-
curvature directions. This becomes especially important
in situations where the landscape is shallow and flat in
some directions and narrow and steep in others. It has
been argued that first-order methods (with appropriate
initial conditions) can perform comparable to more ex-
pensive second order methods, especially in the context
of complex deep learning models (Sutskever et al., 2013).
Empirical studies suggest that the benefits of including
momentum are especially pronounced in complex models
in the initial “transient phase” of training, rather than
during a subsequent fine-tuning of a coarse minimum.
The reason for this is that, in this transient phase, corre-
lations in the gradient persist across many gradient de-
scent steps, accentuating the role of inertia and memory.

These beneficial properties of momentum can some-
times become even more pronounced by using a slight
modification of the classical momentum algorithm called
Nesterov Accelerated Gradient (NAG) (Nesterov, 1983;
Sutskever et al., 2013). In the NAG algorithm, rather
than calculating the gradient at the current parameters,

� = momentum parameter

► All methods so far require a schedule for the learning rate as a function
of time

►Optimal learning rate is actually inverse of the Hessian
► Expensive to compute. Second order moment methods keep track of the

squared gradient
► Take large steps in shallow directions and small steps in steep directions
► Algorithms include RMSprop (Teileman and Hinton 2012), AdaDelta

(Zeiler, 2012) and ADAM (Kingma and Ba, 2014)
► E.g. RMSprop update rule

Second order moments

15

store and invert a matrix with n2 entries, where n is the
number of parameters. For models with millions of pa-
rameters such as those commonly employed in the neu-
ral network literature, this is close to impossible with
present-day computational power. Despite these practi-
cal shortcomings, Newton’s method gives many impor-
tant intuitions about how to modify GD algorithms to
improve their performance. Notice that, unlike in GD
where the learning rate is the same for all parameters,
Newton’s method automatically “adapts” the learning
rate of different parameters depending on the Hessian
matrix. Since the Hessian encodes the curvature of the
surface we are trying to find the minimum of – more
specifically, the singular values of the Hessian are in-
versely proportional to the squares of the local curvatures
of the surface – Newton’s method automatically adjusts
the step size so that one takes larger steps in flat di-
rections with small curvature and smaller steps in steep
directions with large curvature.

Our derivation of Newton’s method also allows us to
develop intuition about the role of the learning rate in
GD. Let’s first consider the special case of using GD to
find the minimum of a quadratic energy function of a sin-
gle parameter ✓ (LeCun et al., 1998b). Given the current
value of our parameter ✓, we can ask what is the optimal
choice of the learning rate ⌘opt, where ⌘opt is defined as
the value of ⌘ that allows us to reach the minimum of the
quadratic energy function in a single step (see Figure 8).
To find ⌘opt, we expand the energy function to second
order around the current value

E(✓ + v) = E(✓
c

) + @
✓

E(✓)v +

1

2

@2
✓

E(✓)v2. (14)

Differentiating with respect to v and setting ✓min = ✓�v
yields

✓min = ✓ � [@2
✓

E(✓)]�1@
✓

E(✓). (15)

Comparing with (10) gives,

⌘opt = [@2
✓

E(✓)]�1. (16)

One can show that there are four qualitatively different
regimes possible (see Fig. 8) (LeCun et al., 1998b). If
⌘ < ⌘opt, then GD will take multiple small steps to reach
the bottom of the potential. For ⌘ = ⌘opt, GD reaches
the bottom of the potential in a single step. If ⌘opt <
⌘ < 2⌘opt, then the GD algorithm will oscillate across
both sides of the potential before eventually converging
to the minima. However, when ⌘ > 2⌘opt, the algorithm
actually diverges!

It is straightforward to generalize this to the multidi-
mensional case. The natural multidimensional general-
ization of the second derivative is the Hessian H(✓). We
can always perform a singular value decomposition (i.e.
a rotation by an orthogonal matrix for quadratic minima
where the Hessian is symmetric, see Sec. VI.B for a brief

E(θ)

θ
θmin

E(θ)

θ
θmin

E(θ)

θ
θmin

E(θ)

θ
θmin

η<ηopt η=ηopt

η>ηopt η>2ηopt

A B

C D

FIG. 8 Effect of learning rate on convergence. For a
one dimensional quadratic potential, one can show that there
exists four different qualitative behaviors for gradient descent
(GD) as a function of the learning rate ⌘ depending on the
relationship between ⌘ and ⌘

opt

= [@2

✓

E(✓)]�1. (a) For ⌘ <
⌘
opt

, GD converges to the minimum. (b) For ⌘ = ⌘
opt

, GD
converges in a single step. (c) For ⌘

opt

< ⌘ < 2⌘
opt

, GD
oscillates around the minima and eventually converges. (d)
For ⌘ > 2⌘

opt

, GD moves away from the minima. This figure
is adapted from (LeCun et al., 1998b).

introduction to SVD) and consider the singular values
{�} of the Hessian. If we use a single learning rate for all
parameters, in analogy with (16), convergence requires
that

⌘ <
2

�max
, (17)

where �max is the largest singular value of the Hessian.
If the minimum eigenvalue �min differs significantly from
the largest value �max, then convergence in the �min-
direction will be extremely slow! One can actually show
that the convergence time scales with the condition num-
ber  = �max/�min (LeCun et al., 1998b).

B. Limitations of the simplest gradient descent algorithm

The last section hints at some of the major shortcom-
ings of the simple GD algorithm described in (10). Before
proceeding, we briefly summarize these limitations and
discuss general strategies for modifying GD to overcome
these deficiencies.

• GD finds local minima of our function. Since the
GD algorithm is deterministic, if it converges, it
will converge to a local minimum of our energy
function. Because in ML we are often dealing with

18

r
✓

E(✓

t

), one calculates the gradient at the expected
value of the parameters given our current momentum,
r

✓

E(✓

t

+ �v
t�1). This yields the NAG update rule

v

t

= �v
t�1 + ⌘

t

r
✓

E(✓

t

+ �v
t�1)

✓

t+1 = ✓

t

� v

t

. (27)

One of the major advantages of NAG is that it allows for
the use of a larger learning rate than GDM for the same
choice of �.

E. Methods that use the second moment of the gradient

In stochastic gradient descent, with and without mo-
mentum, we still have to specify a “schedule” for tuning
the learning rates ⌘

t

as a function of time. As discussed in
the context of Newton’s method, this presents a number
of dilemmas. The learning rate is limited by the steep-
est direction which can change depending on the current
position in the landscape. To circumvent this problem,
ideally our algorithm would keep track of curvature and
take large steps in shallow, flat directions and small steps
in steep, narrow directions. Second-order methods ac-
complish this by calculating or approximating the Hes-
sian and normalizing the learning rate by the curvature.
However, this is very computationally expensive for ex-
tremely large models. Ideally, we would like to be able to
adaptively change the step size to match the landscape
without paying the steep computational price of calcu-
lating or approximating Hessians.

Recently, a number of methods have been introduced
that accomplish this by tracking not only the gradient,
but also the second moment of the gradient. These
methods include AdaGrad (Duchi et al., 2011), AdaDelta
(Zeiler, 2012), RMS-Prop (Tieleman and Hinton, 2012),
and ADAM (Kingma and Ba, 2014). Here, we discuss
the last two as representatives of this class of algorithms.

In RMS prop, in addition to keeping a running average
of the first moment of the gradient, we also keep track of
the second moment denoted by s

t

= E[g

2
t

]. The update
rule for RMS prop is given by

g

t

= r
✓

E(✓) (28)
s

t

= �s
t�1 + (1 � �)g

2
t

✓

t+1 = ✓

t

� ⌘
t

g

tp
s

t

+ ✏
,

where � controls the averaging time of the second mo-
ment and is typically taken to be about � = 0.9, ⌘

t

is a
learning rate typically chosen to be 10

�3, and ✏ ⇠ 10

�8

is a small regularization constant to prevent divergences.
Multiplication and division by vectors is understood as
an element-wise operation. It is clear from this formula
that the learning rate is reduced in directions where the
norm of the gradient is consistently large. This greatly
speeds up the convergence by allowing us to use a larger
learning rate for flat directions.

A related algorithm is the ADAM optimizer. In
ADAM, we keep a running average of both the first and
second moment of the gradient and use this information
to adaptively change the learning rate for different pa-
rameters. In addition to keeping a running average of the
first and second moments of the gradient (i.e. m

t

= E[g

t

]

and s

t

= E[g

2
t

], respectively), ADAM performs an addi-
tional bias correction to account for the fact that we are
estimating the first two moments of the gradient using a
running average (denoted by the hats in the update rule
below). The update rule for ADAM is given by (where
multiplication and division are once again understood to
be element-wise operations below)

g

t

= r
✓

E(✓) (29)
m

t

= �1mt�1 + (1 � �1)gt

s

t

= �2st�1 + (1 � �2)g
2
t

ˆ

m

t

=

m

t

1 � �t

1

ˆ

s

t

=

s

t

1 � �t

2

✓

t+1 = ✓

t

� ⌘
t

ˆ

m

tp
ˆ

s

t

+ ✏
,

(30)

where �1 and �2 set the memory lifetime of the first and
second moment and are typically taken to be 0.9 and 0.99

respectively, and ⌘ and ✏ are identical to RMSprop.
Like in RMSprop, the effective step size of a parameter

depends on the magnitude of its gradient squared. To
understand this better, let us rewrite this expression in
terms of the variance �

2
t

=

ˆ

s

t

� (

ˆ

m

t

)

2. Consider a single
parameter ✓

t

. The update rule for this parameter is given
by

�✓
t+1 = �⌘

t

m̂
tp

�2
t

+ m2
t

+ ✏
. (31)

We now examine different limiting cases of this expres-
sion. Assume that our gradient estimates are consistent
so that the variance is small. In this case our update
rule tends to �✓

t+1 ! �⌘
t

(here we have assumed that
m̂

t

� ✏). This is equivalent to cutting off large persis-
tent gradients at 1 and limiting the maximum step size
in steep directions. On the other hand, imagine that the
gradient is widely fluctuating between gradient descent
steps. In this case �2 � m̂2

t

so that our update becomes
�✓

t+1 ! �⌘
t

m̂
t

/�
t

. In other words, we adapt our learn-
ing rate so that it is proportional to the signal-to-noise
ratio (i.e. the mean in units of the standard deviation).
From a physical point of view, this is extremely desir-
able. The standard deviation serves as a natural adap-
tive scale for deciding whether a gradient is large or small.
Thus, ADAM has the beneficial effects of adapting our
step size so that we cut off large gradient directions (and
hence prevent oscillations and divergences) and measur-

� = averaging time

✏ = regularisation constant

18

r
✓

E(✓

t

), one calculates the gradient at the expected
value of the parameters given our current momentum,
r

✓

E(✓

t

+ �v
t�1). This yields the NAG update rule

v

t

= �v
t�1 + ⌘

t

r
✓

E(✓

t

+ �v
t�1)

✓

t+1 = ✓

t

� v

t

. (27)

One of the major advantages of NAG is that it allows for
the use of a larger learning rate than GDM for the same
choice of �.

E. Methods that use the second moment of the gradient

In stochastic gradient descent, with and without mo-
mentum, we still have to specify a “schedule” for tuning
the learning rates ⌘

t

as a function of time. As discussed in
the context of Newton’s method, this presents a number
of dilemmas. The learning rate is limited by the steep-
est direction which can change depending on the current
position in the landscape. To circumvent this problem,
ideally our algorithm would keep track of curvature and
take large steps in shallow, flat directions and small steps
in steep, narrow directions. Second-order methods ac-
complish this by calculating or approximating the Hes-
sian and normalizing the learning rate by the curvature.
However, this is very computationally expensive for ex-
tremely large models. Ideally, we would like to be able to
adaptively change the step size to match the landscape
without paying the steep computational price of calcu-
lating or approximating Hessians.

Recently, a number of methods have been introduced
that accomplish this by tracking not only the gradient,
but also the second moment of the gradient. These
methods include AdaGrad (Duchi et al., 2011), AdaDelta
(Zeiler, 2012), RMS-Prop (Tieleman and Hinton, 2012),
and ADAM (Kingma and Ba, 2014). Here, we discuss
the last two as representatives of this class of algorithms.

In RMS prop, in addition to keeping a running average
of the first moment of the gradient, we also keep track of
the second moment denoted by s

t

= E[g

2
t

]. The update
rule for RMS prop is given by

g

t

= r
✓

E(✓) (28)
s

t

= �s
t�1 + (1 � �)g

2
t

✓

t+1 = ✓

t

� ⌘
t

g

tp
s

t

+ ✏
,

where � controls the averaging time of the second mo-
ment and is typically taken to be about � = 0.9, ⌘

t

is a
learning rate typically chosen to be 10

�3, and ✏ ⇠ 10

�8

is a small regularization constant to prevent divergences.
Multiplication and division by vectors is understood as
an element-wise operation. It is clear from this formula
that the learning rate is reduced in directions where the
norm of the gradient is consistently large. This greatly
speeds up the convergence by allowing us to use a larger
learning rate for flat directions.

A related algorithm is the ADAM optimizer. In
ADAM, we keep a running average of both the first and
second moment of the gradient and use this information
to adaptively change the learning rate for different pa-
rameters. In addition to keeping a running average of the
first and second moments of the gradient (i.e. m

t

= E[g

t

]

and s

t

= E[g

2
t

], respectively), ADAM performs an addi-
tional bias correction to account for the fact that we are
estimating the first two moments of the gradient using a
running average (denoted by the hats in the update rule
below). The update rule for ADAM is given by (where
multiplication and division are once again understood to
be element-wise operations below)

g

t

= r
✓

E(✓) (29)
m

t

= �1mt�1 + (1 � �1)gt

s

t

= �2st�1 + (1 � �2)g
2
t

ˆ

m

t

=

m

t

1 � �t

1

ˆ

s

t

=

s

t

1 � �t

2

✓

t+1 = ✓

t

� ⌘
t

ˆ

m

tp
ˆ

s

t

+ ✏
,

(30)

where �1 and �2 set the memory lifetime of the first and
second moment and are typically taken to be 0.9 and 0.99

respectively, and ⌘ and ✏ are identical to RMSprop.
Like in RMSprop, the effective step size of a parameter

depends on the magnitude of its gradient squared. To
understand this better, let us rewrite this expression in
terms of the variance �

2
t

=

ˆ

s

t

� (

ˆ

m

t

)

2. Consider a single
parameter ✓

t

. The update rule for this parameter is given
by

�✓
t+1 = �⌘

t

m̂
tp

�2
t

+ m2
t

+ ✏
. (31)

We now examine different limiting cases of this expres-
sion. Assume that our gradient estimates are consistent
so that the variance is small. In this case our update
rule tends to �✓

t+1 ! �⌘
t

(here we have assumed that
m̂

t

� ✏). This is equivalent to cutting off large persis-
tent gradients at 1 and limiting the maximum step size
in steep directions. On the other hand, imagine that the
gradient is widely fluctuating between gradient descent
steps. In this case �2 � m̂2

t

so that our update becomes
�✓

t+1 ! �⌘
t

m̂
t

/�
t

. In other words, we adapt our learn-
ing rate so that it is proportional to the signal-to-noise
ratio (i.e. the mean in units of the standard deviation).
From a physical point of view, this is extremely desir-
able. The standard deviation serves as a natural adap-
tive scale for deciding whether a gradient is large or small.
Thus, ADAM has the beneficial effects of adapting our
step size so that we cut off large gradient directions (and
hence prevent oscillations and divergences) and measur-

Second order methods

Deep learning in practice

► Created by Google
►Math library used for machine learning and neural networks
► Supports Python and C++
► Pros
✓ Documentation
✓ Backed by large community
✓ In built monitoring for training processes (Tensorboard)

► Cons
x Static computational graphs
x Higher learning curve than other libraries (low level, debugging harder)
x Some performance issues

https://www.tensorflow.org/

Deep learning in practice

► Created by Facebook
► Tensor computation (like numpy) with GPU acceleration
► Supports Python
► Pros
✓ Dynamic computational graphs (useful for e.g. RNNs)
✓ Lower learning curve (more pythonic, easier to debug)
✓ Easy to write own layer types

► Cons
x Lacks in built monitoring
x Not yet production ready (at v0.4 but less of an issue for research)
x Documentation not as detailed

https://pytorch.org/

PyTorch Example

W1 W2

x
y

h

Deep learning in practice

► Keras is built on top of TensorFlow/Theano
► Supports Python
► Pros
✓ Easiest learning curve
✓ Very intuitive interface for building neural networks
✓ Easy to write own layer types

► Cons
x High level and not always as customisable
x Not as many functionalities, less control

https://keras.io/

Loss Function

► The first thing to do to train a neural network is define a loss function
► For continuous outputs these include the mean squared error and mean

absolute error

► Full loss function can include additional regularization terms
► For categorical outputs loss function is usually the categorical cross-

entropy
► Last layer typically has a soft-max activation (turns M outputs into

normalized probabilities)

► Loss increased when predicted probability further from actual label

48

Empirically, the best architecture for a problem de-
pends on the task, the amount and type of data that is
available, and the computational resources at one’s dis-
posal. Certain architectures are easier to train, while
others might be better at capturing complicated depen-
dencies in the data and learning relevant input features.
Finally, there have been numerous works that move be-
yond the simple deep, feed-forward neural network ar-
chitectures discussed here. For example, modern neural
networks for image segmentation often incorporate “skip
connections” that skip layers of the neural network (He
et al., 2016). This allows information to directly propa-
gate to a hidden or output layer, bypassing intermediate
layers and often improving performance.

B. Training deep networks

In the previous section, we introduced the basic ar-
chitecture for neural networks. Here we discuss how to
efficiently train large neural networks. Luckily, the basic
procedure for training neural nets is the same as we used
for training simpler supervised learning algorithms, such
as logistic and linear regression: construct a cost/loss
function and then use gradient descent to minimize the
cost function. Neural networks differ from these simpler
supervised procedures in that generally they contain mul-
tiple hidden layers that make taking the gradient more
computationally difficult. We will return to this in the
next section which discusses the “backpropagation” algo-
rithm for computing gradients.

Like all supervised learning procedures, the first thing
one must do to train a neural network is to specify a loss
function. Given a data point (x

i

, y
i

), the neural network
makes a prediction ŷ

i

(w), where w are the parameters
of the neural network. Recall that in most cases, the
top output layer of our neural net is either a continuous
predictor or a classifier that makes discrete (categorical)
predictions. Depending on whether one wants to make
continuous or categorical predictions, one must utilize a
different kind of loss function.

For continuous data, the loss functions that are com-
monly used to train neural networks are identical to those
used in linear regression, and include the mean squared
error

E(w) =

1

N

X

i

(y
i

� ŷ
i

(w))

2, (119)

where N is the number of data points, and the mean-
absolute error (i.e. L1 norm)

E(w) =

1

N

X

i

|y
i

� ŷ
i

(w)|. (120)

The full cost-function often includes additional terms
that implement regularization (e.g. L1 or L2 regulariz-
ers).

For categorical data, the most commonly used loss
function is the cross-entropy (Eq.(76) and Eq.(81)), since
the output layer is often taken to be a logistic classifier
for binary data with two types of labels, or a soft-max
classifier if there are more than two types of labels. The
cross-entropy was already discussed extensively in earlier
sections on logistic regression and soft-max classifiers, see
Sec. VII. Recall that for classification of binary data, the
output of the top layer of the neural network is the prob-
ability ŷ

i

(w) = p(y
i

= 1|x
i

;w) that data point i is pre-
dicted to be in category 1. The cross-entropy between
the true labels y

i

2 {0, 1} and the predictions is given by

E(w) = �
nX

i=1

y
i

log ŷ
i

(w) + (1 � y
i

) log [1 � ŷ
i

(w)] .

More generally, for categorical data, y can take on M
values so that y 2 {0, 1, . . . , M � 1}. For each datapoint
i, define a vector y

im

called a ‘one-hot’ vector, such that

y
im

=

(
1, if y

i

= m

0, otherwise.
(121)

We can also define the probability that the neural net-
work assigns a datapoint to category m: ŷ

im

(w) = p(y
i

=

m|x
i

;w). Then, the categorical cross-entropy is defined
as

E((w)) = �
nX

i=1

M�1X

m=0

y
im

log ŷ
im

(w)

+ (1 � y
im

) log [1 � ŷ
im

(w)] . (122)

As in linear and logistic regression, this loss function is
often supplemented by additional terms that implement
regularization.

Having defined an architecture and a cost function,
we must now train the model. As with other supervised
learning methods, we make use of gradient descent-based
methods to optimize the cost function. Recall that the
basic idea of gradient descent is to update the parame-
ters w to move in the direction of the gradient of the cost
function r

w

E(w). In Sec. IV, we discussed numerous
optimizers that implement variations of stochastic gra-
dient descent (SGD, Nesterov, RMSProp, Adam, etc.)
Most modern neural network packages, such as Keras,
allow the user to specify which of these optimizers they
would like to use in order to train the neural network.
Depending on the architecture, data, and computational
resources, different optimizers may work better on the
problem, though vanilla SGD is a good first choice.

Finally, we note that unlike in linear and logistic re-
gression, calculating the gradients for a neural network
requires a specialized algorithm, called backpropogation
(often abbreviated backprop) which forms the heart of
any neural network training procedure. Backpropaga-
tion has been discovered multiple times independently

48

Empirically, the best architecture for a problem de-
pends on the task, the amount and type of data that is
available, and the computational resources at one’s dis-
posal. Certain architectures are easier to train, while
others might be better at capturing complicated depen-
dencies in the data and learning relevant input features.
Finally, there have been numerous works that move be-
yond the simple deep, feed-forward neural network ar-
chitectures discussed here. For example, modern neural
networks for image segmentation often incorporate “skip
connections” that skip layers of the neural network (He
et al., 2016). This allows information to directly propa-
gate to a hidden or output layer, bypassing intermediate
layers and often improving performance.

B. Training deep networks

In the previous section, we introduced the basic ar-
chitecture for neural networks. Here we discuss how to
efficiently train large neural networks. Luckily, the basic
procedure for training neural nets is the same as we used
for training simpler supervised learning algorithms, such
as logistic and linear regression: construct a cost/loss
function and then use gradient descent to minimize the
cost function. Neural networks differ from these simpler
supervised procedures in that generally they contain mul-
tiple hidden layers that make taking the gradient more
computationally difficult. We will return to this in the
next section which discusses the “backpropagation” algo-
rithm for computing gradients.

Like all supervised learning procedures, the first thing
one must do to train a neural network is to specify a loss
function. Given a data point (x

i

, y
i

), the neural network
makes a prediction ŷ

i

(w), where w are the parameters
of the neural network. Recall that in most cases, the
top output layer of our neural net is either a continuous
predictor or a classifier that makes discrete (categorical)
predictions. Depending on whether one wants to make
continuous or categorical predictions, one must utilize a
different kind of loss function.

For continuous data, the loss functions that are com-
monly used to train neural networks are identical to those
used in linear regression, and include the mean squared
error

E(w) =

1

N

X

i

(y
i

� ŷ
i

(w))

2, (119)

where N is the number of data points, and the mean-
absolute error (i.e. L1 norm)

E(w) =

1

N

X

i

|y
i

� ŷ
i

(w)|. (120)

The full cost-function often includes additional terms
that implement regularization (e.g. L1 or L2 regulariz-
ers).

For categorical data, the most commonly used loss
function is the cross-entropy (Eq.(76) and Eq.(81)), since
the output layer is often taken to be a logistic classifier
for binary data with two types of labels, or a soft-max
classifier if there are more than two types of labels. The
cross-entropy was already discussed extensively in earlier
sections on logistic regression and soft-max classifiers, see
Sec. VII. Recall that for classification of binary data, the
output of the top layer of the neural network is the prob-
ability ŷ

i

(w) = p(y
i

= 1|x
i

;w) that data point i is pre-
dicted to be in category 1. The cross-entropy between
the true labels y

i

2 {0, 1} and the predictions is given by

E(w) = �
nX

i=1

y
i

log ŷ
i

(w) + (1 � y
i

) log [1 � ŷ
i

(w)] .

More generally, for categorical data, y can take on M
values so that y 2 {0, 1, . . . , M � 1}. For each datapoint
i, define a vector y

im

called a ‘one-hot’ vector, such that

y
im

=

(
1, if y

i

= m

0, otherwise.
(121)

We can also define the probability that the neural net-
work assigns a datapoint to category m: ŷ

im

(w) = p(y
i

=

m|x
i

;w). Then, the categorical cross-entropy is defined
as

E((w)) = �
nX

i=1

M�1X

m=0

y
im

log ŷ
im

(w)

+ (1 � y
im

) log [1 � ŷ
im

(w)] . (122)

As in linear and logistic regression, this loss function is
often supplemented by additional terms that implement
regularization.

Having defined an architecture and a cost function,
we must now train the model. As with other supervised
learning methods, we make use of gradient descent-based
methods to optimize the cost function. Recall that the
basic idea of gradient descent is to update the parame-
ters w to move in the direction of the gradient of the cost
function r

w

E(w). In Sec. IV, we discussed numerous
optimizers that implement variations of stochastic gra-
dient descent (SGD, Nesterov, RMSProp, Adam, etc.)
Most modern neural network packages, such as Keras,
allow the user to specify which of these optimizers they
would like to use in order to train the neural network.
Depending on the architecture, data, and computational
resources, different optimizers may work better on the
problem, though vanilla SGD is a good first choice.

Finally, we note that unlike in linear and logistic re-
gression, calculating the gradients for a neural network
requires a specialized algorithm, called backpropogation
(often abbreviated backprop) which forms the heart of
any neural network training procedure. Backpropaga-
tion has been discovered multiple times independently

48

Empirically, the best architecture for a problem de-
pends on the task, the amount and type of data that is
available, and the computational resources at one’s dis-
posal. Certain architectures are easier to train, while
others might be better at capturing complicated depen-
dencies in the data and learning relevant input features.
Finally, there have been numerous works that move be-
yond the simple deep, feed-forward neural network ar-
chitectures discussed here. For example, modern neural
networks for image segmentation often incorporate “skip
connections” that skip layers of the neural network (He
et al., 2016). This allows information to directly propa-
gate to a hidden or output layer, bypassing intermediate
layers and often improving performance.

B. Training deep networks

In the previous section, we introduced the basic ar-
chitecture for neural networks. Here we discuss how to
efficiently train large neural networks. Luckily, the basic
procedure for training neural nets is the same as we used
for training simpler supervised learning algorithms, such
as logistic and linear regression: construct a cost/loss
function and then use gradient descent to minimize the
cost function. Neural networks differ from these simpler
supervised procedures in that generally they contain mul-
tiple hidden layers that make taking the gradient more
computationally difficult. We will return to this in the
next section which discusses the “backpropagation” algo-
rithm for computing gradients.

Like all supervised learning procedures, the first thing
one must do to train a neural network is to specify a loss
function. Given a data point (x

i

, y
i

), the neural network
makes a prediction ŷ

i

(w), where w are the parameters
of the neural network. Recall that in most cases, the
top output layer of our neural net is either a continuous
predictor or a classifier that makes discrete (categorical)
predictions. Depending on whether one wants to make
continuous or categorical predictions, one must utilize a
different kind of loss function.

For continuous data, the loss functions that are com-
monly used to train neural networks are identical to those
used in linear regression, and include the mean squared
error

E(w) =

1

N

X

i

(y
i

� ŷ
i

(w))

2, (119)

where N is the number of data points, and the mean-
absolute error (i.e. L1 norm)

E(w) =

1

N

X

i

|y
i

� ŷ
i

(w)|. (120)

The full cost-function often includes additional terms
that implement regularization (e.g. L1 or L2 regulariz-
ers).

For categorical data, the most commonly used loss
function is the cross-entropy (Eq.(76) and Eq.(81)), since
the output layer is often taken to be a logistic classifier
for binary data with two types of labels, or a soft-max
classifier if there are more than two types of labels. The
cross-entropy was already discussed extensively in earlier
sections on logistic regression and soft-max classifiers, see
Sec. VII. Recall that for classification of binary data, the
output of the top layer of the neural network is the prob-
ability ŷ

i

(w) = p(y
i

= 1|x
i

;w) that data point i is pre-
dicted to be in category 1. The cross-entropy between
the true labels y

i

2 {0, 1} and the predictions is given by

E(w) = �
nX

i=1

y
i

log ŷ
i

(w) + (1 � y
i

) log [1 � ŷ
i

(w)] .

More generally, for categorical data, y can take on M
values so that y 2 {0, 1, . . . , M � 1}. For each datapoint
i, define a vector y

im

called a ‘one-hot’ vector, such that

y
im

=

(
1, if y

i

= m

0, otherwise.
(121)

We can also define the probability that the neural net-
work assigns a datapoint to category m: ŷ

im

(w) = p(y
i

=

m|x
i

;w). Then, the categorical cross-entropy is defined
as

E((w)) = �
nX

i=1

M�1X

m=0

y
im

log ŷ
im

(w)

+ (1 � y
im

) log [1 � ŷ
im

(w)] . (122)

As in linear and logistic regression, this loss function is
often supplemented by additional terms that implement
regularization.

Having defined an architecture and a cost function,
we must now train the model. As with other supervised
learning methods, we make use of gradient descent-based
methods to optimize the cost function. Recall that the
basic idea of gradient descent is to update the parame-
ters w to move in the direction of the gradient of the cost
function r

w

E(w). In Sec. IV, we discussed numerous
optimizers that implement variations of stochastic gra-
dient descent (SGD, Nesterov, RMSProp, Adam, etc.)
Most modern neural network packages, such as Keras,
allow the user to specify which of these optimizers they
would like to use in order to train the neural network.
Depending on the architecture, data, and computational
resources, different optimizers may work better on the
problem, though vanilla SGD is a good first choice.

Finally, we note that unlike in linear and logistic re-
gression, calculating the gradients for a neural network
requires a specialized algorithm, called backpropogation
(often abbreviated backprop) which forms the heart of
any neural network training procedure. Backpropaga-
tion has been discovered multiple times independently

48

Empirically, the best architecture for a problem de-
pends on the task, the amount and type of data that is
available, and the computational resources at one’s dis-
posal. Certain architectures are easier to train, while
others might be better at capturing complicated depen-
dencies in the data and learning relevant input features.
Finally, there have been numerous works that move be-
yond the simple deep, feed-forward neural network ar-
chitectures discussed here. For example, modern neural
networks for image segmentation often incorporate “skip
connections” that skip layers of the neural network (He
et al., 2016). This allows information to directly propa-
gate to a hidden or output layer, bypassing intermediate
layers and often improving performance.

B. Training deep networks

In the previous section, we introduced the basic ar-
chitecture for neural networks. Here we discuss how to
efficiently train large neural networks. Luckily, the basic
procedure for training neural nets is the same as we used
for training simpler supervised learning algorithms, such
as logistic and linear regression: construct a cost/loss
function and then use gradient descent to minimize the
cost function. Neural networks differ from these simpler
supervised procedures in that generally they contain mul-
tiple hidden layers that make taking the gradient more
computationally difficult. We will return to this in the
next section which discusses the “backpropagation” algo-
rithm for computing gradients.

Like all supervised learning procedures, the first thing
one must do to train a neural network is to specify a loss
function. Given a data point (x

i

, y
i

), the neural network
makes a prediction ŷ

i

(w), where w are the parameters
of the neural network. Recall that in most cases, the
top output layer of our neural net is either a continuous
predictor or a classifier that makes discrete (categorical)
predictions. Depending on whether one wants to make
continuous or categorical predictions, one must utilize a
different kind of loss function.

For continuous data, the loss functions that are com-
monly used to train neural networks are identical to those
used in linear regression, and include the mean squared
error

E(w) =

1

N

X

i

(y
i

� ŷ
i

(w))

2, (119)

where N is the number of data points, and the mean-
absolute error (i.e. L1 norm)

E(w) =

1

N

X

i

|y
i

� ŷ
i

(w)|. (120)

The full cost-function often includes additional terms
that implement regularization (e.g. L1 or L2 regulariz-
ers).

For categorical data, the most commonly used loss
function is the cross-entropy (Eq.(76) and Eq.(81)), since
the output layer is often taken to be a logistic classifier
for binary data with two types of labels, or a soft-max
classifier if there are more than two types of labels. The
cross-entropy was already discussed extensively in earlier
sections on logistic regression and soft-max classifiers, see
Sec. VII. Recall that for classification of binary data, the
output of the top layer of the neural network is the prob-
ability ŷ

i

(w) = p(y
i

= 1|x
i

;w) that data point i is pre-
dicted to be in category 1. The cross-entropy between
the true labels y

i

2 {0, 1} and the predictions is given by

E(w) = �
nX

i=1

y
i

log ŷ
i

(w) + (1 � y
i

) log [1 � ŷ
i

(w)] .

More generally, for categorical data, y can take on M
values so that y 2 {0, 1, . . . , M � 1}. For each datapoint
i, define a vector y

im

called a ‘one-hot’ vector, such that

y
im

=

(
1, if y

i

= m

0, otherwise.
(121)

We can also define the probability that the neural net-
work assigns a datapoint to category m: ŷ

im

(w) = p(y
i

=

m|x
i

;w). Then, the categorical cross-entropy is defined
as

E((w)) = �
nX

i=1

M�1X

m=0

y
im

log ŷ
im

(w)

+ (1 � y
im

) log [1 � ŷ
im

(w)] . (122)

As in linear and logistic regression, this loss function is
often supplemented by additional terms that implement
regularization.

Having defined an architecture and a cost function,
we must now train the model. As with other supervised
learning methods, we make use of gradient descent-based
methods to optimize the cost function. Recall that the
basic idea of gradient descent is to update the parame-
ters w to move in the direction of the gradient of the cost
function r

w

E(w). In Sec. IV, we discussed numerous
optimizers that implement variations of stochastic gra-
dient descent (SGD, Nesterov, RMSProp, Adam, etc.)
Most modern neural network packages, such as Keras,
allow the user to specify which of these optimizers they
would like to use in order to train the neural network.
Depending on the architecture, data, and computational
resources, different optimizers may work better on the
problem, though vanilla SGD is a good first choice.

Finally, we note that unlike in linear and logistic re-
gression, calculating the gradients for a neural network
requires a specialized algorithm, called backpropogation
(often abbreviated backprop) which forms the heart of
any neural network training procedure. Backpropaga-
tion has been discovered multiple times independently

48

Empirically, the best architecture for a problem de-
pends on the task, the amount and type of data that is
available, and the computational resources at one’s dis-
posal. Certain architectures are easier to train, while
others might be better at capturing complicated depen-
dencies in the data and learning relevant input features.
Finally, there have been numerous works that move be-
yond the simple deep, feed-forward neural network ar-
chitectures discussed here. For example, modern neural
networks for image segmentation often incorporate “skip
connections” that skip layers of the neural network (He
et al., 2016). This allows information to directly propa-
gate to a hidden or output layer, bypassing intermediate
layers and often improving performance.

B. Training deep networks

In the previous section, we introduced the basic ar-
chitecture for neural networks. Here we discuss how to
efficiently train large neural networks. Luckily, the basic
procedure for training neural nets is the same as we used
for training simpler supervised learning algorithms, such
as logistic and linear regression: construct a cost/loss
function and then use gradient descent to minimize the
cost function. Neural networks differ from these simpler
supervised procedures in that generally they contain mul-
tiple hidden layers that make taking the gradient more
computationally difficult. We will return to this in the
next section which discusses the “backpropagation” algo-
rithm for computing gradients.

Like all supervised learning procedures, the first thing
one must do to train a neural network is to specify a loss
function. Given a data point (x

i

, y
i

), the neural network
makes a prediction ŷ

i

(w), where w are the parameters
of the neural network. Recall that in most cases, the
top output layer of our neural net is either a continuous
predictor or a classifier that makes discrete (categorical)
predictions. Depending on whether one wants to make
continuous or categorical predictions, one must utilize a
different kind of loss function.

For continuous data, the loss functions that are com-
monly used to train neural networks are identical to those
used in linear regression, and include the mean squared
error

E(w) =

1

N

X

i

(y
i

� ŷ
i

(w))

2, (119)

where N is the number of data points, and the mean-
absolute error (i.e. L1 norm)

E(w) =

1

N

X

i

|y
i

� ŷ
i

(w)|. (120)

The full cost-function often includes additional terms
that implement regularization (e.g. L1 or L2 regulariz-
ers).

For categorical data, the most commonly used loss
function is the cross-entropy (Eq.(76) and Eq.(81)), since
the output layer is often taken to be a logistic classifier
for binary data with two types of labels, or a soft-max
classifier if there are more than two types of labels. The
cross-entropy was already discussed extensively in earlier
sections on logistic regression and soft-max classifiers, see
Sec. VII. Recall that for classification of binary data, the
output of the top layer of the neural network is the prob-
ability ŷ

i

(w) = p(y
i

= 1|x
i

;w) that data point i is pre-
dicted to be in category 1. The cross-entropy between
the true labels y

i

2 {0, 1} and the predictions is given by

E(w) = �
nX

i=1

y
i

log ŷ
i

(w) + (1 � y
i

) log [1 � ŷ
i

(w)] .

More generally, for categorical data, y can take on M
values so that y 2 {0, 1, . . . , M � 1}. For each datapoint
i, define a vector y

im

called a ‘one-hot’ vector, such that

y
im

=

(
1, if y

i

= m

0, otherwise.
(121)

We can also define the probability that the neural net-
work assigns a datapoint to category m: ŷ

im

(w) = p(y
i

=

m|x
i

;w). Then, the categorical cross-entropy is defined
as

E((w)) = �
nX

i=1

M�1X

m=0

y
im

log ŷ
im

(w)

+ (1 � y
im

) log [1 � ŷ
im

(w)] . (122)

As in linear and logistic regression, this loss function is
often supplemented by additional terms that implement
regularization.

Having defined an architecture and a cost function,
we must now train the model. As with other supervised
learning methods, we make use of gradient descent-based
methods to optimize the cost function. Recall that the
basic idea of gradient descent is to update the parame-
ters w to move in the direction of the gradient of the cost
function r

w

E(w). In Sec. IV, we discussed numerous
optimizers that implement variations of stochastic gra-
dient descent (SGD, Nesterov, RMSProp, Adam, etc.)
Most modern neural network packages, such as Keras,
allow the user to specify which of these optimizers they
would like to use in order to train the neural network.
Depending on the architecture, data, and computational
resources, different optimizers may work better on the
problem, though vanilla SGD is a good first choice.

Finally, we note that unlike in linear and logistic re-
gression, calculating the gradients for a neural network
requires a specialized algorithm, called backpropogation
(often abbreviated backprop) which forms the heart of
any neural network training procedure. Backpropaga-
tion has been discovered multiple times independently

Regularization

► Regularization helps ensure neural networks do not over-fit and
generalise well to unseen data

► L1 and L2 regularization apply penalties on a per layer basis during
optimization

►Dropout turns off random neurons with probability p for each mini batch
during training

Too many neurons either dropped out
or regularisation so high that weight
matrices close to zero - under-fitting!

Model has too many free parameters
and data is over-fitted

Training

► Data should first be separated into training, test and holdout datasets
➡ Training data is used to fit the parameters of the network
➡ Test data to to evaluate the performance of the trained model on

unseen data. It can be used to tune the various hyper parameters of
the network (e.g. number of layers, hidden units etc)

➡ Holdout data is used to assess the final performance of the tuned
model

► During training test loss can be monitoring, and training should be
stopped when this increases

► Early stopping can also be seen as a
type of regularization and avoids over-
fitting

Hello World

►MNIST is `Hello Word’ of deep learning
► Black and white images of integers from 0 to 9
► 28 x 28 pixel images
► 60,000 training images and 10,000 test images

MNIST MLP

MNIST MLP (Keras)

► Very simple API!
► 2 hidden layers each with 512 units
► Relu activation functions
► Dropout with p=0.2
► Final layer has softmax activation
► Gets to 98.40% test accuracy after 20

epochs
► State of the art has 99.8% accuracy

MNIST MLP (pyTorch)

