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We discuss a number of quantile-based risk measures (QBRMs) that have 

recently been developed in the financial risk and actuarial/insurance literatures. 

The measures considered include the Value-at-Risk (VaR), coherent risk 

measures, spectral risk measures, and distortion risk measures. We discuss and 

compare the properties of these different measures, and point out that the VaR is 

seriously flawed. We then discuss how QBRMs can be estimated, and discuss 

some of the many ways they might be applied to insurance risk problems. These 

applications are typically very complex, and this complexity means that the 

most appropriate estimation method will often be some form of stochastic 

simulation.  
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1. INTRODUCTION 

 

 

The measurement of financial risk has been one of the main preoccupations of 

actuaries and insurance practitioners for a very long time. Measures of financial 

risk manifest themselves explicitly in many different types of insurance 

problem, including the determination of reserves or capital, the setting of 

premiums and thresholds (e.g., for deductibles and reinsurance cedance levels), 

and the estimation of magnitudes such as expected claims, expected losses and 

probable maximum losses; they also manifest themselves implicitly in problems 

involving shortfall and ruin probabilities. In each of these cases, we are 

interested, explicitly or implicitly, in quantiles of some loss function or, more 

generally, in quantile-based risk measures (QBRMs).  

Interest in these measures has also come from more recent 

developments, most particularly from the emergence of Value-at-Risk (VaR) in 

the mainstream financial risk management (FRM) area, and from the 

development of a number of newer risk measures, of which the best-known are 

coherent and distortion risk measures. Increased interest in risk measurement 

also arises from deeper background developments, such as: the impact of 

financial engineering in insurance, most particularly in the emerging area of 

alternative risk transfer (ART); the increasing securitization of insurance-related 

risks; the increasing use of risk measures in regulatory capital and solvency 

requirements; the trend toward convergence between insurance, banking and 

securities markets, and the related efforts to harmonize their regulatory 

treatment; and the growth of enterprise-wide risk management (ERM).  

This paper provides an overview of the theory and estimation of these 

measures, and of their applications to insurance problems. We focus on three 

key issues: the different types of QBRMs and their relative merits; the 

estimation of these risk measures; and the many ways in which they can be 
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applied to insurance problems.1 We draw on both the mainstream FRM 

literature and the actuarial/insurance literature. Both literatures have witnessed 

important developments in this area, but the amount of cross-fertilization 

between them has also been curiously imbalanced, as the actuarial/insurance 

community has tended to pick up on developments in financial risk management 

much more quickly than financial risk managers have picked up on 

developments in actuarial science. Indeed, important developments in the 

actuarial field – such as the theory of distortion risk measures – are still 

relatively little known outside actuarial circles.2 

In comparing the various risk measures and discussing how they might 

be estimated and applied, we wish to make three main arguments, which will 

become clearer as we proceed. (1) There are many QBRMs that have 

respectable properties and are demonstrably superior to the VaR, but the choice 

of ‘best’ risk measure(s) is a subjective one that can also depend on the context. 

(2) The estimation of any QBRM is a relatively simple matter, once we have a 

good VaR estimation system. This is because the VaR is itself a quantile, and 

any calculation engine that can estimate a single quantile can also easily 

estimate a set of them, and thence estimate any function of them. This implies, 

in turn, that it should be relatively straightforward for institutions to upgrade 

from VaR to more sophisticated risk measures. (3) Insurance risk measurement 

problems are often extremely complex. This complexity is due to many 

                                                 
1 For reasons of space we restrict ourselves to QBRMs and ignore other types of 
risk measure (e.g., the variance, semi-variance, mean absolute deviation, 
entropy, etc.). We also have relatively little to say on closely related risk 
measures that are well covered in the actuarial literature, such as premium 
principles, stop-loss measures and stochastic ordering. For more on these, see, 
e.g., Denuit et alia (2005).  
2 It is also sometimes the case that important contributions can take a long time to become 
widely accepted. A good case in point here is the slowness with which axiomatic theories of 
financial risk measurement – of which the theory of coherent risk measures is the most notable 
example – have been accepted across the FRM community, despite highly persuasive arguments 
that coherent measures are superior to the VaR. This slowness to adopt superior risk measures 
seems to be due to the fact that many FRM practitioners still do not understand the axiomatic 
theories of financial risk measures, and has led to the patently unsustainable situation that the 
VaR continues to be the most widely used risk measure despite the fact that it is now effectively 
discredited as a risk measure  
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different factors (which we will address in due course), and implies that the 

overwhelming majority of insurance risk measurement problems need to be 

handled using stochastic simulation methods.  

This paper is organized as follows. Section 2 discusses and compares the 

main types of QBRMs, focusing mainly on the VaR, coherent measures 

(including those familiar to actuaries as CTE or tail VaR), spectral measures and 

distortion measures. Section 3 looks at the estimation of QBRMs, i.e., it shows 

how to estimate our risk measure, once we have decided which risk measure we 

wish to estimate: this section reviews the standard ‘VaR trinity’ of parametric 

methods, nonparametric methods and stochastic simulation methods.  Section 4 

investigates some of the complicating features of insurance risk-measurement 

problems: these include valuation problems, ‘badly behaved’ and heterogeneous 

risk factors, nonlinearity, optionality, parameter and model risk, and long 

forecast horizons. Section 5 then discusses some example applications and seeks 

to illustrate the thinking behind these applications. After this, section 6 briefly 

addresses some further issues that often arise in insurance risk measurement 

problems: these include issues of capital allocation and risk budgeting, risk-

expected return analysis and performance evaluation, long-run issues, problems 

of model evaluation, the issues raised by enterprise-wide risk management, and 

regulatory issues (including regulatory uses of QBRMs).  Section 7 concludes.  

    

 

2. QUANTILE-BASED MEASURES OF RISK 

 

2.1 Value at Risk (VaR) 

For practical purposes, we can trace the origins of VaR back to the late 1970s 

and 1980s, when a number of major financial institutions started work on 

internal risk-forecasting models to measure and aggregate risks across the 
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institution as a whole.3 They started work on these models for their own risk 

management purposes – as firms became more complex, it was becoming 

increasingly difficult, but yet also increasingly important, to be able aggregate 

their risks taking account of how they interact with each other, and institutions 

lacked the methodology to do so. The best known of these systems was that 

developed by JP Morgan, which was operational by around 1990. This system 

was based on standard portfolio theory using estimates of the standard 

deviations and correlations between the returns to different traded instruments, 

which it aggregated across the whole institution into a single firm-wide risk 

measure. The measure used was the hitherto almost unknown notion of daily 

Value at Risk (or VaR) – the maximum likely loss over the next trading day. 

The term ‘likely’ was interpreted in terms of a 95% level of confidence, so the 

VaR was the maximum loss that the firm could expect to experience on the 

‘best’ 95 days out of a 100. However, different VaR models differed in terms of 

the horizon periods and confidence levels used, and also in terms of their 

estimation methodologies: some were based on portfolio theory, some were 

based on historical simulation methods, and others were based on stochastic 

simulation methods.  

Once they were operational, VaR models spread very rapidly, first 

among securities houses and investment banks, then among commercial banks, 

pension funds, insurance companies, and non-financial corporates. The VaR 

concept also became more familiar as the models proliferated, and by the mid-

1990s, the VaR had already established itself as the dominant measure of 

                                                 
3 The roots of the measure go further back. One can argue that the VaR measure 
was at least implicit in the initial reserve measure that appears in the classical 
probability of ruin problem that actuaries have been familiar with since the early 
twentieth century. The VaR can also be attributed to Baumol (1963, p. 174), 
who suggested a risk measure equal to σµ k− , where µ  and σ are the mean and 
standard deviation of the distribution concerned, and k  is a subjective 
confidence-level parameter that reflects the user’s attitude to risk. This risk 
measure is equivalent to the VaR under the assumption that losses are 
elliptically distributed. However, the term ‘value at risk’ did not come into 
general use until the early 1990s. For more on the history of VaR, see 
Guldimann (2000) or Holton (2002, pp. 13-19). 
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financial risk in the mainstream financial risk area. Since then, VaR models 

have become much more sophisticated, and VaR methods have been extended 

beyond market risks to measure other risks such as credit, liquidity (or 

cashflow), and operational risks.  

To consider the VaR measure more formally, suppose we have a 

portfolio that generates a random loss over a chosen horizon period.4 Let α  be a 

chosen probability and αq  be the α -quantile of the loss density function. The 

VaR of the portfolio at the α  confidence level is then simply the αq  quantile of 

the loss distribution, i.e.: 

  

(1)                                                    αα qVaR = .5 

 

The rapid rise of VaR was due in large part to the VaR having certain 

characteristics, which gave it an edge over the more traditional risk assessment 

methods used in capital markets contexts:  

• The VaR provides a common measure of risk across different positions and 

risk factors. It can be applied to any type of portfolio, and enables us to 

compare the risks across different (e.g., fixed-income and equity) portfolios. 

Traditional methods are more limited: duration measures apply only to 

                                                 
4 We use the term ‘portfolio’ as a convenient label. However, it could in 
practice be any financial position or collection of positions: it could be a single 
position, a book or collection of positions, and it could refer to assets, liabilities, 
or some net position (e.g., as in asset-liability management). 
5 The VaR is thus predicated on the choice of two parameters, the holding or 
horizon period and the confidence level. The values of these parameters are 
(usually) chosen arbitrarily, but guided by the context. For example, if we are 
operating in a standard trading environment with marking-to-market, then the 
natural horizon period is a trading day; if we are dealing with less liquid assets, 
a natural horizon might be the period it takes to liquidate a position in an orderly 
way. However, an insurance company will sometimes want a much longer 
horizon. The other parameter, the confidence level, would usually be fairly high, 
and banks and securities firms often operate with confidence levels of around 
95% to 98%. But if we are concerned with extreme (i.e., low-probability, high 
impact) risks, we might operate with confidence levels well above 99%.  
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fixed-income positions, Greek measures apply only to derivatives positions, 

portfolio-theory measures apply only to equity and similar (e.g., 

commodity) positions, and so forth.  

• VaR enables us to aggregate the risks of positions taking account of the 

ways in which risk factors correlate with each other, whereas most 

traditional risk measures do not allow for the ‘sensible’ aggregation of 

component risks. 

• VaR is holistic in that it takes full account of all driving risk factors, 

whereas many traditional measures only look at risk factors one at a time 

(e.g., Greek measures) or resort to simplifications that collapse multiple risk 

factors into one (e.g., duration-convexity and CAPM measures). VaR is also 

holistic in that it focuses assessment on a complete portfolio, and not just on 

individual positions in it. 

• VaR is probabilistic, and gives a risk manager useful information on the 

probabilities associated with specified loss amounts. Many traditional 

measures (e.g., duration-convexity, Greeks, etc.) only give answers to ‘what 

if?’ questions and don’t give an indication of loss likelihoods.    

• VaR is expressed in the simplest and most easily understood unit of 

measure, namely, ‘lost money’. Many other measures are expressed in less 

transparent units (e.g., average period to cashflow, etc.).  

These are very significant attractions.  

 However, the VaR also suffers from some serious limitations. One 

limitation is that the VaR only tells us the most we can lose in good states where 

a tail event does not occur; it tells us nothing about what we can lose in ‘bad’ 

states where a tail event does occur (i.e., where we make a loss in excess of the 

VaR). VaR’s failure to consider tail losses can then create some perverse 

outcomes. For instance, if a prospective investment has a high expected return 

but also involves the possibility of a very high loss, a VaR-based decision 

calculus might suggest that the investor should go ahead with the investment if 

the higher loss does not affect (and therefore exceeds) the VaR, regardless of 

the sizes of the higher expected return and possible higher losses. This 



 
 
 
 
 
 

 8

undermines ‘sensible’ risk-return analysis, and can leave the investor exposed to 

very high losses.  

The VaR can also create moral hazard problems when traders or asset 

managers work to VaR-defined risk targets or remuneration packages. Traders 

who face a VaR-defined risk target might have an incentive to sell out-of-the-

money options that lead to higher income in most states of the world and the 

occasional large hit when the firm is unlucky. If the options are suitably chosen, 

the bad outcomes will have probabilities low enough to ensure that there is no 

effect on the VaR, and the trader will benefit from the higher income (and hence 

higher bonuses) earned in ‘normal’ times when the options expire out of the 

money. The fact that VaR does not take account of what happens in ‘bad’ states 

can distort incentives and encourage traders to ‘game’ a VaR target (and/or a 

VaR-defined remuneration package) to promote their own interests at the 

expense of the institutions that employ them.6  

 

2.2. The theory of coherent risk measures 

More light was shed on the limits of VaR by some important theoretical work 

by Artzner, Delbaen, Eber and Heath in the 1990s (Artzner et alia (1997, 

1999)). Their starting point is that although we all have an intuitive sense of 

what financial risk entails, it is difficult to give a good assessment of financial 

risk unless we specify what a measure of financial risk actually means. For 

example, the notion of temperature is difficult to conceptualize without a clear 

notion of a thermometer, which tells us how temperature should be measured. 

Similarly, the notion of risk itself is hard to appreciate without a clear idea of 

what we mean by a measure of risk. To clarify these issues, Artzner et alia 

proposed to do for risk what Euclid and others had done for geometry: they 

postulated a set of risk-measure axioms – the axioms of coherence – and began 

to work out their implications.  

                                                 
6 Some further, related, problems with the VaR risk measure are discussed in 
Artzner et alia (1999, pp. 215-218) and Acerbi (2004).  
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Suppose we have a risky position X and a risk measure )(Xρ  defined 

on X.7 We now define the notion of an acceptance set as the set of all positions 

acceptable to some stakeholder (e.g., a financial regulator). We then interpret 

the risk measure (.)ρ  as the minimum extra cash that has to be added to a risky 

position and invested prudently in some reference asset to make the risky 

position acceptable. If (.)ρ  is positive, then a positive amount must be added to 

make the position acceptable; and if (.)ρ  is negative, its absolute value can be 

interpreted as the maximum amount that can be withdrawn and still leave the 

position acceptable. An example might be the minimum amount of regulatory 

capital specified by (i.e., ‘acceptable to’) a financial regulator for a firm to be 

allowed to set up a fund management business.  

Now consider any two risky positions X and Y, with values given by 

V(X) and V(Y). The risk measure (.)ρ  is then said to be coherent if it satisfies 

the following properties: 

• Monotonicity: )()()()( XYXVYV ρρ ≤⇒≥ . 

• Subadditivity: )()()( YXYX ρρρ +≤+ . 

• Positive homogeneity: )()( XhhX ρρ =  for 0>h . 

• Translational invariance: nXnX −=+ )()( ρρ  for some certain amount n. 

The first, third and fourth properties can be regarded as ‘well-behavedness’ 

conditions. Monotonicity means that if Y has a greater value than X, then Y 

should have lower risk: this makes sense, because it means that less has to be 

added to Y than to X to make it acceptable, and the amount to be added is the 

risk measure. Positive homogeneity implies that the risk of a position is 

proportional to its scale or size, and makes sense if we are dealing with liquid 

positions in marketable instruments. Translational invariance requires that the 

addition of a sure amount reduces pari passu the cash still needed to make our 

position acceptable, and its validity is obvious.  

                                                 
7 X itself can be interpreted in various other ways, e.g., as the random future 
value of the position or as its random cashflow, but its interpretation as the 
portfolio itself is the most straightforward. 
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The key property is the second, subadditivity. This tells us that a 

portfolio made up of sub-portfolios will risk an amount which is no more than, 

and in some cases less than, the sum of the risks of the constituent sub-

portfolios. Subadditivity is the most important criterion we would expect a 

‘respectable’ risk measure to satisfy. It reflects our expectation that aggregating 

individual risks should not increase overall risk, and this is a basic requirement 

of any ‘respectable’ risk measure, coherent or otherwise.8 

It then follows that the VaR cannot be a ‘respectable’ measure in this 

sense, because VaR is not subadditive.9 In fact, VaR is only subadditive in the 

restrictive case where the loss distribution is elliptically distributed, and this is 

of limited consolation because most real-world loss distributions are not 

elliptical ones. The failure of VaR to be subadditive is a fundamental problem 

because it means, in essence, that VaR has no claim to be regarded as a ‘true’ 

risk measure at all. The VaR is merely a quantile. There is also a deeper 

problem: 

                                                 
8 Although we strongly agree with the argument that subadditivity is a highly desirable property 
in a risk measure, we also acknowledge that it can sometimes be problematic. For example, 
Goovaerts et alia (2003b) suggest that we can sometimes get situations where the ‘best’ risk 
measure will violate subadditivity (see the last bullet point in section 2.7 below): we therefore 
have to be careful to ensure that any risk measure we use makes sense in the context in which it 
is to be used. There can also be problems in the presence of liquidity risk. If an investor holds a 
position that is ‘large’ relative to the market, then doubling the size of this position can more 
than double the risk of the position, because bid prices will depend on the position size. This 
raises the possibility of liquidity-driven violations of homogeneity and subadditivity. A way to 
resolve this difficulty is to replace coherent risk measures with convex ones. An alternative, 
suggested by Acerbi (2004, p. 150), is to add a liquidity charge to a (strongly) coherent risk 
measure. This charge would take account of relative size effects, but also have the property of 
going to zero as size/illiquidity effects become negligible.  
9 The non-subadditivity of the VaR is most easily shown by a counter-example. 
Suppose we have two identical bonds, A and B. Each defaults with probability 
4%, and we get a loss of 100 if default occurs, and 0 if no default occurs. The 
95%-VaR of each bond is therefore 0, so VaR0.95(A) =VaR0.95(B) 
=VaR0.95(A)+VaR0.95(B)=0. Now suppose that defaults are independent. 
Elementary calculations then establish that we get a loss of 0 with probability 
0.962=0.9216, a loss of 200 with probability 0.042=0.0016, and a loss of 100 
with probability 1-0.9216-0.0016=0.0768. Hence VaR0.95(A+B)=100. Thus, 
VaR0.95(A+B)=100>0=VaR0.95(A)+VaR0.95(B), and the VaR violates sub-
additivity.  
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the main problem with VaR is not its lack of subadditivity, but rather 

the very fact that no set of axioms for a risk measure and therefore 

no unambiguous definition of financial risk has ever been associated 

with this statistic. So, despite the fact that some VaR supporters still 

claim that subadditivity is not a necessary axiom, none of them, to 

the best of our knowledge, has ever tried to write an alternative 

meaningful and consistent set of axioms for a risk measure which are 

fulfilled also by VaR. (Acerbi (2004, p. 150)) 

Given these problems, we seek alternative risk measures that retain the benefits 

of VaR – in terms of globality, universality, probabilistic content, etc. – whilst 

avoiding its drawbacks.10  Furthermore, if it is to retain the benefits of the VaR, 

it is reasonable to suppose that any such risk measures will be ‘VaR-like’ in the 

sense that they will reflect the quantiles of the loss distribution, but will be non-

trivial functions of those quantiles rather than a single quantile on its own. 

 

2.3. Expected Shortfall (ES) 

One promising candidate is the Expected Shortfall (ES), which is the average of 

the worst α−1  losses. In the case of a continuous loss distribution, the ES is 

given by: 

 

(2)                                          ∫−
=

1

1
1

α
α α

dpqES p  

 

If the distribution is discrete, then the ES is the discrete equivalent of (2): 

 

                                                 
10 In this context, it is also worth noting that coherent risk measures also have another important 
advantage over VaR: the risk surface of a coherent risk measure is convex (i.e., any line drawn 
between two coherent risk measures lies above the coherent risk surface), whereas that of a VaR 
might not be. This is a very important advantage in optimization routines, because it ensures that 
a risk minimum is a unique global one. By contrast, if the risk surface is not guaranteed to be 
convex (as with a VaR surface), then we face the problem of having potentially multiple local 
mimina, and it can be very difficult to establish which of these is the global one. For 
optimization purposes, a convex risk surface is therefore a distinct advantage. For more on this 
issue, see, e.g., Rockafellar and Uryasev (2002) or Acerbi (2004, pp. 186-197).  
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(3)       ∑
=−

=
1

[
1

1
α

α α p
ES pth worst outcome]× [probability of pth worst outcome] 

 

This ES risk measure is very familiar to actuaries, although it is usually known 

in actuarial circles as the Conditional Tail Expectation (in North America) or 

the Tail VaR (in Europe).11 In mainstream financial risk circles, it has been 

variously labelled Expected Tail Loss, Tail Conditional Expectation, 

Conditional VaR, Tail Conditional VaR, and Worst Conditional Expectation. 

Thus, there is no consistency of terminology in either actuarial or financial risk 

management literatures. However, the substantive point here is that this measure 

(whatever we call it) belongs to a family of risk measures that has two key 

members. The first is the measure we have labelled the ES, which is defined in 

terms of a probability threshold. The other is its quantile-delimited cousin, the 

average of losses exceeding VaR, i.e., )](|[ XqXXE α> . The two measures 

will always coincide when the loss distribution is continuous. However, this 

latter measure can be ambiguous and incoherent when the loss distribution is 

discrete (see Acerbi (2004, p. 158)), whereas the ES is always unique and 

coherent. As for terminology, we prefer the term ‘expected shortfall’ because it 

is clearer than alternatives, because there is no consensus alternative, and 

because the term is now gaining ascendancy in the financial risk area. 

It is easy to establish the coherence of ES. If we have N equal-

probability quantiles in a discrete distribution, then  

 

(4)   )()( YESXES αα +  

             =  Mean of Nα  worst cases of X + Mean of Nα  worst cases of Y 

             ≥ Mean of Nα  worst cases of (X+Y) 

                                                 
11 This measure has also been used by actuaries for a very long period of time. 
For example, Artzner et alia (1999, pp. 219-220) discuss its antecedents in 
German actuarial literature in the second third of the 19th century. Measures 
similar to the ES have been long prominent in areas of actuarial science such as 
reserving theory.  
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             = )( YXES +α . 

 

A continuous distribution can be regarded as the limiting case as N gets large. In 

general, the mean of the Nα worst cases of X plus the mean of the Nα worst 

cases of Y will be bigger than the mean of the Nα  worst cases of (X+Y), except 

in the special case where the worst X and Y occur in the same Nα events, and in 

this case the sum of the mean will equal the mean of the sum. This shows that 

ES is subadditive. It is also easy to show that the ES also satisfies the other 

properties of coherence, and is therefore coherent (Acerbi (2004, proposition 

2.16)).  

The ES is an attractive risk measure for a variety of reasons besides its 

coherence. It has some very natural applications in insurance (e.g., it is an 

obvious measure to use when we wish to estimate the cover needed for an 

excess-of-loss reinsurance treaty, or more generally, when we are concerned 

with the expected sizes of losses exceeding a threshold). It also has the 

attraction that it is very easy to estimate: the actuary simply generates a large 

number of loss scenarios and takes the ES as the average of the 100(1-α)% of 

largest losses.  

 

2.4. Scenarios and generalized scenarios 

The theory of coherent risk measures has some radical (and sometimes 

surprising) implications. For example, it turns out that the results of scenario 

analyses (or stress tests) can be interpreted as coherent risk measures. Suppose 

we consider a set of loss outcomes combined with a set of associated 

probabilities. The losses can be regarded as tail drawings from the relevant 

distribution function, and their expected (or average) value is the ES associated 

with this distribution function. Since the ES is a coherent risk measure, this 

means that the outcomes of scenario analyses are also coherent risk measures. 

The theory of coherent risk measures therefore provides a risk-theoretical 

justification for the practice of stress testing.  
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This argument can also be generalized in some interesting ways. 

Consider a set of ‘generalized scenarios’ – a set of n loss outcomes and a family 

of distribution functions from which the losses are drawn. Take any one of these 

distributions and obtain the associated ES. Now do the same again with another 

distribution function, leading to an alternative ES. Now do the same again and 

again. It turns out that the maximum of these ESs is itself a coherent risk 

measure: if we have a set of m comparable ESs, each of which corresponds to a 

different loss distribution function, then the maximum of these ESs is a coherent 

risk measure.12 Furthermore, if we set n=1, then there is only one tail loss in 

each scenario and each ES is the same as the probable maximum loss or likely 

worst-case scenario outcome. If we also set m=1, then it immediately follows 

that the highest expected loss from a single scenario analysis is a coherent risk 

measure; and if m>1, then the highest expected of m worst case outcomes is also 

a coherent risk measure. In short, the ES, the highest expected loss from a set of 

possible outcomes (or loss estimates from scenario analyses), the highest ES 

from a set of comparable ESs based on different distribution functions, and the 

highest expected loss from a set of highest losses, are all coherent risk measures. 

The foregoing shows that the outcomes of (simple or generalized) 

scenarios can be interpreted as coherent risk measures. However, the reverse is 

also true, and coherent risk measures can be interpreted as the outcomes of 

scenarios. This is useful, because it means that we can always estimate coherent 

risk measures by specifying the relevant scenarios and then taking (as relevant) 

their (perhaps probability-weighted) averages or maxima: in principle, all we 

need to know are the loss outcomes (which are quantiles from the loss 

                                                 
12 A good example of a standard stress testing framework whose outcomes qualify as coherent 
risk measures is the SPAN system used by the Chicago Mercantile Exchange to calculate 
margin requirements. As explained by Artzner et alia (1999, p. 212), this system considers 16 
specific scenarios, consisting of standardised movements in underlying risk factors. 14 of these 
are fairly moderate scenarios, and 2 are extreme. The measure of risk is the maximum loss 
incurred across all scenarios, using the full loss from the first 14 scenarios and 35% of the loss 
from the two extreme ones. (Taking 35% of the losses on the extreme scenarios can be regarded 
as an ad hoc adjustment allowing for the extreme losses to be less probable than the others.) The 
calculations involved can be interpreted as producing the maximum expected loss under 16 
distributions. The SPAN risk measures are coherent because the margin requirement is equal to 
the shortfall from this maximum expected loss. 



 
 
 
 
 
 

 15

distribution), the density functions to be used (which give us our probabilities), 

and the type of coherent risk measure we are seeking. However, in practice, 

implementation is even more straightforward: we would often work with a 

(typically stochastic) scenario generation program, take each generated scenario 

as equally likely (which allows us to avoid any explicit treatment of 

probabilities) and then apply the weighing function of our chosen risk measure 

to the relevant set of loss scenarios. 

 

2.5. Spectral risk measures 

If we are prepared to ‘buy into’ risk-aversion theory,13 we can go on to relate 

coherent risk measures to a user’s risk aversion. This leads us to the spectral risk 

measures proposed by Carlo Acerbi (2002, 2004). Let us define more general 

risk measures φM  that are weighted averages of the quantiles of our loss 

distribution: 

 

(5)                                              ∫=
1

0

)( dpqpM pφφ  

 

where the weighting function, )( pφ , also known as the risk spectrum or risk-

aversion function, remains to be determined.  

 The ES is a special case of φM  obtained by setting )( pφ  to the 

following: 

 

                                                 
13 Risk-aversion theory requires us to specify a user risk-aversion function, and 
this can provide considerable insights (as shown in the following text) but can 
also be controversial. Amongst the potential problems it might encounter are: 
(1) the notion of a risk-aversion function can be hard to motivate when the user 
is a firm, or an employee working for a firm, rather than, say, an individual 
investor working on their own behalf; (2) one might argue with the type of risk-
aversion function chosen; and (3) one might have difficulty specifying the value 
that the risk aversion parameter should take.  
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(6)                                        
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As the name suggests, the ES gives tail-loss quantiles an equal weight of 

)1/(1 α− , and other quantiles a weight of 0. 

However, we are interested here in the broader class of coherent risk 

measures. In particular, we want to know what conditions )( pφ  must satisfy in 

order to make φM  coherent. The answer is the class of (non-singular) spectral 

risk measures, in which )( pφ  takes the following properties:14 

• Non-negativity: 0)( ≥pφ  for all p belong in the range [0,1]. 

• Normalization: 1)(
1

0
=∫ dppφ . 

• Increasingness: )()( 21 pp φφ ≤  for all 10 21 ≤≤≤ pp . 

The first condition requires that the weights are non-negative, and the second 

requires that the probability-weighted weights should sum to 1. Both are 

obvious. The third condition is more interesting. This condition is a direct 

reflection of risk-aversion, and requires that the weights attached to higher 

losses should be bigger than, or certainly no less than, the weights attached to 

lower losses. The message is clear: the key to coherence is that a risk measure 

must give higher losses at least the same weight as lower losses. This explains 

                                                 
14 See Acerbi (2004, proposition 3.4). Strictly speaking, the set of spectral risk 
measures is the convex hull (or set of all convex combinations) of αES  for all α  
belonging to [0,1]. There is also an ‘if and only if’ connection here: a risk 
measure φM  is coherent if and only if φM  is spectral and )( pφ  satisfies the 
conditions indicated in the text. There is also a good argument that the spectral 
measures so defined are the only really interesting coherent risk measures: 
Kusuoka (2001) and Acerbi (2004, pp. 180-182) show that all coherent risk 
measures that satisfy the two additional properties of comonotonic additivity 
and law invariance are also spectral measures. The former condition is that if 
two random variables X and Y are comonotonic (i.e., always move in the same 
direction), then )()()( YXYX ρρρ +=+ ; comonotonic additivity is an important 
aspect of subadditivity, and represents the limiting case where diversification 
has no effect. Law-invariance is equivalent to the (for practical purposes 
essential) requirement that a measure be estimable from empirical data.  
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why the VaR is not coherent and the ES is; it also suggests that the VaR’s most 

prominent inadequacies are closely related to its failure to satisfy the 

increasingness property.  

 It is important to appreciate that the weights attached to higher losses in 

spectral risk measures are a direct reflection of the user’s risk aversion. If a user 

has a ‘well-behaved’ risk-aversion function, then the weights will rise smoothly, 

and the more risk-averse the user, the more rapidly the weights will rise.  

 To obtain a spectral risk measure, we must specify the user’s risk-

aversion function. This decision is subjective, but can be guided by the 

economic literature on risk-aversion theory. For example, we might choose an 

exponential risk-aversion function which would lead to the following weighting 

function: 

 

(7)                                              k

pk

e
kep

−

−−

−
=

1
)(

)1(

φ  

 

where k>0 is the user’s coefficient of absolute risk aversion. This function 

satisfies the conditions of a spectral risk measure, but is also attractive because 

it is a simple well-behaved function of a single parameter k. To obtain our risk 

measure, we then specify the value of k and plug (7) into (5).  

 The connection between the )( pφ  weights and user risk-aversion sheds 

further light on our earlier risk measures. We saw earlier that the ES is 

characterized by all losses in the tail region (i.e., the 100(1-α)% largest losses) 

having the same weight. If we interpret the weights as reflecting the user’s 

attitude toward risk, this can only be interpreted as the user being risk-neutral, at 

least between tail-region outcomes. So the ES is appropriate if the user is risk-

neutral at the margin in this region. Since we usually assume that agents are 

risk-averse, this would suggest that the ES might not always be such a good risk 

measure, notwithstanding its coherence. If we believe that a particular user is 
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risk-averse, we should have a weighting function that rises as p gets bigger, and 

this rules out the ES.15  

 The implications for the VaR are much worse. With the VaR, we give a 

large weight to the loss associated with a p-value equal to α, and we give a 

lower (indeed, zero) weight to any greater loss. The implication is that the user 

is actually risk-loving (i.e., has negative risk-aversion) in the tail loss region, 

and this is highly uncomfortable.16 To make matters worse, since the weight 

drops to zero, we are also talking about risk-loving of a rather extreme sort. If 

the ES is an inappropriate measure for a risk-averse user, then the VaR is much 

more so.   

 

2.6. Distortion risk measures 

Distortion risk measures are closely related to coherent measures. They were 

introduced by Denneberg (1990) and Wang (1996) and have been applied to a 

wide variety of insurance problems, most particularly to the determination of 

insurance premiums.17  

                                                 
15 The downside risk literature also suggests that the use of the ES as the 
preferred risk measure indicates risk-neutrality (see, e.g., Bawa (1975) and 
Fishburn (1977)). Coming from within an expected utility framework, these 
papers suggest that we can think of downside risk in terms of lower-partial 
moments (LPMs), which are probability-weighted deviations of returns r  from 
some below-target return *r : more specifically, the LPM of order 0≥k around 

*r  is equal to E[max(0, krr )*− ]. The parameter k  reflects the degree of risk 
aversion, and the user is risk-averse  if 1>k , risk-neutral if 1=k , and risk-
loving if 10 << k . However, we would only choose the ES as our preferred risk 
measure if 1=k  (Grootveld and Hallerbach (2004, p. 36)). Thus the use of the 
ES implies that we are risk-neutral.   
16 Following on from the last footnote, the expected utility-downside risk 
literature also indicates that we obtain the VaR as the preferred risk measure if 

0=k . From the perspective of this framework, 0=k  indicates an extreme form 
of risk-loving. Thus, two very different approaches both give the same 
conclusion that VaR is only an appropriate risk measure if preferences exhibit 
extreme degrees of risk-loving.  
17 The roots of distortion theory can be traced further back to Yaari’s dual 
theory of risk (Yaari (1987)), and in particular the notion that risk measures 
could be constructed by transforming the probabilities of specified events. 
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A distortion risk measure is the expected loss under a transformation of 

the cumulative density function known as a distortion function, and the choice 

of distortion function determines the risk measure. More formally, if )(xF  is 

some cdf, the transformation ))(()(* xFgxF =  is a distortion function if 

g:[0,1]→[0,1] is an increasing function with g(0)=0 and g(1)=1. The distortion 

risk measure is then the expectation of the random loss X using probabilities 

obtained from )(* xF  rather than )(xF . Like coherent risk measures, distortion 

risk measures have the properties of monotonicity, positive homogeneity, and 

translational invariance; they also share with spectral risk measures the property 

of comonotonic additivity. To make good use of distorted measures, we would 

choose a ‘good’ distortion function, and there are many distortion functions to 

choose from. The properties we might look for in a ‘good’ distortion function 

include continuity, concavity, and differentiability; of these, continuity is 

necessary and sufficient for the distortion risk measure to be coherent, and 

concavity is sufficient (Wang et alia (1997); Darkiewicz et alia (2003)).  

The theory of distortion risk measures also sheds further light on the 

limitations of VaR and ES. The VaR can be shown to be a distortion risk 

measure obtained using the binary distortion function: 

 

(8)                                          
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This is a poor function because it is not continuous, due to the jump at α=u ; 

and since it is not continuous, it is not coherent. Thus, from the perspective of 

distortion theory, the VaR is a poor risk measure because it is based on a ‘badly 

behaved’ distortion function. For its part, the ES is a distortion risk measure 

based on the distortion function: 

 

                                                                                                                                            
Going further back, it also has antecedents in the risk neutral density functions 
used since the 1970s to price derivatives in complete markets settings.  
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(9)                              
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This distortion function is continuous, which implies that the ES is coherent. 

However, this distortion function is still flawed: it throws away potentially 

valuable information, because it maps all percentiles below α  to a single point 

u; and it does not take full account of the severity of extremes, because it 

focuses on the mean shortfall. As a result of these weaknesses, the ES can fail to 

allow for the mitigation of losses below VaR, can give implausible rankings of 

relative riskiness, and can fail to take full account of the impact of extreme 

losses (Wirch and Hardy (1999); Wang (2002)).   

Various distortion functions have been proposed to remedy these sorts of 

problems, but the best-known of these is the following, the famous Wang 

Transform (Wang (2000)): 

 

(10)                                         ])([)( 1 λ−ΦΦ= − uug  

 

where (.)Φ  is the standard normal distribution function and λ  is a market price 

of risk term that might be proxied by something like the Sharpe ratio. The Wang 

Transform has some attractive features: for example, it recovers CAPM and 

Black-Scholes under normal asset returns, and it has proven to be very useful 

for determining insurance premiums. However, for present purposes what we 

are most interested in here is that this distortion function is everywhere 

continuous and differentiable. The continuity of this distortion function means 

that it produces coherent risk measures, but these measures are superior to the 

ES because they take account of the losses below VaR, and also take better 

account of extreme losses (Wang (2002a)).  

Wang (2002b) also suggests a useful generalization of the Wang 

Transform: 

 

(11)                                         ])([)( 1 λ−ΦΦ= − ubug  
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where 0<b<1. This second transform provides for the volatility to be distorted 

as well, and Wang suggests that this is good for dealing with extreme or tail 

risks (e.g., those associated with catastrophe losses). Another possible 

transformation is the following, also due to Wang (2002b): 

 

(12)                                        ]))(([)( 1 λ−Φ= − uGQug  

 

where Q is a Student-t distribution degrees of freedom equal to our sample size 

minus 2, and )(uG  is our estimate of the distribution function of u. He suggests 

that this transformation would be good for dealing with the impact of parameter 

uncertainty on premium pricing or risk measurement.18  

 

2.7. Other risk measures 

There are also many other types of QBRM (and related risk measures) that we 

have not had space to discuss at any length. These include: 

• Convex risk measures (e.g., Heath (2001), Fritelli and Gianin (2002)): 

These risk measures are based on an alternative set of axioms to the 

coherent risk measures, in which the axioms of subadditivity and linear 

homogeneity are replaced by the weaker requirement of convexity.   

• Dynamic risk measures (e.g., Wang (1999), Pflug and Ruszczyński 

(2004)): These are multi-period axiomatic risk measures and that are 

able to take account of interim cash flows, which most coherent 

measures are not. These risk measures are therefore potentially more 

useful for longer-term applications where interim income issues might 

be more important.  

• Comonotonicity approaches (e.g., Dhaene et alia (2003a,b)): These 

apply to situations where we are interested in the sums of random 

variables and cannot plausibly assume that these random variables are 
                                                 

18 Many other distortion function have also been proposed, and a useful 
summary of these is provided by Denuit et alia (2005, pp. 84-95)). 
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independent. An example might be insurance claims that are driven off 

the same underlying risk factors (e.g., such as earthquakes). In such 

cases, the dependence structure between the random variables might be 

cumbersome or otherwise difficult to model, but we can often work with 

comonotonic approximations that are more tractable.  

• Markov bounds approaches (e.g., Goovaerts et alia (2003a)): These 

approaches derive risk measures based on the minimization of the 

Markov bound for a tail probability. This leads to a risk measure π  that 

satisfies )]([),([ SvESE απφ = , where S is a random variable, )(Sφ  and 

)(Sv  are functions of that random variable, and 1≤α  is some 

exogenous parameter. These approaches provide a unified framework 

that permits the derivation of well-known premium principles and other 

risk measures that arise as special cases by appropriate specifications of 

φ  and v .19  

• ‘Best practices’ risk measures (Goovaerts et alia (2003b)): These are 

based on the argument that there are no sets of axioms generally 

applicable to all risk problems. The most appropriate risk measure 

sometimes depends on the economics of the problem at hand and the use 

to which the risk measure is to be put. They give as an example the case 

of the insurance premium for two buildings in the same earthquake zone, 

where good practice would suggest that the insurer charge more than 

twice what it would have charged for insuring either building on its own. 

In such a case, the ‘best’ premium is not even subadditive. Their work 

suggests that actuaries might need to pay more attention to the context of 

                                                 
19 These include the mean value, Swiss, zero-utility, mixture of Esscher 
premium principles, as well as Yaari’s dual theory of risk (Yaari (1987)) and the 
ES. For more on these premium principles, see, e.g., Bühlmann (1970), Gerber 
(1974), Gerber and Goovaerts (1981) and Goovaerts et alia (1984). 
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a problem, and not just focus on the theoretical properties of risk 

measures considered a priori.20 

 

2.8. Some tentative conclusions 

All these measures are indicative of the wide variety of risk measures now 

available, but there is as yet little agreement on any major issues other than that 

the VaR is a poor risk measure. Various (in comparison, minor) problems have 

also been pointed out regarding the ES (i.e., that it is not consistent with risk-

aversion, and that it is inferior to the Wang Transformation). Going beyond 

these, the broader families of risk measures – in particular the families of 

coherent, spectral, and distortion risk measures – give us many possible risk 

measures to choose from. However, in some respects we are spoilt for choice 

and it is generally not easy to identify which particular one might be best. Nor is 

there any guarantee that an arbitrarily chosen member of one of these families 

would necessarily be a ‘good’ risk measure: for example, the outcome of a 

badly designed stress test would be a coherent risk measure, but it would not be 

a good risk measure. We therefore need further criteria to narrow the field down 

and (hopefully) eliminate possible bad choices, but any criteria we choose are 

inevitably somewhat ad hoc. At a deeper level, there is also no straightforward 

way of determining which family of risk measures might be best: all three 

families have different epistemological foundations, even though they have 

many members in common, and there is no clear way of comparing one family 

with another. 

In the circumstances the only solid advice we can offer at the moment is: 

in general, avoid the VaR as a risk measure, and try to pick a risk measure that 

has good theoretical properties and seems to fit in well with the context at hand.  

 

                                                 
20 And this list is by no mean exhaustive. For example, there are additional approaches based on 
one-sided moments (e.g., Fischer 2003), Goovaerts et alia (2003b)), Bayesian Esscher scenarios 
(Siu et alia (2001a)), imprecise prevision approaches (Pelessoni and Vicig (2001)), entropy 
based approaches (McLeish and Reesor (2003)), consistent risk measures (Goovaerts et alia 
(2004)), etc. 
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3. ESTIMATION METHODS 

 

 

We now turn to the estimation of our risk measures. This requires that we 

estimate all or part of the loss distribution function. In doing so, we can think of 

a set of cumulative probabilities p  as given, and we seek to estimate the set of 

quantiles pq  associated with them. The distribution function might be 

continuous, in which case we would have a function giving pq  in terms of a 

continuously valued p , or it might be discrete, in which case we would have 

N  different values of pq  for each p equal to, say, 1/N, 2/N, etc.  

Once we have estimated the quantile(s) we need, obtaining estimates of 

the risk measures is straightforward: 

• If our risk measure is the VaR, our estimated risk measure is the estimated 

quantile (2).  

• If our risk measure is a coherent or spectral one, we postulate a weighting 

function )( pφ , discretize (5), estimate the relevant quantiles, and take our 

coherent risk estimate as the suitably weighted average of the quantile 

estimates. The easiest way to implement such a procedure is to break up the 

cumulative probability range into small, equal, increments (e.g., we consider 

p=0.001, p=0.002, etc.). For each p, we estimate the corresponding quantile, 

pq , and our risk estimate is their )( pφ -weighted average.21  

• If our risk measure is a distortion one, we first discretize the ‘original’ 

probabilities (to get p=0.001, p=0.002, etc.) and estimate their matching 

quantiles, the pq . We then distort the probabilities by running them through 

the chosen distortion function, and our risk measure is the weighted average 
                                                 

21 In cases where the risk measure formula involves an integral, we also have to solve the 
relevant integral, and might do so using analytical methods (where they can be applied) or 
numerical methods (e.g., quadrature methods such as the trapezoidal rule or Simpson’s rule, 
Gauss-Legendre, pseudo- or quasi-random number integration methods, etc.).  
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of the quantile estimates, where the weights are equal to the increments in 

the distorted (cumulative) probabilities.  

From a practical point of view, there is very little difference in the work 

needed to estimate these different types of risk measure. This is very helpful as 

all the building blocks that go into quantile or VaR estimation – risk drivers, 

databases, calculation routines, etc. – are exactly what we need for the 

estimation of the other types of risk measure as well. Thus, if an institution 

already has a VaR engine, then that engine needs only small adjustments to 

produce estimates of more sophisticated risk measures: indeed, in many cases, 

all that needs changing is the last few lines of code in a long data processing 

system. This means that the costs of upgrading from VaR to more sophisticated 

risk measures are very low. 

We can now focus on the remaining task of quantile (or equivalently, 

density) estimation. However, this is not a trivial matter, and the literature on 

quantile/VaR/density estimation is vast. Broadly speaking, there are three 

classes of approach we can take: 

• Parametric methods. 

• Non-parametric methods. 

• Monte Carlo methods. 

We now briefly consider each of these in turn.22  

 

3.1. Parametric methods 

Parametric approaches estimate quantiles based on the assumption that a loss 

distribution takes a particular parametric form, and the first task is to determine 

what this might be. The choice of distribution would be guided by informal 

diagnostics (e.g., use of quantile-quantile plots, mean excess function plots, etc.) 

in which we informally check the goodness-of-fit of a variety of possible 

distributions. The choice of distribution might also be guided by theoretical 

                                                 
22 The foregoing summary is inevitably brief. More detailed treatments of 
quantile estimation are to be found, e.g., in Duffie and Pan (1997), Crouhy et 
alia (2001a) or Dowd (2005a).   
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considerations if there are reasons to think that the distribution might take a 

particular form: for example, if we were dealing with extremes, we would use 

an extreme-value distribution.23 It would also be guided by past experience 

(e.g., knowledge that particular distributions tend to provide good fits for 

similar datasets). In choosing a distribution, we would also have to take account 

of any conditionality in the loss process: losses might follow a temporal pattern 

(i.e., depend on past losses), or might be driven off some other random variables 

(e.g., losses might depend on the processes driving, say, earthquakes). In such 

cases, we would fit the loss distribution conditional on the relevant driving 

factors rather than unconditionally. The key is to ensure (as best we can!) that 

we choose the ‘right’ parametric (conditional or unconditional) distribution – 

the one that best fits the characteristics (e.g., the sample moments) of the 

distribution we are trying to model. Depending on the problem, the distribution 

chosen might be any of a large number, including: normal, lognormal, t, log-t, 

stable Paretian, elliptical, hyperbolic, Pareto, normal-mixture, jump-diffusion, 

Pearson-family, Johnson-family, skew-t, extreme-value, etc.  

Having identified the distribution, we can then look up that distribution’s 

quantile formula. However, the quantile formula will involve parameters that 

need to be estimated, and we would estimate these parameters using a method 

suitable to the selected distribution: this method might be maximum-likelihood, 

least-squares, method-of-moments, semi-parametric, etc. We then plug the 

parameter estimates into our quantile equation to obtain our quantile estimates. 

Where we are dealing with multiple distributions (e.g., a collection of 

loss distributions applying to different positions), we would want to model a 

                                                 
23 If we are dealing with extreme events (e.g., catastrophes, large claims, ruin probabilities for 
solvent institutions, extreme mortality risks, etc.), then it is important to use an extreme value 
(EV) method. Typically, this would be based on some version of Generalised EV theory (which 
models extremes using Weibull, Gumbel or Fréchet distributions) or peaks-over-threshold 
theory (which models exceedances over a high threshold using a Generalised Pareto 
distribution). For more on EV theory and its implementation and/or some illustrative discussions 
of its insurance applications, see Embrechts et alia (1997), Embrechts et alia (1999), Reiss and 
Thomas (1997), Cotter (2001) and Cebrián et alia (2003).  
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multivariate distribution.24 Multivariate approaches require us to either specify a 

particular multivariate distribution (e.g., multivariate normal, multivariate t, 

etc.) with the dependence structure between the random variables modelled by a 

correlation matrix, or to specify a copula function, in which case we would 

choose marginal distributions for each random variable and a suitable copula 

function to model their dependence structure. Correlation approaches are more 

familiar and easier to work with, but can (usually) only be applied to elliptical 

distributions; on the other hand, copula approaches are much more flexible 

because they allow us to fit different marginal distributions to different risk 

factors and also allow us a much wider range of possible dependence 

structure.25 However, they are also harder to work with and, in practice, usually 

require stochastic simulation.  

Parametric methods are suited to risk measurement problems where the 

distributions concerned are known or reliably estimated. However, this 

condition is often not met in practice, especially when we have small sample 

sizes, and in such circumstances they can be very unreliable. Furthermore, they 

are generally only appropriate for relatively ‘simple’ risk measurement 

problems, which few insurance problems are.  

 

3.2. Non-parametric methods 

Non-parametric methods seek to estimate risks without making strong 

assumptions about the distribution under consideration. Instead of imposing 

some parametric distribution on the data, they let the data speak for themselves 

as much as possible, and estimate risk measures from the empirical distribution. 

Relative to parametric approaches, non-parametric approaches have the major 

                                                 
24 We might also want to work with multivariate distributions because they are 
more flexible and allow us to change the weights of the sub-portfolio positions 
from one period to the next, which is not easily done with a univariate approach 
that implicitly takes the portfolio composition as given. 
25 Frees and Valdez (1998) give a readable introduction to the use of copulas in 
insurance risk measurement. For more on copulas and their methodology, see 
also, e.g., Cherubini et alia  (2004).  
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attraction that they avoid the danger of misspecifying the distribution, which 

could lead to major errors in our estimated risk measures. They are based on the 

assumption that the near future will be sufficiently like the recent past that we 

can use the recent historical data (as reflected in the empirical distribution) to 

forecast the future. Their usefulness, in practice, therefore depends on whether 

this assumption holds in any situation. Fortunately, it often does hold, and non-

parametric methods have a good track record. On the other hand, they can be 

inaccurate where this assumption does not hold. Their estimates can also be 

imprecise, especially in the tail regions where data are especially sparse. As a 

result, non-parametric methods often have difficulty handling extremes.  

The most common non-parametric approach is historical simulation 

(HS), in which we read off quantiles from a histogram of historical losses, but 

can be refined in many ways. We can replace histograms with kernels; these are 

more sophisticated non-parametric density estimators, and, in effect, seek to 

smooth the jagged edges of histogram columns without imposing strong 

assumptions on the data. We can also refine HS using weighted HS (e.g., we 

can weight data by age, volatility or correlation to take account of changing 

market circumstances), neural networks (which also allow us to adjust for 

changing market circumstances), bootstrap methods (which help to gauge 

accuracy), and principal components and factor analysis methods (which are 

very useful for dimensionality reduction, which can be a concern when there is 

a large number of random variables to be considered).  

We can also extend non-parametric methods to include non-historical 

scenarios. For example, we might construct some hypothetical scenarios, give 

these scenarios some probabilities, and then apply non-parametric methods to 

mixtures of historical and hypothetical scenarios. Adding hypothetical events to 

our data set helps remedy the main weaknesses of historically-based non-

parametric approaches – namely, their complete dependence on the historical 
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data set and their difficulties handling extremes – and also allows an integrated 

and consistent treatment of historical and hypothetical scenarios.26  

 

3.3. Stochastic simulation methods 

The third class of approach is stochastic simulation (or Monte Carlo simulation) 

methods. These methods simulate the loss distribution using a random number 

simulation engine,27 and they are much more powerful and flexible than the 

earlier methods. This is because the loss distribution is derived from an 

underlying calculation engine that can take account of virtually any level of 

complexity. The basic method is to specify the model ‘behind’ the loss 

distribution: we specify all the factors (e.g., we specify the exogenous and 

random variables, the distributions, the relationships between different 

variables, parameter calibration,28 etc.) that together determine the loss. Having 

set this model up, we then carry out a large number of simulation trials, each of 

which produces a simulated loss based on a set of simulated realizations of the 

‘driving’ risk factors, which are obtained by taking random drawings from their 

specified distributions. If we carry out a large number of such trials, then the 

distribution of simulated losses obtained in this way will provide a good 

approximation to the true but unknown loss distribution that we are seeking. We 

                                                 
26 Ways of implement this type of approach are discussed further by Berkowitz 
(2000) and Aragonés et alia (2001). 
27 These ‘random’ numbers are of course never truly random. They are either ‘pseudo’ random 
numbers generated by (so-called) random number generators, which produce sequences of 
numbers that try to mimic many of the properties of ‘true’ random numbers, or they can be 
‘quasi’ random numbers, sometimes known as low-discrepancy numbers, which do not seek to 
produce ‘random-looking’ numbers, but which often produce superior results in higher-
dimension problems. For more on all these issues, see, e.g., Broadie and Glasserman (1998) or 
Jäckel (2002).  
28 Parameters might be calibrated using statistical methods and/or ‘judgement’. 
It is important to appreciate that the parameters are forward-looking and even 
the best statistical methods are inevitably backward looking. Thus, we need to 
‘adjust’ any historically based estimates with our best judgement on how the 
future might differ from the past. This can be important in such areas as 
modelling mortality or financial returns, where the foreseeable future [sic] 
might plausibly be rather different from the recent past.  
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then obtain estimates of our risk measures by applying non-parametric methods 

to this simulated loss distribution. 

Stochastic methods are ideally suited to a great range of risk 

measurement problems, and will often provide the best way of dealing with the 

problems we are likely to encounter: they are particularly good at dealing with 

complicating factors – such as those considered in the next section – that other 

approaches often cannot handle. We can also refine stochastic approaches (e.g., 

using stratified sampling and importance sampling) to focus on any particular 

features of the loss function that we might be especially interested in (e.g., such 

as its extreme tail). Stochastic methods are therefore the methods of choice for 

the vast majority of ‘complex’ risk problems, and we shall have more to say on 

them in the next two sections.29 

 

 

4. COMPLICATING FACTORS IN INSURANCE RISK 

MEASUREMENT PROBLEMS 

 

 

Insurance risk problems often involve many complicating features, which 

credible risk measurement can often not ignore, and which will often necessitate 

that we use stochastic simulation methods. These complicating factors include:  

• Valuation problems: Most insurance positions are valued using accounting 

standards. These have the advantages that they are formula-driven and 

their limitations are well understood. However, book values are often very 

misleading and frequently lead to excessive smoothing: this means that 

they can have great difficulty valuing derivatives positions such as 

                                                 
29 The downsides of stochastic methods are that they can be less easy to use than some 
alternatives, they require a lot of calculations (which can be time-intensive, and sometimes be 
beyond our computing capability), and they often have difficulty with early-exercise features in 
options. However, the downsides are fairly minor: ease of use is not much of a problem for 
actuaries (and there is also a lot of good user-friendly software available as well), calculation 
times are falling rapidly thanks to improvements in computing power, and methods have 
recently become available to handle early exercise (such as those of Andersen (2000), Longstaff 
and Schwartz (2001), etc.). 
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options. The problems of book valuation have prompted accounting 

authorities to move toward market value (or marked-to-market) 

accounting. This works well for assets traded in liquid secondary markets, 

but becomes more subjective when markets are thin or non-existent, as is 

the case for many insurance positions Mark-to-model valuation is 

sometimes used, but this is subjective and unreliable, and open to abuse as 

well as error. In practice, many insurance companies therefore have little 

choice but to use an uneasy (and generally inconsistent) combination of 

book, marked-to-market and marked-to-model valuation. 

• ‘Badly behaved’ and heterogeneous risk factors: Risk factors often exhibit 

mean-reversion, asymmetry, heavy tails, jumps and nonstationarity, and 

such features often necessitate some form of stochastic simulation.30 

Insurance problems also typically involve multiple risk factors that are 

often very heterogeneous. In fact, the risk factors driving underwriting 

risks, market risks, credit risks and operational risks are likely to have very  

different distributions: underwriting risks will often require models of 

underlying ‘real’ processes (e.g., for weather, temperature, earthquakes, 

mortality, etc.), and often re quire models of both the frequency and the 

severity of loss events;31 market risks will require models of key stock and 

bond indices, exchange rates, commodity prices etc. (and some of these 

might ‘badly behaved’ too); credit risks will require models of default 

processes, default correlations, ratings migrations, and so on;32 operational 

risks involve many further complicating factors;33 and there are also 

                                                 
30 Some examples of how these processes might be modelled as given in Dowd 
(2005a, chs. 8 and 9). 
31 There are many examples of such models in the references cited in this paper. 
Some more general discussions of these models are to be found in Klugman et 
alia (1998) and Denuit et alia (2005).  
32 The complexities of credit risk issues are discussed further, e.g., in Crouhy et 
alia (2000; 2001a, chs. 7-13), and in Alexander and Sheedy (eds) (2004).  
33 For more on operational risks, see Alexander (ed.) (2003) the articles in the 
Fall (2002) issue of the Journal of Risk Finance, or Tripp et alia (2004). 
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liquidity risk issues to be considered as well.34 The heterogeneity of these 

various risk factors also makes aggregation difficult, and will often require 

us to model multivariate distributions using copulas.  

• Non-linearity: Position values are often non-linear functions of risk 

factors. For example, property losses might be complicated functions of 

risk factors such as hurricanes, earthquakes or temperatures, and many 

derivatives positions will have varying sensitivities to underlying risk 

factors (e.g., the sensitivities of options positions depend on the extent to 

which they are in or out of the money). There can also be complicated 

conditionality relationships between position values and risk factors. 

Conditionality can arise from many sources, but in insurance contexts 

often arises from the presence of loading factors and thresholds. These 

thresholds might be deductibles, reference losses, stop-loss limits, 

retention levels, etc., and they might be nominal, proportional, per 

occurrence, per risk, deterministic or stochastic. We can also get multiple 

thresholds (e.g., layers in reinsurance treaties) and these can sometimes be 

stochastically related.  

• Optionality: Insurance problems are often riddled with financial options 

(e.g., minimum interest guarantees, surrender options, guaranteed annuity 

rates, etc.; see also Jørgensen (2001)). Often, these options are quite exotic 

(e.g., have ‘non-standard’ underlying processes) and/or allow for early 

exercise, and such features often require that they be valued using 

stochastic methods. Insurance problems also often exhibit many real 

options too (e.g., franchise options, options to expand/contract, etc.). Real 

options have their own difficulties: valuation is often complicated by 

market incompleteness, and many real options are intrinsically 

complicated compound options (i.e., options on options) that are not easy 

to handle. 

                                                 
34 These issues are discussed further in Kelliher et alia (2004) and Dowd (2005a, 
ch. 14). 
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• Parameter and model risk: Insurance risk problems are often subject to 

considerable parameter and model risk, and this can lead to major errors in 

estimates of risk measures. These problems can be especially difficult in 

situations where we have relatively little data to estimate parameters or 

select models reliably (e.g., where we have small sample sizes or are 

dealing with extremes).35 These sorts of problems also manifest 

themselves for many insurance-specific reasons as well, e.g., where losses 

that are reported but not adjusted, incurred but not reported, etc., and 

where actuaries are working with mortality tables that are subject to 

aggregate mortality risk, where there are issues about smoothing methods, 

etc.36  

• Long horizons: Insurance problems can have long horizons (e.g., problems 

involving life insurance, annuities and runoffs can have horizons of 

decades). Longer horizons increase the pressure to face up to the problems 

of specifying a dynamic portfolio management strategy, and taking 

account of policyholder behavior; they increase the importance of inbuilt 

options (e.g., such as options to cash out, convert, etc., barrier options, and 

real options); they aggravate vulnerability to parameter and model risk, 

because we are effectively extrapolating from the estimated model over a 

longer period; and they make model validation more difficult, because it 

becomes harder to accumulate a good track record that can be used for 

validation purposes. 

                                                 
35 For example, evidence from a number of empirical studies suggests that the 
VaR models used by financial institutions can be quite inaccurate (see, e.g., 
Beder (1995), Marshall and Siegel (1997) and Berkowitz and O’Brien (2002)). 
In the insurance area, there is also significant evidence that published mortality 
tables are subject to significant parameter risk (see, e.g., Olivieri (2001) and 
Cairns et alia (2005)). 
36 The problems of parameter and model are discussed in more detail in Derman 
(1997), Geske (1999), Cairns (2000), Dowd (2000; 2005a ch. 16), Kato and 
Yoshiba (2000), Siu et alia (2001b) Hirsa et alia (2003), or Cairns et alia 
(2005). 
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• Other complicating factors: There can also be many further complicating 

factors, such as: coinsurance features; captive arrangements (e.g., 

commingling arising from multiparent captives, etc.); unit-linking; with-

profits and endowment features; securitisation and ART37; integrated risk 

management; committed capital features; liquidity risks; credit risks (e.g., 

collateral requirements, credit enhancement features, etc.); the impact of 

risk management strategies; and tax issues.  

 

 

5. EXAMPLES OF INSURANCE RISK MEASUREMENT PROBLEMS 

 

 

We now consider some illustrative insurance problems that involve the 

estimation of QBRMs. These are chosen to illustrate how some of the issues and 

methods we have discussed can be applied to insurance problems, and to 

highlight the thinking behind the application.38 

 

5.1. Estimating a univariate loss distribution39 

                                                 
37 For more on securitisation and ART issues, see, e.g., Canabarro et alia (2000), Culp (2002) 
and Swiss Re (2003).  
38 We would also like to make some points about good practice that apply in every case: (1) It is 
always important to carry out some preliminary data analysis to ‘get to know’ our data, identify 
their characteristics (e.g., their sample moments) and possible outliers. This analysis should also 
involve some graphical analysis (e.g., QQ plots) to form a tentative view of what distributions 
might fit the data. (2) We should always be aware of potential parameter and model risk, and it 
is often good practice to look for ways of trying to estimate our exposure to them (e.g., by 
estimating confidence intervals for our risk measures).We can estimate parameter risk if we treat 
the parameters as random variables in their own right, specify the distributions from which the 
parameters are drawn, and then embed this parameter model is a broader stochastic simulation 
framework. We can quantify model risk by resorting to mixtures of distributions. These methods 
are explained further in Dowd (2000; 2005a, ch. 16). Alternatively, we can quantify these risks 
using Bayesian methods (e.g., as in Siu et alia (2001b)). 
39 Naturally, this problem of modelling a loss distribution also implies a 
corresponding probability-of-ruin problem: if we obtain a risk measure from the 
loss distribution and interpret this as the initial reserve or capital, then the 
probability of ruin is the probability of a loss exceeding this reserve. We can 
therefore look at this same problem in probability-of-ruin terms. From this 
perspective, we can see that the risk measure estimation methods discussed here 
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One of the simplest applications is the estimation of a univariate loss 

distribution. We would begin by identifying the risk factor(s) involved, which 

might be the loss itself, or the random variables driving it (e.g., seismic activity, 

outbreaks of disease, mortality experience, etc.). Where the loss is to be 

modelled conditional on risk factors, we also need to specify the nature of the 

relationship between the loss variable and the risk factor(s). We then need to 

model the risk factor(s), and these models can be quite sophisticated. We may 

also have to deal with further complications such as embedded options, 

unobserved variables, and so forth. We also have to estimate (and/or calibrate) 

any parameters. Depending on the context, we might be more interested in the 

central mass of the loss distribution (e.g., if we are concerned with expected 

claims, etc.) or the tails (e.g., if we are working with exceedances, extremes, 

etc.), and this will also influence the distribution(s) chosen. The resulting model 

might then be parametric, nonparametric, or some combination (i.e., 

semiparametric), but the actual calculations are more likely than not to involve 

some form of stochastic simulation.40 

 

5.2. Modelling multiple loss functions 

A natural extension is where we wish to obtain the distribution of some 

aggregate loss from the loss distributions of constituent positions. We can 

sometimes handle this type of problem using a multivariate version of the 

univariate approach just mentioned, going through much the same steps but 

                                                                                                                                            
allow actuaries a much more flexible approach to probability of ruin than is 
possible using classical actuarial theory, because it no longer requires them to 
make the old assumptions (e.g., of compound Poisson processes, independence, 
etc.) that were made in the past to achieve tractable closed-from solutions. 
Instead, we can make any assumptions we like about loss processes and if 
necessary rely on simulation methods to give us numerical answers. 
40 Some illustrative examples are: Klugman and Parsa (1999) and Bolancé et 
alia (2003), who model insurance losses; O’Connor et alia (1999), who model 
defaults in corporate lending portfolios; Cebrián et alia (2003), who model large 
insurance claims using a generalized Pareto model; and Canabarro et alia 
(2000), Clark (2002), Woo (2002) and Daneshvaran and Morden (2004), who 
model natural catastrophes.  
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with multivariate rather than univariate models. However, such an approach is 

often restrictive (e.g., because it forces marginal distributions to be the same, 

and because it only allows a limited range of dependence between the different 

loss variables). It is therefore generally better to model multivariate losses using 

copulas, and this would involve the following two-stage modelling strategy. In 

the first stage, we model the various individual loss distributions in exactly the 

same way as before (i.e., we obtain their marginal distributions). The second 

stage then involves the copula analysis: we select and fit a copula function to 

represent the dependence structure between the different loss variables. This 

function provides a way of representing the multivariate distribution which 

takes as its arguments the marginal distribution functions of our individual loss 

variables. We then input the fitted marginals to the fitted copula to obtain the 

aggregate loss distribution that we are seeking,41 and we estimate our desired 

risk measures from the estimated aggregate loss distribution. 

 

5.3. Scenario analyses 

Scenario analyses are very commonly used for insurance/actuarial problems. To 

construct a scenario, we first specify the portfolio we are concerned about (e.g., 

property, casualty, life, country, type of product, etc.). We then identify the risk 

factors involved, and, in doing so, it often helps to distinguish between general 

economic factors and underwriting factors. The former refer to macroeconomic 

conditions, fluctuating interest rates, equity indices, inflation, FX rates, changes 

in insurance market conditions, etc. The latter refer to factors that might trigger 

large claims, and are often (but not always) specific to product lines: these 

might be earthquakes, windstorms, cyclones, hurricanes, fires, environmental 

pollution, asbestos, tobacco, motorway pile ups, natural catastrophes, plane 

crashes, infectious diseases, war, terrorism, pollution, changes in mortality or 

morbidity trends, changes in legal opinions, regulatory changes, etc. 

                                                 
41 Some nice examples of copula modelling in insurance are given in Frees and Valdez (1998) 
and Klugman and Parsa (1999): both analyze cases where the marginal distributions for losses 
and allocated loss adjustment expenses (ALAE) are modelled using Pareto distributions, and 
their joint dependence is modelled using Archimedean copulas.  
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Underwriting risk factors might be specific to particular portfolios or product 

lines, but there are connections across portfolios to be considered as well, and 

identifying common risk factors can sometimes be difficult.  

Once risk factors are identified, we then have to model them. Often, 

modelling boils down to specifying some kind of loss distribution that would be 

calibrated using past data and/or expert judgement. It is also sometimes possible 

to assume that loss events are independent, which greatly simplifies the 

modelling process. However, we also have to bear in mind that some types of 

event (e.g., changes in liability) have long-term effects, so assumptions of 

independence are often not appropriate: this leads us into methods of handling 

temporal dependence (e.g., comonotonic approaches, etc.). We might also be 

concerned about scenarios affecting investments, credit risk exposures (e.g., in 

relation to reinsurers), and so on. The latter are becoming increasingly important 

as ART practices spread, and raise difficult and complex issues relating to 

default probabilities (including default probability transition matrices), recovery 

rates, the modelling of creditworthiness, the impact of credit enhancement 

features, and so forth. Once we have modelled our risk factors, we specify our 

exposures to them, and then aggregate to form some sense of the overall impact 

of the scenarios considered. It goes without saying that we should try to 

consider all relevant risk factors, take account of interdependencies across 

portfolios, and also take account of the impact of risk management strategies. 

Various guidelines have been suggested to assist the process of 

scenario generation. It is important to ensure that scenarios are plausible, 

consistent, and do not violate no-arbitrage conditions. Scenarios should also 

embody plausible assumptions about the sensitivities of positions to underlying 

risk factors. Modellers need to take account of plausible interactions between 

market, credit and liquidity risks, and also be on their for potential pitfalls (such 

as the failing to consider losses that occur when risk factors only move a little, 

or not at all, e.g., as would be the case on straddle positions). It is also important 

for scenarios to respect the principle of parsimony and avoid unnecessary 

complexity. Key assumptions should also be highlighted and subjected to 
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critical scrutiny, and modellers should have some idea of the sensitivity of their 

results to such assumptions. Finally, it is very important that modellers are able 

to articulate the basic ‘stories’ embodied in their scenarios and successfully 

communicate these to non-specialist audiences (e.g., senior management).42 

Scenario analyses can come in a variety of forms and involve any 

number of scenarios. In its traditional form, an institution would construct a 

limited number of deterministic scenarios that typically involved asking ‘what 

if?’ questions and then trying to work through their likely consequences. 

Scenarios like these can be on historical experience or on alternate history (i.e., 

asking what might have been?), but can also be based on more ‘mechanical’ 

possibilities (e.g., what happens if the stock market falls by x amount, interest 

rates rise by y amount, etc.).43  However, most modern scenario analyses are 

stochastic, and involve large numbers of simulation trials.44 Risk measures are 

then very easy to determine: each trial produces a loss outcome that can be 

                                                 
42 For more on some of the guiding principles behind scenario generation – and 
a sense of the diversity of practice and intricacies involved – see, e.g., Breuer 
and Krenn (1999), Smith and Riley (1999), Reynolds (2001), Altschull and 
Robbins (2003), Longley-Cook and Kehrberg (2003), and Dowd (2005a, ch. 
13).   
43 We can also get more elaborate forms of mechanical scenarios analysis, 
sometimes known as factor push or maximum loss optimization: we identify the 
risk factors, shock them all (e.g., by a couple of standard deviations), and then 
have an algorithm mechanically search through these scenarios to identify the 
worst one. These methods are often used for estimating the risks of derivatives 
positions, and some well-known examples are the quadratic programming 
method suggested by Wilson (1994), and the delta-gamma methods suggested 
by Rouvinez (1997). These ‘mechanical’ methods are reviewed in Dowd 
(2005b, chapter 13.3). 
44 Stochastic simulation exercises can sometimes be extremely time-intensive, 
and in such cases we would also have to think carefully about ways of 
economizing on calculation time. For example, we might resort to variance 
reduction methods (such as antithetics, control variates, importance sampling, 
stratified sampling, etc. We can also resort to methods such as principal 
components analysis. A good example of such a method is the ‘scenario 
simulation’ approach of Jamshidian and Zhu (1997): this is a computationally 
highly efficient approach that involves simulating the principal components for 
a set of risk factors.  
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regarded as having the same probability as any other loss outcome; obtaining an 

estimate of one’s preferred risk measure from the simulated loss outcomes is 

then trivial. Stochastic scenario analyses have been applied to a great variety of 

insurance problems and can sometimes be very sophisticated.  

The following applications and associated references give some 

indication of what stochastic models involve and their diverse range of possible 

applications: 

• Asset-return modelling (Wilkie (1984), Exley et alia (2000), Blake et alia 

(2001), Hibbert et alia (2001), Bayliffe and Pauling (2003), and Longley-

Cook and Kehrberg (2003)).  

• Catastrophe modelling (Clark (2002), Woo (2002), Canabarro et alia 

(2000)), Daneshvaran and Morden (2004)).  

• Mortality modelling (Olivieri (2001), Czernicki et alia (2003), Cairns et 

alia (2005), Dowd et alia (2005)).  

• Reserving and capital (Li and Tsai (2000), Hürlimann (2001), Turnbull 

(2002), Czernicki et alia (2003), Hibbert and Turnbull (2003), Watson 

Wyatt (2003, 2004), Moody’s (2004)).  

• Various miscellaneous insurance applications, such as modelling asset-

liability management (Jagger and Mehta (1997), Swiss Re (2000), Exley et 

alia (2000), Babbel (2001)), embedded options (Jørgensen (2001)), with-

profit guarantees (Hibbert and Turnbull (2003)), the impact of 

policyholder behavior on insurance company positions (Altschull and 

Robbins (2003)) and insurance company defaults (Moody’s (2004), 

Ekström (2005)). 

We emphasise that this list is merely illustrative, but even so it does give some 

indication of the state of the art.  

 

 

6. FURTHER ISSUES 
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Our discussion has focused on three key themes: the type of risk measure, the 

estimation method, and the type of insurance application. Inevitably, this focus 

means that there are other (often important) issues that we have barely touched 

on. These include: 

• Capital allocation and risk budgeting: Typically, these involve breaking 

down the aggregate risk measure into its component risks (i.e., determining 

the extent to which each business unit contributes to the overall risk 

measure) so that the firm can then allocate capital to ‘cover’ these 

component risks. Allocating capital ‘correctly’ is an important issue not just 

because we want to avoid risk ‘black holes’ and ensure that firms are 

adequately capitalised at the firmwide level, but also because it is necessary 

if they are to price products properly and avoid inadvertent cross-

subsidisation. However, capital allocation is a very difficult subject, and 

closed-form solutions for component risks are known only for special cases, 

the best known of which is where risk factors are elliptically distributed (see 

Garman (1997), Wang (2002), and Valdez and Chernih (2003)). Capital 

allocation is also further complicated by overhead allocation issues45 and by 

the fact that it is sometimes necessary to distinguish between the capital 

allocation and the risk measure on which the allocation is based (Goovaerts 

et alia (2003b)).46  

• Risk-expected return analysis and performance evaluation: In practice, we 

might want to identify the risk-expected return trade-off faced by the firm at 

                                                 
45 For example, one of the best known contributions to this subject in insurance 
is the capital allocation model of Myers and Read (2001): this model satisfies 
varies ‘nice’ properties and has had a major influence on the literature. 
However, Gründl and Schmeiser (2005) point out that this model is open to a 
number of problems – of which the central one is the difficulty of allocating 
equity capital to different business lines, which is a form of overhead allocation 
problem – and typically leads to incorrect decision-making. Thus, capital 
allocation is much more difficult than it looks at first sight. 
46 In practice, firms tend to resort to ad-hoc rules of thumb along the lines 
discussed at length in, e.g., Matten (2000). For more on capital allocation and 
risk budgeting, see also Panjer (2002) Fischer (2003), Tsanakas (2004) or Dowd 
(2005a, ch. 13).  
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an aggregate level, and we want systems of performance evaluation that 

correctly allow for the risks taken as well as profits earned by individual 

managers. Achieving these objectives is very difficult, not just because they 

raise issues of risk aggregation/disaggregation, but also because they raise 

organizational issues (e.g., moral hazard) and the classic risk-expected 

return decision rules (e.g., Sharpe ratios) are not reliable outside the 

restrictive world of elliptical distributions. It is therefore necessary to think 

in terms of risk-expected return analysis outside the familiar but limiting 

confines of ellipticality (and some ways of doing so are suggested by Acerbi 

(2004, pp. 186-199) and Dowd (2005b)). However, there has also been 

considerable progress made with these types of problem in an insurance 

setting, where a number of recent studies have looked at risk measures in 

optimal insurance, resinsurance and hedging contexts (see, e.g., Young 

(1999), Gajek and Zagrodny (2004), Kaluszka (2005) and Korn (2005)).  

• Long-run and strategic issues: The estimation and uses of measures in long-

run and strategic contexts, where we might be concerned with the impacts of 

alternative asset allocation strategies (e.g., Blake et alia (2001)), the effects 

of long-term trends (e.g., Dowd et alia (2004), Gilles et alia (2003) or the 

value of real options (e.g., such as franchise options; see Panning (1999)).  

• Model evaluation: In the financial risk area the subject of model evaluation 

(or backtesting) has received a considerable amount of attention. Most of 

these backtests focus on the frequency of losses exceeding a VaR (see, e.g., 

Kupiec (1995), Christoffersen (1998)), but more sophisticated backtests 

compare sets of complete density forecasts against subsequently realized 

outcomes (e.g., Berkowitz (2001). These methods all require matching sets 

of forecasts and realized outcomes, and are therefore only practically 

feasible for models with short forecast horizons where such track records 

can be accumulated. However, the subject has received little attention in the 

actuarial field, and this is unfortunate as evaluating insurance risk models is 

likely to be even more difficult than evaluating the risk models commonly 

used in capital market institutions. The best advice we can offer insurance 
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practitioners is to use some of the backtests developed in the financial risk 

area, where possible. Beyond that, they need to think innovatively and 

above all take the problem of evaluation seriously: they might identify key 

assumptions in their models and test or critique these as best they can; they 

might bootstrap from their models and see if bootstrapped outcomes (e.g., 

such as long-run returns or mortality rates) are consistent with target 

outcomes; they might use simulation models to estimate shortfall 

probabilities and check if the estimated shortfall probabilities are acceptable; 

and so forth.  

• Enterprise-wide risk management (ERM): Risk measurement systems also 

have an important role to play in ERM systems, which seek to counteract 

‘silo mentalities’ in risk management and manage risks across the firm on a 

holistic, consistent and proactive basis. 47 ERM systems require reliable risk 

measures, and also highlight the issue of how to aggregate risks across 

heterogeneous positions in a consistent and intellectually defensible manner. 

There have also been major ERM initiatives in recent years, one by the CAS 

in the United States and another being the launch in 2005 of the ERM 

Institute International led by Shaun Wang, both of which seek to promote 

ERM education in the insurance industry. 

• Regulatory risk measures: There is a large literature on the regulatory uses 

of financial risk measures. The best known instance of these is the use of 

VaR measures to determine regulatory capital requirements in the Basel 

capital adequacy regime (see e.g., Basel Committee (2003)): this has been 

heavily criticized on a number of grounds (see, e.g., Danielsson et alia 

(2001), Danielsson (2002)). There have also been many other initiatives by 

financial regulators involving the regulatory uses of financial risk measures: 

these include the EU’s Solvency II initiative, the UK Financial Services 

                                                 
47 For more on ERM and its applications in insurance, see Tillinghast Towers 
Perrin (2000, 2001) and Wang (2002). Some recent surveys on the practice of 
ERM in the insurance industry are given by CAS (2001), Tillinghast-Towers 
Perrin (2002) and PWC (2004). Mikes (2005) gives a good account of some of 
the practical problems that can arise with the implementation of ERM systems.   
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Authority’s capital adequacy regime for insurers (e.g., FSA (2002, 2005)), 

the use of risk-based capital requirements by the NAIC and by other 

regulators (e.g., NAIC (1995)), and the regulatory use of early warning 

systems to identify institutions that are likely to get into difficulties (see, e.g. 

Gunther and Moore (2002), Pottier and Sommer (2002)).48 

 

 

7. CONCLUSION 

 

 

The subject of financial risk measurement has come a long way since the 

appearance of VaR in the early 1990s. In retrospect, it is clear that VaR was 

much overrated, and is now discredited as a ‘respectable’ risk measure – despite 

the ostrich-like reluctance of many of its adherents to face up to this fact. Risk 

measurement has moved on, and we now have many ‘respectable’ risk measures 

to choose from: these include coherent risk measures, spectral risk measures, 

distortion risk measures, and many others. Indeed, in some ways, we now have 

too many risk measures available to us, and there are (usually) no easy ways to 

determine which might be best: the most appropriate risk measure depends on 

the assumptions we make (e.g., whether we are prepared to ‘buy into’ risk 

aversion theory, whether we prefer to work with distortion functions, etc.), and 

would appear also to be sometimes context-dependent. Any search for a single 

‘best’ risk measure – one that is best in all conceivable circumstances – would 

therefore appear to be futile, and practitioners should be pragmatic. De gustibus 

non disputandum est.  

Estimating any of these risk measures is straightforward: if we can 

estimate quantiles then we can easily estimate any QBRMs. This implies that 

upgrading from a VaR to a more ‘respectable’ risk measure is easy: we just add 

a few more lines of code to our program. And, as for estimation method, our 

                                                 
48 We also ignore the related issues raised by non-regulatory rating systems. For more on these, 
see, e.g., Crouhy et alia (2001b) or Krahnen and Weber (2001). 
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preferred approach will almost always be some form of stochastic simulation: 

most insurance risk problems are complex, and these complexities can (in 

general) only be handled using stochastic methods.  

In short, our main advice to insurance practitioners is that they should 

usualy avoid the VaR as a risk measure and choose risk measures that appear to 

be ‘respectable’ and appropriate to the problem at hand; they should also face 

up to the complexity of insurance risk problems and think in terms of stochastic 

methods as their preferred estimation vehicles.  

Forecasting the future is of course a very uncertain business, but it 

seems to us that there are certain trends in risk measurement that are very likely 

to continue over the near future:  

• We already have more than enough risk measures to choose from, and the 

business of producing new risk measures would appear to generating 

rapidly diminishing returns. We would therefore anticipate that significant 

new developments in this area will become harder to achieve and less 

frequent.  

• Estimation methods will continue to improve: new estimation methods are 

being developed in other fields, and there is a process of intellectual 

arbitrage whereby methods developed fields such as engineering, physics, 

and statistics gradually make their way over to financial risk management 

or actuarial science, and so lead to improvements in the estimation and 

management of financial risks. We have seen this with extreme-value 

theory and copulas, and we would anticipate further developments of a 

similar nature. However, our sense is that this process is also slowing 

down.  

• We perceive that practitioners are gradually becoming more aware of the 

importance of parameter and model risk, and we expect this trend to 

continue. From a practical point of view, it is much better to have a rough 

and ready estimate of a risk measure and be aware of its limitations, than 

have a ‘fancy’ estimate and be unaware of its weaknesses. Indeed, we 

would argue that any estimated risk measure reported on its own is close 
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to meaningless without some indicator of how precise the estimate might 

be. Fortunately, practitioners are becoming more aware of these issues, 

and we would anticipate that a time will eventually come when precision 

metrics will be reported as a matter of course.  

• There is also the troublesome subject of model evaluation. This is difficult 

enough in the simpler contexts of, say, the 1-day VaR models used by 

securities firms, and is generally much more difficult for the risk models 

appropriate for insurance companies (because of their greater complexity, 

longer horizons, etc.). Recent disasters such as Equitable Life (where the 

firm failed to value the options it had written; see Blake (2001)) only 

underline this point: the failure to evaluate models properly is one of the 

key weaknesses of modern actuarial practice. We therefore anticipate that 

this subject will receive increasing attention from actuaries, and it is 

especially important that work be done on the evaluation of longer-horizon 

risk forecasting models.  

Finally, it is also helpful to see developments in risk measurement in 

their broader cross-disciplinary context. For a very long time, actuaries have 

been accustomed to think of themselves of ‘the’ risk experts. Generation after 

generation of actuaries took this as given, and for many years there was no-one 

to challenge it. Then in the last decade or two the upstart discipline of ‘financial 

risk management’ emerged out of nowhere, as it were, and the new breed of 

financial risk managers started laying claim to much of the territory that 

actuaries had traditionally considered as their own (e.g., over the modelling of 

long-term asset returns). The stage was set for a classic turf war, and the FRM 

profession had the advantage that it had a flagship, the VaR, that took center 

stage: VaR was the flavor, not just of the month, but of the entire decade, and 

everyone wanted a ‘VaR model’. The actuarial profession was then criticized 

because insurance companies were generally well behind capital markets 

institutions in their risk management practices, and because spectacular 

disasters (such as Equitable Life in the UK) highlighted the limitations of the 

assumptions on which many actuarial projections had been based. And yet the 
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‘VaR revolution’ itself became unstuck, and some of the standard risk measures 

used by actuaries for many years (such as ES-type measures and the outcomes 

of stress tests) turned out to be very respectable when viewed from the 

perspective of recent risk measure theory. Those actuaries (and others) who 

were skeptical of the siren calls of the VaR had been right all along. 

Furthermore, the state of risk management understanding reflected in actuarial 

journals is in many respects well ahead of that reflected in FRM journals. 

Indeed, the only area where we can see that actuaries are visibly behind their 

FRM counterparts is in terms of risk model evaluation. On the other hand, for 

their part, most FRM practitioners are quite ignorant of the actuarial literature – 

so much so, in fact, that we would argue that the failure of FRM practitioners to 

acknowledge developments in actuarial science is little less than a professional 

disgrace.  
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