Investigating 'failed' galaxy classifications with machine learning

 The limits of visual classifications, new galaxy classes, and a pathway to unsupervised machine learning

Ting-Yun Cheng (Sunny)

School of Physics & Astronomy University of Nottingham

Supervisors: Christopher, J. Conselice & Alfonso Aragon-Salamanca

Outline

Introduction &

Previous Work

Investigation of Failures

Take away

Future Work

Introduction

Previous work - Methods

Previous work - Data

Previous work - Results

What are failures?

What cause failures?

What can failures tell us?

Reference	Methods	Input types	
Storrie-Lombardi+92	Neural Network	Parameter input	Surface brightness, colour, etc.
Naim et al.+95	Neural Network	Parameter input	Surface brightness, diameter of ellipses fit, etc.
Lahav et al.+96	Neural Network	Parameter input	Surface brightness, diameter of ellipses fit, etc.
de la Calleja & Fuentes+04	Neural Network	Pixel input	
Ball et al.+04	Neural Network	Parameter input	Surface brightness profile, colour, etc.
Huertas-Company et al.+08	Support Vector Machine	Parameter input	C-A-S systems
Banerji et al.+10	Neural Network	Parameter input	de Vaucouleurs, exponential profile, colour, etc.
Huertas-Company et al.+11	Support Vector Machine	Parameter input	C-A-S systems
Polsterer et al.+12	Support Vector Machine	Pixel input	
Dieleman et al.+15	Convolutional Neural Network	Pixel input	
Huertas-Company et al.+15	Convolutional Neural Network	Pixel input	
Domínguez Sánchez et al.+18	Convolutional Neural Network	Pixel input	
Sreejith et al.+18	Support Vector Machine, Neural Network, Classification Trees, CTRF	Parameter input	Stellar mass, mass-to-light ratio, colour, sersic index, etc.

Intro. What-1 What-2 What-3 Take away Work

= 2500 features

Supervised Machine Learning

K-nearest neighbour (KNN)

Logistic Regression (LR)

LR+Restricted Boltzmann Machine (LR+rbm)

Support Vector Machine (SVM)

SVM+Restricted Boltzmann Machine

Multiple-Layer Perceptron Classifier (MLPC)

Convolutional Neural Network (CNN)

Supervised Deep Learning

Methods

Previous Work

What-1

What-2

What-3

Take away

Future Work

Supervised Machine Learning

K-nearest neighbour (KNN)

Logistic Regression (LR)

LR+Restricted Boltzmann Machine (LR+rbm)

Support Vector Machine (SVM)

SVM+Restricted Boltzmann Machine

Multiple-Layer Perceptron Classifier (MLPC)

Convolutional Neural Network (CNN)

Supervised Deep Learning

Methods

Previous Work

What-1

What-2

What-3

Take away

Future Work

Previous Work

Take away

Future Work

Feature extraction

Connections & Classification

Input (3, 50, 50)

Length=3

Methods

Previous Work

What

Width=50

What-2

Depth=32

nat-3

Future

The architecture of our CNN

★ Dark Energy Survey (DES) Y1 GOLD data

Previous

Work

★ Visual classification is from Galaxy Zoo1 project (Classification with **agreement > 80%** for Ellipticals and Spirals) (Lintott 2008, 2011)

★ Total number of matching sample between them is

What-2

CNN Predicted label

	0		1	
abel <mark>N</mark>	0	True Negative (TN)	False Positive (FP)	
True label	1	False Negative (FN)	True positive (TP)	

Results

Previous Work

What-1

What-2

What-3

Take away

Future Work

Results

Previous Work

Results

Previous Work

What-2 🧦 🥻 W

Take away

Future Work

Accuracy = 0.987
Classifiable galaxies = 96%
non-classifiable galaxies = 4%
(Uncertain type)

Balanced Training set = 53663 Balanced Testing set = 1000

Probability criterion: p=0.8

Results

Previous Work

ake away

Work

Why did I fail??

- ? 1. What are failures?
- ? 2. What cause failures?
- ? 3. What can failures tell us?

What are failures?

- ★ Low predicted probability (p<0.8) (Uncertain Type)
- ★ High predicted probability (p≥0.8) but misclassified by our CNN

What are failures?

- ★ Low predicted probability (p<0.8) (Uncertain Type)
- ★ High predicted probability (p≥0.8) but misclassified by our CNN

What cause these failures?

What-1

What-2

What-3 Take away

There are three sources of the failures:

- ★ Difficult images
- The problems from the initial labels
- ★ The problems from our CNN

★ Difficult images

Galaxy Zoo projects DO NOT have class for lenticular galaxies (S0).

There are three sources of the failures:

- ★ Difficult images
- The problems from the initial labels
- The lack of the class of lenticular galaxy (S0)

★ The problems from our CNN

Previous Work

What-1

What-2

What-3 Take away

Work

Who am I?

How about me?

Dark Energy Survey (DES)
Classification: Spirals
(By our CNN)

Sloan Digital Sky Survey (SDSS)
Classification: Ellipticals
(By Galaxy Zoo)

There are three sources of the failures:

- ★ Difficult images
- The problems from the initial labels
- The lack of the class of lenticular galaxy (S0)
- Better resolution of DES data reveals new features

★ The problems from our CNN

Dark Energy Survey (DES)
Classification: Ellipticals
(By our CNN)

Sloan Digital Sky Survey (SDSS)

Classification: Spirals

(By Galaxy Zoo)

Examples of the misclassification by Galaxy Zoo project:

There are three sources of the failures:

- ★ Difficult images
- The problems from the initial labels
- The lack of the class of lenticular galaxy (S0)
- Better resolution of DES data reveals new features
- The misclassification by the Galaxy Zoo project
- ★ The problems from our CNN
- The contamination in training set
- There is an uncertainty in CNN

What can we learn from these failures?

- The limits of human visual classification.
- Tiny detail detection to the appearance of galaxy

What-2

- The limits of human visual classification.
- Tiny detail detection to the appearance of galaxy
- ➤ What is the difference between human mistakes and machine mistakes?
- Lenticular galaxy
- ➤ Can we use the failures to create the class for lenticular galaxy? (Make machine learn from the mistakes?)

- ★ To purify our training set
- Excluding the suspected misclassified galaxies by Galaxy Zoo project (both "resolution problem" and "error"), but keep potential lenticular galaxy.
- Retraining + retesting

Accuracy = 0.987Classifiable galaxies = 96% non-classifiable galaxies = 4% (Uncertain type)

Balanced Training set = 53663 Balanced Testing set = 1000

Probability criterion: p=0.8

Work

- ★ To purify our training set
- Excluding the suspected misclassified galaxies by Galaxy Zoo project.
- Retraining + retesting

- ★ To purify our training set
- Excluding the suspected misclassified galaxies by Galaxy Zoo project.
- Retraining + retesting

- ★ To purify our training set
- Excluding the suspected misclassified galaxies by Galaxy Zoo project (both "resolution problem" and "error"), but keep potential lenticular galaxy.
- Retraining + retesting
- Showing up ≥ 3 times in failures with high probabilities within 5 reruns

Misclassification (by GZ):

Testing set: ~42 (~4.2%)

Training set: ~54 (~2.9%)

Total: ~3.35%

(1.36% Spirals by GZ/ 1.99% Ellipticals by GZ)

lenticular galaxy?

Previous ** Work

- ★ After purifying our training set, it can improve our CNN results from accuracy ~0.987 to ~0.993. The number of uncertain type decrease from 4% to 1.3%
- ★ We found some classifications from Galaxy Zoo project need to be updated.
- Can we use these failure investigation to modify them?
- ★ A class for lenticular galaxy
- The setting of classification system is of great importance.
- What do you want your machine learning to do?
- What does your machine learning actually do?

- All the results and discussion will be published in my first paper! (Cheng et al. in progress) (btw, my real name is Ting-Yun Cheng.)
- ► We are building on a catalogue of galaxy morphology for Dark Energy Survey images data by our CNN. (I am still trying to find a way to separate a group of S0.)
- ► We are working on the Unsupervised Machine Learning, e.g. Fuzzy K-mean, Self-Organised Map, etc.

Enjoy your trip in Machine Learning!
Thank you for the listening.