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Abstract   

 

This paper presents a new iterative procedure for solving finite noncooperative games, the 

reasoning-based expected utility procedure (RBEU), and compares this with existing iterative 

procedures.  RBEU deletes more strategies than iterated deletion of strictly dominated 

strategies, while avoiding the conceptual problems associated with iterated deletion of weakly 

dominated strategies.  It uses a sequence of “accumulation” and “deletion” operations to 

categorise strategies as permissible and impermissible; strategies may remain uncategorised 

when the procedure halts.  RBEU and related “categorisation procedures” can be interpreted 

as tracking successive steps in players’ own reasoning.  
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1. Introduction 

In this paper, we introduce a new iterative solution procedure for noncooperative games, 

called the reasoning-based expected utility (RBEU) procedure.  In general, the RBEU 

procedure deletes more strategies than iterative deletion of strictly dominated strategies 

(IDSDS), while not coinciding with any of the family of procedures based on iterated 

deletion of weakly dominated strategies (IDWDS). 

 The puzzling features of IDWDS are well known.  One difficulty is the order-

sensitivity problem: the conclusions that can be derived by IDWDS are sensitive to the order 

in which deletions are made.  Another, closely related, difficulty is the undercutting 

problem.  IDWDS can delete a weakly dominated strategy for some player at one stage of 

the procedure, only for it to transpire, when further stages of deletion have been undertaken, 

that that strategy is no longer weakly dominated against the non-deleted strategies of other 

players. 

 The RBEU procedure is not vulnerable to any analogous problems.   Many of its 

distinctive properties flow from the fact that, at each stage, it has an operation of 

accumulation of strategies, as well as the more familiar one of deletion.  At each stage, 

deletion and accumulation are sensitive to previous accumulations, as well as to previous 

deletions.  The essential idea is that, at each stage, previously-deleted strategies are assumed 

to have zero probability, and previously-accumulated strategies are assumed to have strictly 

positive probability.  If a strategy has not yet been deleted or accumulated, no restrictions are 

imposed on its probability.  A strategy is accumulated if, given the assumptions applicable at 

the relevant stage, it can be shown to maximise expected utility; it is deleted if, given the 

same assumptions, it can be shown not to maximise expected utility.  Because RBEU has 

these two operations, it induces a trinary partition of each player’s strategy set at each stage, 

corresponding to the fact that not being able to establish the falsity of a proposition is not the 

same thing as being able to establish its truth. 

 In using the term “reasoning-based” to describe this procedure, we are signalling a 

particular orientation towards game theory.  Many branches of game theory start from the 

pre-theoretic idea that players have mutual understanding of each other’s rationality, and 

then proceed to represent and develop this idea in different ways, such as the various formal 

concepts of common knowledge.  More specifically, game theory uses two different types of 

solution concept: equilibrium concepts and iterative procedures.  Each type can be motivated 
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in terms of mutual understanding of rationality, but the nature of the motivation can be quite 

different in the two cases. 

 For a given game, an equilibrium solution concept defines a set of equilibria, each of 

which specifies a particular configuration of players’ strategy choices and/or beliefs.  When 

such a solution concept is interpreted as embodying mutual understanding of rationality, the 

implicit claim is that each equilibrium could be common knowledge among the players, 

consistently with the players’ rationality also being common knowledge.  A game may have 

more than one equilibrium, in which case the equilibrium approach does not explain how 

players come to know what other players choose or believe.  One way of providing 

conceptual foundations for an equilibrium solution concept is to show that the relevant 

equilibrium properties are implied by an epistemic model in which some form of mutual 

understanding of rationality is represented explicitly; Aumann’s (1987) derivation of 

correlated equilibrium is a classic example.  Within the equilibrium-based approach, iterative 

procedures are sometimes used as devices that help to narrow or assist in a search for 

particular types of equilibrium.  One example is the long-established use of IDSDS to 

narrow a search for Nash equilibria, exploiting the fact that only strategies which survive 

IDSDS can have strictly positive probability in any Nash equilibrium.
1
  When iterative 

procedures are used in relation to some kinds of epistemically-grounded solution concepts, 

the successive stages of strategy deletion may correspond to different levels of belief in a 

lexicographic probability system, as in the approach to IDWDS analysed by Stahl, 1995; 

Brandenburger, Friedenberg and Kiesler, 2008; and Asheim and Perea, 2009.  

 However, an alternative interpretation of iterative procedures leads to a different type 

of motivation.  The successive stages of an iterative procedure can be interpreted as tracking 

successive steps of reasoning that the players can perform; “rationality” is then interpreted as 

a property of the modes of reasoning that the players use, and which the procedure tracks.  

This approach does not merely purport to identify solutions that are consistent with 

rationality; it also explains how players can know that the solution is what it is.  On this 

understanding, an iterative procedure is not an adjunct to a solution concept that has an 

independent rationalisation; rather it constitutes in summary form the rationalisation for the 

solution it generates.  This approach is suggested by the understanding of “common 

knowledge” of rationality formulated by Lewis (1969), in which there is some mode of 

reasoning that is shared by the players and can be tracked by an iterative procedure.
2
  It is in 

this sense that the RBEU procedure is “reasoning-based”. 
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If one thinks of iterative procedures in this way, the order-sensitivity and 

undercutting problems of IDWDS are troubling.  It is difficult to see how two equally valid 

paths of reasoning from a given set of (mutually consistent) premises, differing only in the 

order in which inferences were made, could produce mutually inconsistent conclusions.  

Similarly, it is difficult to see how a conclusion that is reached by valid reasoning from given 

premises could be undercut by other conclusions derived from the same premises.  Thus, 

intuitively, one might expect that a procedure that tracked players’ reasoning would not be 

subject to the order-sensitivity and undercutting problems.  We will argue that each stage of 

the RBEU procedure can be interpreted as a step of reasoning which each player can make, 

and that the possibility of this interpretation is licensed by attractive properties of the 

procedure.  Of course, the formal structure of the RBEU procedure is not dependent on this 

interpretation; we do not discount the possibility that it can also be motivated in other ways. 

 The remainder of the paper is structured as follows:  Section 2 sets up a general 

framework in which iterative “categorisation procedures”, capable of being interpreted as 

tracking players’ reasoning, can be formulated.  Section 3 uses this framework to define the 

RBEU procedure.  Section 4 compares the RBEU procedure to IDSDS and IDWDS, and to 

related procedures in the literature.  Section 5 concludes with some brief reflections on other 

applications of the concept of a categorisation procedure. 

 

2. Framework 

We consider the class G of finite, normal-form games of complete information, interpreted 

as one-shot games.  Our analysis applies to every such game but, to avoid clutter, we 

suppress clauses of the form “for all games in G” except when stating formal results, and 

proceed initially by fixing the game.  The game is defined by a finite set N = {1, ..., n} of 

players, with typical element i and n ≥ 2; for each player i, a finite, non-empty set of (pure) 

strategies Si, with typical element si; and, for each profile
3
 of strategies s = (s1, ..., sn), a 

profile u(s) = (u1[s], …, un[s]) of finite utilities.  The sets S1 × ... × Sn and S1 × ... × Si–1 × Si+1 × 

... × Sn are denoted by S and S–i, respectively.  We impose that, for all i, j, ∈ N, Si ∩ Sj = ∅.  

This condition allows us to use a conveniently compact notation below.  It has no 

substantive significance, but merely imposes a labelling convention that the strategies 

available to different players are distinguished by player indices, if nothing else.
4
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Our fundamental building block is a formal object which we call a categorisation of 

a player’s strategy set.  For any player i, an ordered pair <Si
+
, Si

–
> of subsets of Si is a 

categorisation of Si  if it satisfies the following three conditions
5
: (i) Si

+
 and Si

–
 are disjoint;  

(ii) Si
–
 ⊂ Si; and (iii) if Si\Si

–
 = {si} for any si ∈ Si, then Si

+
 = {si}.  Si

+
 is the positive 

component of the categorisation and Si
–
 the negative component.  The set of categorisations 

of Si is denoted Φ(Si).   

We use two interpretations of this formal object, on each of which a categorisation of 

Si represents the substantive content of some statement about player i’s strategies.  On one 

interpretation, the statement asserts of the strategies in the positive component that they are 

rationally permissible for i and of the strategies in the negative component that they are not 

rationally permissible.  On the other interpretation, the statement asserts of the strategies in 

the positive component that i might possibly play them and of the strategies in the negative 

component that that i will not play them.  In terms of these interpretations, the requirement 

that Si
+
 and Si

–
 are disjoint reflects the mutual incompatibility of permissibility and 

impermissibility (resp. of possibility and impossibility).  Condition (ii) requires that not all 

of i’s strategies are categorised as impermissible (resp. as impossible); condition (iii) 

requires that, if all but one are categorised as impermissible (resp. as impossible), the 

remaining strategy is categorised as permissible (resp. as possible). 

In general, a categorisation of Si defines a trinary partition of Si, whose elements are 

the positive component Si
+
, the negative component Si

–
, and the set Si\(Si

+ ∪ Si
–
) containing 

those strategies that are not classified as elements of either component.  If this third set is 

empty, the categorisation is exhaustive.  However, our framework permits non-exhaustive 

categorisations, corresponding to statements which do not refer to all strategies. The null 

categorisation <∅, ∅> corresponds to a statement with no substantive content – that is, 

which says nothing at all about the permissibility or impermissibility (resp. possibility or 

impossibility) of strategies.  This concept will be useful in representing the starting point of 

an iterative procedure that tracks reasoning.   

We now introduce a notation which allows us to combine categorisations of the 

strategy sets of two or more players, while maintaining the distinction between positive and 

negative components.  Consider any non-empty set N′ ⊆ N of players.  For each i ∈ N′, let 

<Si
+
, Si

–
> be any categorisation of Si.  We define a “union” relation ∪* between such 

categorisations such that ∪*i∈N′
 
<Si

+
, Si

–
> ≡ <∪ i∈N′ Si

+
, ∪ i∈N′ Si

–
>.  Each such ∪* i∈N′

 
<Si

+
, Si

–
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> is a categorisation of the set ∪ i∈N′ Si.  The set of all categorisations of the latter set is 

denoted Φ(∪ i∈N′ Si).
6
  Two kinds of combination of categorisation are particularly 

significant.  Members of the first kind arise when N′ = N; they combine categorisations of all 

players’ strategy sets to produce categorisations of ∪i∈N Si.  Members of the second kind 

arise when N′ = N\{i}; they combine categorisations of the strategy sets of all players except 

some player i to produce categorisations of ∪i∈N\{i}Si.   

We use S as a shorthand notation for ∪i∈N Si; the positive and negative components 

of categorisations in Φ(S) will typically be denoted S+ and S–.  Similarly, we use S–i as a 

shorthand notation for ∪i∈N\{i} Si; the positive and negative components of categorisations in 

Φ(S–i) will typically be denoted S–i
+
 and S–i

–
.  For compactness, we will sometimes also use 

an even briefer notation whereby C, C′, and so on, denote particular categorisations of S; C–i, 

C–i′, and so on, particular categorisations of S–i; and Ci, Ci′, and so on, particular 

categorisations of Si.     

Consider any categorisations Ci′ = <Si
+′, Si

–′>, Ci″ = <Si
+″, Si

–″> in Φ(Si), for some 

player i.  We define a binary relation ⊇* (read as has weakly more content than) between 

such categorisations such that Ci″ ⊇* Ci′ if and only if Si
+″ ⊇ Si

+′ and Si
–″ ⊇ Si

–′.  If, in 

addition, either Si
+″ ⊃ Si

+′ or Si
–″⊃ Si

–′ holds, we will say that Ci″ has strictly more content 

than Ci′, denoted Ci″ ⊃* Ci′.  On the reading of categorisations as statements about 

permissibility (resp. possibility), Ci″ ⊃* Ci′ has a natural interpretation: it indicates that the 

statement represented by Ci″ asserts everything that is asserted by the statement represented 

by Ci′ and more besides.  This notation is extended in an obvious way to categorisations of 

Φ(S) and Φ(S–i).  For example, consider categorisations C′ = <S
+′, S–′>, C″ = <S+″, S–″> in 

Φ(S).  In this case, C″ ⊇* C′ if S+″ ⊇ S–′ and S+″ ⊇  S–′.  

We define a categorisation function for player i as a function fi: Φ(S–i)→Φ(Si) with 

the following Monotonicity property: for all C–i′, C–i″ ∈ Φ(S–i), if C–i″ ⊃* C–i′ then fi(C–i″) 

⊇* fi(C–i′). 

A categorisation function may be interpreted as encoding reasoning which produces 

categorisations of Si, conditional on categorisations of S–i.  On this reading, the 

categorisations of Si attribute permissibility and impermissibility to strategies available to i; 

and the categorisations of S–i on which they are conditioned attribute possibility and 

impossibility to strategies available to players other than i.  Thus, a particular categorisation 

function fi corresponds to a form of reasoning that generates statements about what is 

rationally permissible for player i, conditional on statements about what other players might 
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do.  In this sense, fi encodes a conception of practical rationality for player i.  Monotonicity 

corresponds to the requirement on rational reasoning that any conclusions that can be 

obtained from a given set of premises can also be obtained from any strictly stronger set of 

premises.
7
  As we will show, imposition of this requirement is a crucial feature of our 

approach. 

We will work below with profiles of categorisation functions.  It will simplify our 

subsequent definitions to express the content of a given profile f = (f1, …, fn) of 

categorisation functions as a single function ζ: Φ(S)→Φ(S), constructed as follows.  Let C = 

<S
+
, S

–
> be any categorisation of S.  For each player i, define C–i = <S

+
\Si, S

–
\Si>.  Next, 

define Si
+′ and Si

–′ as, respectively, the positive and negative components of fi(C–i).  Finally, 

define ζ(C) = ∪*i∈N <Si
+′, Si

–′>.   We will say that ζ summarises f.  A function ζ: Φ(S)→Φ(S) 

that summarises some profile f of categorisation functions is an aggregate categorisation 

function.  For a given profile f, there is exactly one function ζ which summarises it. 

We are now in a position to define the central concept of this section.  For any 

aggregate categorisation function ζ, the categorisation procedure is defined by the following 

pair of instructions, which generate a sequence of categorisations C(k) ≡ <S+(k), S–(k)> of S, 

for successive stages k ∈ {0, 1, 2, ….}, inductively:  

(i)  Initiation rule.  Set C(0) = <∅, ∅>; 

(ii) Continuation rule.  For all k > 0, set C(k) = ζ[C(k–1)].   

This formal definition can be expressed more loosely as follows:  the first stage of the 

procedure applies the function ζ to the null categorisation <∅, ∅>; and then, each 

subsequent stage applies the function ζ to the output of the previous stage.  Obviously, if 

there exists k′ ∈ {1, 2, …..} such that C(k′) = C(k′–1) then, for all k″ > k′, C(k″) = C(k′).  

Since this renders further application of the continuation rule redundant, we will say that the 

procedure halts at the lowest value of k′ for which C(k′) = C(k′–1); this value of k′ will be 

denoted by k*.   Then, C(k*)  is the categorisation solution of the game, relative to ζ.  

 Though formally not essential, in our applications of the concept of a categorisation 

function, we will in fact always attribute the same conception of practical rationality to all 

players.  Since this conception is embedded in a particular ζ, the categorisation procedure for 

that ζ can be interpreted as tracking a sequence of phases of reasoning based on this 

conception.  The first phase starts with no substantive premises (the absence of such 

premises being represented by the null categorisation) and reaches conclusions about the 

permissibility or impermissibility of strategies, represented by the categorisation C(1).  
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These conclusions are unconditional implications of the underlying conception of practical 

rationality.   For the second phase, the strategies whose permissibility (resp. 

impermissibility) was established in the first phase are taken as possible (resp. as 

impossible).  These transitions from (im)permissibility to (im)possibility can be interpreted 

as tracking inferences that players can make, given that they attribute rationality to one 

another.  Further conclusions about permissibility and impermissibility, captured by the 

categorisation C(2), can now be drawn.  And so on. 

 In this way, the categorisation procedure tracks the reasoning of all players.  This 

idea corresponds to the informal notion that players have mutual awareness of each other’s 

rationality.  More formally, it can be seen as reflecting a Lewisian conception of common 

knowledge of rationality whereby there is some mode of actual reasoning that is accessible 

to all players (Lewis, 1969); our interpretation is that this is the mode of reasoning that is 

tracked by the categorisation procedure. 

Some important properties of a categorisation procedure can be seen to flow from the 

definition of the concept, even without specifying a particular function ζ.  These properties 

are encapsulated in the following result (proved in the appendix).  

Proposition 1:  Consider any game in G and let ζ be any aggregate categorisation 

function for the game.  The categorisation procedure for ζ has the following 

properties:   

(a)  For all k ∈ {1, 2, ….}, C(k) ⊇* C(k–1). 

(b)  The procedure halts, defining a unique categorisation solution relative to 

ζ.   

Part (b) of Proposition 1 guarantees the existence of a categorisation solution for any ζ.  Part 

(a) is used to prove part (b), but is also significant in its own right, in terms of the 

interpretation of a categorisation procedure as tracking a reasoning process.  On that reading, 

it shows that each phase of reasoning reaffirms the classifications made by previous phases.  

We call this the reaffirmation property.    

The intuition for Proposition 1 is straightforward but important.  By the Initiation 

rule, the sequence of categorisations generated by the categorisation procedure begins with 

C(0) = <∅, ∅>.  Thus, trivially, C(1) ⊇* C(0).  Since C(2) = ζ[C(1)] and C(1) = ζ[C(0)], the 

fact that ζ is an aggregate categorisation function (and so summarises a profile of 

categorisation functions each of which satisfies Monotonicity), implies that C(2) ⊇* C(1).  

And so on.  Each time the procedure generates a categorisation with weakly more content 

than the previous one, a corresponding use of the definition of ζ forces the next 
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categorisation generated by the procedure to have at least weakly more content again.  

Eventually the procedure must halt, if only because the game is finite; but, up to that stage, 

the procedure generates categorisations with strictly more content at each successive stage. 

 The categorisation procedure for a given ζ can be interpreted as a process which 

constructs the categorisation solution by successive “accumulations” (additions to the set of 

strategies that have been found to be permissible) and “deletions” (additions to the set of 

strategies that have been found to be impermissible).  For each k > 0, we will say that 

strategies in S
+
(k)\S

+
(k–1) are accumulated at stage k, and that strategies in S

–
(k)\S

 –
(k–1) are 

deleted at stage k.   

 The properties of categorisation procedures presented in this section have special 

significance in relation to the undercutting and order-sensitivity problems that can arise for 

some iterative procedures, notably IDWDS.  There is undercutting when an operation (in 

IDWDS, the deletion of a strategy) is made at one stage of an iterative procedure, but the 

justification for that operation is invalidated at a later stage.  Undercutting can give rise to 

order-sensitivity: if two operations are both valid at a given stage, carrying out only one of 

them may invalidate the justification for the other.  Conversely, if there is no undercutting, 

an operation that becomes valid at some stage remains valid until it is carried out, 

irrespective of which other valid operations are carried out in the interim. 

 Because of the reaffirmation property, categorisation procedures are immune to 

undercutting.  The profile of categorisation functions summarised by ζ captures the rationale 

for the deletions (and accumulations) made for each player at each stage.  The requirement 

that each player i’s categorisation function satisfy Monotonicity imposes the discipline that 

whatever statements about permissibility and impermissibility of player i’s strategies are 

warranted, given the categorisation generated by the procedure at stage k, are still warranted, 

given the output of subsequent stages.   

To analyse order-sensitivity, we introduce the concept of a “potentially negligent” 

variant of a categorisation procedure.  The idea is that, where the categorisation procedure 

specifies a set of deletions and accumulations at a given stage k, a potentially negligent 

variant might make only some of them at that stage.  This is analogous to what is often 

regarded as legitimate variation in the specification of IDSDS and IDWDS.  Suppose that, at 

some stage in a procedure of iterative deletion of dominated strategies, two or more 

strategies are dominated.  Must all of these strategies be deleted simultaneously?  Or should 

each deletion of a single strategy count as a separate “stage” – and if so, which strategy 
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should be deleted first?  The order-sensitivity problem of IDWDS is that which strategies 

ultimately survive the procedure can depend on how these specification questions are 

answered.  Thus, in our context, order-insensitivity can be represented as the requirement 

that all potentially negligent variants of a categorisation procedure reach the same final 

output as the categorisation procedure itself. 

Consider any game in G; and let ζ be any aggregate categorisation function for the 

game and CP(ζ) be the categorisation procedure for ζ.  An iterative procedure IP(ζ) is a 

potentially negligent variant of CP(ζ) if it generates a sequence of categorisations C′(k) of S 

for successive stages k ∈ {0, 1, 2, ….} that satisfy (i) C′(0) = <∅, ∅>; and, for all k > 0, (ii) 

ζ[C′(k–1)] ⊇* C′(k); (iii) if ζ[C′(k–1)] ⊃* C′(k –1), then C′(k) ⊃* C′(k–1); and (iv) if ζ[C′(k–

1)] = C′(k–1), then C′(k) = C′(k–1).  IP(ζ) halts at the lowest value of k′ for which C′(k′) = 

C′(k′–1); this value of k′ will be denoted k**.   

For intuition, consider any stage k.  Think of application of ζ to the previous 

categorisation C(k–1) as defining a maximal set of “instructions” for the deletion and 

accumulation of strategies.  In CP(ζ), these instructions are fully carried out at stage k; but in 

IP(ζ), some instructions may be neglected.  Condition (i) requires IP(ζ) to begin with the null 

categorisation, as CP(ζ) does.  Condition (ii) requires that, though IP(ζ) may be negligent, it 

never deletes or accumulates a strategy at any stage k unless it has been instructed to do so at 

that stage.  Condition (iii) requires that, if the instructions at stage k are to make some new 

deletions and/or accumulations (and not to undo any existing ones), then IP(ζ) makes at least 

some of these at stage k.  Condition (iv) requires that, if the instructions at stage k are just to 

repeat the previous output, then IP(ζ) does so, thereby halting. 

The following result is proved in the appendix: 

Proposition 2:  Consider any game in G and any aggregate categorisation function ζ 

for the game.  Let CP(ζ) be the categorisation procedure for ζ and C(k*) be the 

corresponding categorisation solution.  Let IP(ζ) be any potentially negligent variant 

of CP(ζ) and C′(0), C′(1), …., be the sequence of categorisations generated by IP(ζ).  
Then:   

(a)  For all k ∈ {1, 2, ….}, C′(k′) ⊇* C′(k′–1).  

(b)  IP(ζ) halts at some k** ∈ {1, 2, ….}. 

(c)  C′(k**) = C(k*). 

This proposition shows that for every potentially negligent variant of CP(ζ), the following is 

true: it has the reaffirmation property; it halts; and when it halts, the categorisation it has 

generated coincides with the categorisation solution generated by CP(ζ) itself.  Put more 
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loosely, it makes no difference to the final output of a categorisation procedure if some 

deletions or accumulations are omitted at some stage(s), as long as some such operations are 

carried out whenever any are warranted. 

  

3. The reasoning-based EU categorisation procedure  

We are now able to define our RBEU procedure.  This is an instance of the more general 

concept of a categorisation procedure, introduced in Section 2. 

 In order to define a particular categorisation procedure, we have only to define a 

profile of categorisation functions for the players (which will, in turn, define the function ζ).  

We require, for each player i, a function that maps Φ(S–i) to Φ(Si); and, crucially, which 

satisfies Monotonicity. 

On our interpretation, specifying this function corresponds to specifying a conception 

of practical rationality, for each player i.  To do this, we need criteria of rational 

permissibility and impermissibility of i’s strategies, conditional on any categorisation C–i of 

S–i.  The approach we adopt is orthodox, in the sense of being based on expected utility 

maximisation.  We proceed in two steps.  Intuitively, the first step defines a rule to indicate 

which probability distributions over S–i are “allowable”, given a categorisation C–i of S–i.  

The second step defines a rule for assigning strategies to the positive and negative 

components of a categorisation of Si, given a set of allowable probability distributions over 

S–i.  To formalise these concepts, we use ∆(S–i) to denote the set of probability distributions 

over S–i. 

 An allowability rule for player i associates a non-empty subset A(C–i) of ∆(S–i) with 

each categorisation C–i in Φ(S–i).  The reasoning-based allowability rule is defined by the 

requirement that a probability distribution is allowable if and only if it satisfies the following 

two conditions:
8
 

Positive sub-rule:  Each strategy in the positive component of C–i has strictly positive 

marginal probability. 

Negative sub-rule:  Each strategy in the negative component of C–i has zero marginal 

probability. 

The EU assignment rule for player i comprises the following pair of sub-rules for 

specifying Si
+
(A) ⊆ Si and Si

–
(A) ⊆ Si, conditional on any non-empty set A ⊆ ∆(S–i) of 

allowable probability distributions:  
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Positive sub-rule:  Si
+
(A) = {si ∈ Si si is expected utility maximising for i, for every 

probability distribution in A}; 

Negative sub-rule: Si
–
(A) = {si ∈ Si si is not expected utility maximising for i, for 

any probability distribution in A}. 

This specification guarantees that, for any non-empty A ⊆ ∆(S–i), the ordered pair <Si
+
(A), Si

–

(A)> satisfies parts (i) – (iii) of the definition of a categorisation of Si.  Thus, the EU 

assignment rule for player i associates a categorisation of Si with each non-empty set of 

allowable probability distributions over S–i.  In general, this categorisation may or may not 

be exhaustive; it is non-exhaustive when there are strategies in Si that maximise player i’s 

expected utility for some, but not all, probability distributions in A. 

 The reasoning-based allowability rule is a particular function from Φ(S–i) to the set of 

non-empty subsets of ∆(S–i); and the EU assignment rule is a particular function from the 

latter set to Φ(S–i).  Thus, the composition of these two functions is a particular function fi: 

Φ(S–i)→Φ(Si).  We call this function the reasoning-based expected utility (RBEU) 

categorisation function for player i, anticipating the following result: 

Proposition 3:  Consider any game in G and any player i of the game.  The 

composition fi of the reasoning-based allowability rule for i and the EU assignment 

rule for i is a categorisation function for player i. 

To prove this proposition, it is sufficient to establish that fi satisfies Monotonicity.  That is, 

we must show that if some categorisation C–i″ has strictly more content than another 

categorisation C–i′, then fi(C–i″) has weakly more content than fi(C–i′).  To see that this is the 

case, note that as the content of C–i increases, the reasoning-based allowability rule imposes 

(strictly) tighter restrictions on the set A of allowable probability distributions.  This makes it 

“easier” for a strategy to be expected utility maximising for all allowable distributions (and 

so to be assigned to Si
+
(A) by the EU assignment rule); and also “easier” to be expected 

utility maximising for no such distributions (and so to be assigned to Si
–
(A) by the EU 

assignment rule).  

For any game in G, the profile of RBEU categorisation functions is summarised by a 

unique aggregate categorisation function.  The RBEU procedure (henceforth RBEU) is the 

categorisation procedure for this aggregate categorisation function.  Since RBEU is a 

categorisation procedure, Proposition 1 applies to it.  Thus, RBEU induces a unique 

categorisation solution, the RBEU solution. 

 As an initial illustration, consider the following game: 
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Game 1:  

             Player 2 

    left  right 

Player 1 first  1, 1  1, 1 

  second             0, 0  1, 0 

  third             2, 0  0, 0 

  fourth  0, 2  0, 0 

 

For this game, RBEU runs as follows:  C(0) = <∅, ∅>; C(1) = <{left}, {fourth}>; C(2) = 

<{left, right}, {second, fourth}>; C(3) = C(2).  Thus, the RBEU solution of the game is 

<{left, right}, {second, fourth}>.  In words, RBEU accumulates left and deletes fourth at 

stage 1; then, at stage 2, accumulates right and deletes second; and then halts.       

 Game 1 illustrates several features of RBEU.  First, RBEU can accumulate strategies 

as well as deleting them.  Second, accumulation and deletion both feed on the conclusions of 

prior stages; and each can feed on the other.  It is the deletion of fourth at stage 1 that allows 

the accumulation of right at stage 2; and it is the accumulation of left at stage 1 that allows 

the deletion of second at stage 2.  The fact that a subsequent deletion can be driven by an 

earlier accumulation shows that the concept of accumulation has real bite in RBEU; it is not 

mere semantics.  Third, the procedure can halt with some strategies neither accumulated nor 

deleted.  Thus, in general, the RBEU solution induces a trinary partition of strategies. 

This implies that RBEU may distinguish between two classes of undeleted strategy: 

those accumulated (left and right in the example) and those neither accumulated nor deleted 

(first and third).  To say that a strategy has not been deleted is to say that it is optimal for 

some beliefs that have not been definitely ruled out; to say that it has been accumulated is to 

make the stronger statement that it is optimal for all such beliefs.  Or, interpreting RBEU as 

tracking a process of reasoning: to say that a strategy has not been deleted is to say that it has 

not been shown to be impermissible; to say that is has been accumulated is to say that is has 

been shown to be permissible. 

 

4. The  RBEU procedure compared to others 

 In this section, we compare RBEU to existing iterative procedures, continuing to confine 

our attention to finite games.
9
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(i) IDSDS   

Since RBEU uses the concept of accumulation while IDSDS does not, it is obvious that the 

two procedures do not coincide.  But we may usefully compare the deletions they make. 

 We begin with a very simple example which shows that RBEU can delete strategies 

that IDSDS does not:  

Game 2: 

    Player 2 

    left  right 

Player 1 first  1,1  0,0 

  second  0,0  0,0 

In this game, IDSDS does not delete any strategies.  In contrast, RBEU runs as follows: C(0) 

= <∅, ∅>; C(1) = <{first, left}, ∅>; C(2) = <{first, left}, {second, right}>;  C(3) = C(2).  

That is, first and left are optimal for all beliefs, and so are accumulated at stage 1; second and 

right are then deleted at stage 2, on the grounds that they are not optimal for any beliefs 

which assign strictly positive probability to left and first.  Intuitively, the strategies that are 

deleted by RBEU but not IDSDS in this game seem very unattractive.   

 We now show that RBEU deletes every strategy that is deleted by IDSDS.  For this 

purpose, it is convenient to describe (maximal) IDSDS in terms of “allowable” probability 

distributions.  Consider any game in G.  IDSDS deletes strategies in a series of stages k = 1, 

2, … .  At each stage k > 1 of IDSDS, there is for each player i a set Di(k–1) ⊆ Si, containing 

strategies for player i that have been deleted in previous stages.  We set Di(0) = ∅.  We 

define D–i (k–1) ≡ ∪j∈N\{i} Dj(k–1) and D(k–1) ≡ ∪i∈N Di(k–1).  For each stage k ≥ 1, and for 

each player i, let A[D–i(k–1)] ⊆ ∆(S–i) be the set of probability distributions over S–i which 

assign zero marginal probability to every element of D–i(k–1).  The deletion operation of 

IDSDS can then be expressed as the rule that a strategy for player i (if not already deleted) is 

deleted at stage k if and only if it is not expected utility maximising for any probability 

distribution in A[D–i(k–1)].
10
  D(k) can then be defined as the union of D(k–1) and the set of 

strategies deleted at stage k.  The procedure halts at the first k at which D(k) = D(k–1).       

 This formulation shows that, as far as deletions are concerned, IDSDS and RBEU 

differ only in that, for given previous deletions, RBEU imposes tighter restrictions on 

allowable beliefs at each stage k.  (Both procedures require that previously deleted strategies 

have zero probability, but RBEU imposes the additional condition that previously 

accumulated strategies have strictly positive probability.)  Thus, in general, RBEU makes it 
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“easier” for a strategy to be expected utility maximising for no allowable beliefs.  Hence, 

every strategy that is deleted by IDSDS is also deleted by RBEU.   

 It is well known that, in finite games, IDSDS does not exhibit the order-sensitivity 

and undercutting problems.  As this attractive property of IDSDS is also a property of all 

categorisation procedures, it is natural to ask whether it is possible to define a categorisation 

procedure which makes exactly the same deletions as IDSDS.  As we now illustrate, this is 

possible.  Recall that, for each player, the RBEU categorisation function is the composition 

of the reasoning-based allowability rule and the EU assignment rule.  Consider the 

categorisation procedure which differs from RBEU in only one respect, namely the removal, 

for each player i, of the positive sub-rule of the reasoning-based allowability rule.  This 

amendment has the effect of making deletions at each stage dependent only on previous 

deletions; although strategies can be accumulated, accumulations have no implications for 

subsequent operations of deletion.  It is easy to show that, at each stage, this variant 

procedure makes exactly the same deletions as IDSDS.
11
  

 (ii)  IDWDS   

We now compare RBEU to IDWDS.  We use the term “IDWDS” to refer to the family of 

iterative procedures in which weakly dominated strategies are successively deleted.  Because 

of the order-sensitivity problem, an IDWDS procedure is not fully specified unless the order 

in which deletions are made is defined.  The most common such specification is maximal 

IDWDS – that is, at each stage, all strategies that are weakly dominated at that stage are 

deleted together.  However, most of the conclusions that we will derive in this sub-section 

apply to all forms of IDWDS.  For the same reason as in discussion of IDSDS, we focus on 

comparison of RBEU and IDWDS in terms of deletions. 

It is apparent from Game 2 that there are some games in which IDWDS and RBEU 

delete precisely the same strategies.  However, even when this is so, they do not always 

delete them for the same reasons.  In Game 2, irrespective of the order of deletion, IDWDS 

deletes both second and right on grounds of weak dominance, because both are weakly 

dominated in the initial game and each remains dominated if the other is deleted; first and 

left remain as an undeleted residual.  In contrast, in RBEU, second and right are deleted only 

after first and left have been accumulated.  Interpreting RBEU as tracking a reasoning 

process, we can say, for example, that it is only after player 1 has established that left is 

permissible for player 2 that she can conclude that she must assign strictly positive 

probability to that strategy, and hence that second is impermissible for her. 
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Although RBEU and IDWDS delete the same strategies in Game 2, there are many 

games where this is not so.  We first show that, even if its order of deletion is uniquely 

determined, IDWDS may delete strategies that RBEU does not delete.  Our first example of 

this is a game discussed by Samuelson (1992, esp. pp. 304-5), which provides perhaps the 

simplest possible illustration of the undercutting problem.
12
     

Game 3:    

    Player 2 

    left  right 

Player 1 first  1,1  1,0 

  second  1,0  0,1 

 

For this game, all IDWDS procedures delete second (and nothing else) at the first stage, 

followed by right at the second stage, leaving first and left undeleted.  But the deletion of 

right undercuts the reason for the earlier deletion of second.  That is, if right will not be 

played, there seems no reason to discard second, which is a best reply to left.   In contrast, 

when RBEU is applied to this game, it accumulates first at the first stage, but does not delete 

any strategy.  The reason for accumulating first is that it is optimal for all beliefs; the reason 

for not deleting second is that such deletion is not required unless right is accumulated first.  

But right is never accumulated, as it is not a best reply to first, which is accumulated at the 

first stage. 

 It is interesting to note what happens if player 2’s best replies are transposed, as in: 

 

Game 4: 

    Player 2 

    left  right 

Player 1 first  1,0  1,1 

  second  1,1  0,0 

In this game, all IDWDS procedures delete second (and nothing else) at the first stage, and 

then left at the second stage, leaving first and right undeleted.  In this case, IDWDS is not 

subject to an undercutting problem: to the contrary, the deletion of left “confirms” the 

deletion of second by making the latter strictly dominated.  But this kind of ex post 

“confirmation” is incompatible with a reasoning-based interpretation of iterative procedures, 

since the latter requires deletions (and accumulations) to be justified at the stage at which 

they are made.  RBEU cannot delete second unless right has previously been accumulated; 

and it never is.  RBEU just accumulates first and then halts. 
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 Can RBEU delete strategies that are not deleted by IDWDS?  The answer depends on 

how the order of deletion under IDWDS is specified, as we will explain.   

 A general result is that, in any given game, all the deletions made by RBEU would 

also be made by IDWDS under some order of deletions.  Specifically, deletions made in the 

same order as they are made by RBEU are always consistent with IDWDS.  To demonstrate 

this, we describe IDWDS in terms of “allowable” probability distributions.   

 Consider a sequence of stages k = 1, 2, ... at which deletions are made in accordance 

with IDWDS.  For each stage k, let Di(k) and D–i(k) be defined as in our reformulation of 

IDSDS.  For each k ≥ 1, the set of allowable beliefs for each player i, under IDWDS, is the 

set of probability distributions that assign zero probability to every element of D–i(k–1) and 

strictly positive probability to every other strategy.  (The presence of the italicised clause 

distinguishes IDWDS from IDSDS.)  It is common to all IDWDS procedures that a strategy 

for player i may be deleted at stage k only if it is not expected utility maximising for any 

allowable probability distribution.  If this criterion permits any deletions at a given stage, at 

least one permitted deletion is made.  Notice that, at k = 1, IDWDS imposes tighter 

restrictions on allowable beliefs than RBEU does.  Thus, any deletions made by RBEU at 

this stage are also permitted by IDWDS.  Now suppose that the deletions made at k = 1 are 

exactly those required by RBEU.  The argument can then be repeated: at k = 2, any deletions 

made by RBEU are also permitted by IDWDS; and so on.  Thus, the sequence of deletions 

made by RBEU coincides with one possible sequence of IDWDS up to the stage at which 

the RBEU procedure halts.  But there may be no sequence of IDWDS that stops deleting 

when RBEU does.  (In Games 3 and 4, for example, RBEU halts without deleting anything, 

but all IDWDS procedures delete some strategies.) 

However, as is shown by Game 5 below, specific IDWDS procedures may fail to 

delete strategies which RBEU does delete.  (The argument of the previous paragraph implies 

that this eventuality can only arise in a game with an order-sensitivity problem for IDWDS.  

It is easy to see that Game 5 has this feature.)   

Game 5: 

    Player 2 

    left  centre  right  

Player 1 first  1,1  1,1  0,0 

  second  1,1  0,1  1,0 

  third  0,1  0,0  2,0 

We compare RBEU with maximal IDWDS.  Maximal IDWDS deletes centre and right, then 

third, leaving first, second, and left undeleted.  RBEU accumulates left and deletes right; 
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then accumulates first and deletes third; then accumulates centre;
13
 and finally deletes 

second.  Thus, second is deleted by RBEU but not by maximal IDWDS.  RBEU is 

eventually able to delete second because it has previously accumulated centre.  It was able to 

accumulate centre because it had previously deleted third.  However, before any strategies 

are deleted, centre is weakly dominated, and so is deleted immediately by maximal IDWDS.  

This is another example of undercutting: the initial justification for deleting centre is 

undercut by the later deletion of third.    

Unlike IDWDS, RBEU is not vulnerable to order-sensitivity and undercutting 

problems.  Formally, this is an implication of the fact that RBEU is a categorisation 

procedure (see Section 2).  More intuitively, it is a product of the distinction between 

accumulation and non-deletion.  At each stage of RBEU, players are required to assign zero 

probability to previously deleted strategies and strictly positive probability to previously 

accumulated strategies.  In contrast, at a given stage of IDWDS, players are implicitly 

required to assign zero probability to previously deleted strategies and strictly positive 

probability to strategies that have not yet been deleted.  This difference is crucial.  Strategies 

which have been accumulated in RBEU could never be deleted later, and so the rationale for 

requiring strictly positive probability on them is secure.  In contrast, strategies which have 

not been deleted at a given stage of IDWDS may still be deleted at a later stage, so the case 

for requiring strictly positive probability on them can be undercut. 

(iii)  The Dekel–Fudenberg procedure 

Dekel and Fudenberg (1990) propose an iterative procedure which combines elements of 

IDSDS and maximal IDWDS.  In this procedure (which we denote DF), there is one stage of 

maximal deletion of weakly dominated strategies, followed by IDSDS on the game that 

remains.  In some games, DF deletes strategies that RBEU fails to delete (or even 

accumulates); in others, RBEU deletes strategies that DF does not.  Game 5 illustrates both 

these possibilities.  In this game, DF coincides exactly with maximal IDWDS; DF deletes 

centre but not second, while RBEU deletes second and accumulates centre.  The deletion of 

centre (and more generally, the deletion of every strategy that would be weakly dominated in 

the absence of any deletions) might be justified as a principle of “caution”, if caution is 

understood as requiring some non-zero degree of belief, even if only at some level in a 

lexicographic probability system, to be assigned to every possible combination of one’s 

opponents’ strategies.
14
   However, RBEU rests on a stronger interpretation of the players’ 

mutual understanding of rationality, according to which strategies that can be shown to be 
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impermissible are assigned zero probability.  Thus, having deleted third, RBEU can 

accumulate centre, even though the latter strategy is weakly dominated in the game as a 

whole.  

(iv) The Asheim-Dufwenberg procedure 

Asheim and Dufwenberg (2003) present a procedure of iterative elimination of choice sets.  

This begins, for each player i, with the collection of non-empty subsets of Si (“choice sets”) 

and then iteratively deletes elements from this collection.  Thus, at each stage, the Asheim-

Dufwenberg procedure (henceforth AD) generates, for each player i, a collection of so-far 

surviving choice sets for i.  The final output of the procedure is a binary partition of the 

collection of choice sets: each such set is either eliminated or not.   

Indirectly, however, AD induces a trinary partition of each strategy set Si.  One 

element of this partition, which we may denote Si
+
, contains those strategies that are 

members of all surviving choice sets for player i; the second element Si
–
 contains those 

strategies that are members of no such sets; the third element is the residual.  There is an 

obvious sense in which the elements of Si
+
 have been categorised as “permissible” and the 

elements of Si
–
 as “impermissible”.

15
  One might ask whether, given this interpretation, AD 

coincides with RBEU. 

The answer is that it does not.  The specification of AD is such that if a strategy si is 

weakly dominated, it cannot be an element of any surviving choice set – that is, in the terms 

used in the previous paragraph, it is assigned to Si
–
.  The corresponding property does not 

hold in general for RBEU.  Consider the following game (which is G3 of Asheim and 

Dufwenberg (2003)): 

Game 6:  

             Player 2 

    left  right 

Player 1 first  1, 1   1, 1 

  second  1, 1  1, 0 

  third             1, 0  0, 1 

   

Asheim and Dufwenberg (2003, pp. 211, 214) show that their procedure first deletes all 

choice sets for player 1 except {first, second}.  Then, it deletes all choice sets for player 2 

except {left}.  No more deletions are possible.  Thus, S1
+
 = {first, second}, S1

–
 = {third}, S2

+
 

= {left}, S2
–
 = {right}.  Notice that third, which is weakly dominated, has been categorised 
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as impermissible.  RBEU does not have this implication: it accumulates first and second and 

then halts. 

 

5.    Conclusion 

We have argued that RBEU has a novel and attractive combination of properties, including 

ability to delete more strategies than IDSDS, order-insensitivity, and the absence of an 

undercutting problem.  Its possession of these properties is intimately connected with its 

capacity to be interpreted as tracking successive steps of reasoning that can be carried out by 

the players. 

This capacity is induced by a fundamental feature of RBEU, namely that it is a 

“categorisation procedure”.  RBEU is of particular interest because of the analogies and 

disanalogies between it and IDWDS.  However, other categorisation procedures may be of 

interest too.  To define such a procedure, what is required is to specify an aggregate 

categorisation function.  Our analysis in Section 3 illustrates a recipe for achieving this, 

using the concept of a set of probability distributions that are allowable for player i, given a 

categorisation of other players’ strategies.  In this set-up, two ingredients provide the key (by 

being jointly sufficient for the crucial Monotonicity property of a categorisation function for 

player i).  The first is that, as the categorisation relative to which they are defined acquires 

strictly more content, the rules defining the allowable probability distributions tighten.  The 

second is that, when this happens, the rules assigning strategies to the positive component of 

the resulting categorisation of i’s strategies become easier to satisfy, and likewise for the 

negative component.  Each of these ingredients is consistent with a variety of modifications 

of the sub-rules that define RBEU.  For example, we have described a categorisation 

procedure which makes the same deletions as IDSDS but which also has an accumulation 

operation.  Another possibility is to impose on RBEU the additional restriction that, in 

allowable probability distributions, the probabilities assigned to the strategies of different 

players should be independent.
16
  Finally, a more radical possibility would be to substitute 

some other theory of choice under uncertainty for expected utility theory.  This could be 

done by replacing “is expected-utility maximising” in the assignment sub-rules with some 

other predicate defined relative to probability distributions.  For example, rank-dependent 

expected utility theory, in which probabilities are transformed non-linearly into “decision 

weights” (Quiggin, 1982) could be used in place of conventional expected utility theory as 
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the underlying conception of “rational” choice.  We suggest that the concept of a 

categorisation procedure provides a general theoretical framework for the development and 

investigation of reasoning-based iterative procedures.  
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Appendix : Proofs of Propositions 1 and 2       

It is convenient to begin with the following lemma: 

Lemma:  Consider any game in G and any profile f = (f1, …, fn) of categorisation 

functions for its players.  Let ζ be the aggregate categorisation function that 

summarises f.  ζ has the following property: for all C′, C″ ∈ Φ(S), if C″ ⊇* C′ then 

ζ(C″) ⊇* ζ(C′).   

Proof of Lemma:  Fix any game in G and any profile f = (f1, …, fn) of categorisation 

functions for its players.  Let ζ be the aggregate categorisation function that summarises f.  

Consider any C′, C″ ∈ Φ(S); and let S+″ and S–″ be, respectively, the positive and negative 

components of C″; and S+′ and S–′ be, respectively, the positive and negative components of 

C′.  First, suppose that C″ = C′.  Then, it is immediate, from the construction of ζ, that ζ(C″) 

= ζ(C′).  Now, suppose that C″ ⊃* C′.  There must exist a unique and non-empty subset N′ of 

N such that (i) for all i ∈ N′, S+″\Si ⊇ S
+′\Si and S

–″\Si ⊇ S
–′\Si, with at least one of those two 

superset relationships strict; and (ii) for any i ∈ N\N′, S+″\Si = S
+′ \Si and S

–″\Si = S
–′\Si.  

Thus, from the construction of ζ and the fact that, for all i ∈ N′, fi satisfies Monotonicity, 

ζ(C″) ⊇* ζ(C′).      □     

Proof of Proposition 1:  Fix any game in G and any aggregate categorisation function ζ for 

the game. Let f be the profile of categorisation functions that ζ summarises.  (If follows from 

the definition of an aggregate categorisation function that there is exactly one such f.)  Let 

C(0), C(1), C(2), ... be the sequence of categorisations generated by the categorisation 

procedure.  We will say that this procedure has the property of weak expansion at stage k if 

C(k) ⊇* C(k–1).  In view of the Lemma, the continuation rule of the procedure implies that, 

if the weak expansion property holds at any stage k′ ≥ 1, it also holds at stage k′+1.  Since 

C(0) = <∅, ∅>, the property holds at stage 1.  Thus, by induction, it holds at every stage k ≥ 

1.  This establishes part (a) of the Proposition.  To establish part (b), note that since weak 

expansion holds at every stage k ≥ 1, one of the following must hold: either (‘Possibility 1’) 

at every stage k ≥ 1, C(k) ⊃* C(k–1), or (‘Possibility 2’) there is some stage k′ ≥ 1 such that 

C(k′) = C(k′–1).  Suppose Possibility 1 is the case.  Then, for all k ≥ 1, |S+(k)|  +  |S–(k)| ≥ 

|S
+
(k–1)|  +  |S

–
(k–1)|  +  1.  Thus, |S

+
(k)|  +  |S

–
(k)| → ∞ as k →∞.  But, by the definition of a 

categorisation, |S
+
(k)| + |S

–
(k)| ≤ |Si| + …. +  |Sn|.  Since the game is finite, this implies a 

finite upper bound to |S
+
(k)| + |S

–
(k)|: a contradiction.  Thus, Possibility 2 is the case, so that 

the procedure halts at stage k*, with k* equal to the lowest value of k′ at which the equality 

defining Possibility 2 holds.  □    
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Proof of Proposition 2:   

In this proof, reference to rules (i), (ii), (iii) and (iv) are to the rules defining a potentially-

negligent variant of a categorisation procedure.   

Proof of (a):  Since C′(1) ⊇* C′(0) follows trivially from rule (i), it is sufficient to prove that, 

for all k ∈ {0, 1, 2, ….}, C′(k+1) ⊇* C′(k) implies C′(k+2) ⊇* C′(k+1).  Suppose C′(k+1) ⊇* 

C′(k).  By the Lemma, ζ[C′(k+1)] ⊇* ζ[C′(k)].  By rule (ii), ζ[C′(k)] ⊇* C′(k+1).  Thus 

ζ[C′(k+1)] ⊇* C′(k+1).  Then, by rules (iii) and (iv), C′(k+2) ⊇* C′(k+1). 

Proof of (b):  Given (a), (b) follows from the finiteness of the game (compare the proof of 

part (b) of Proposition 1). 

Proof of (c):  We first show that C(k*) ⊇* C′(k**).  Since C(k*) ⊇* C′(0) is trivially true, by 

rule (i), it is sufficient to prove that, for all k ∈ {0, 1, 2, ….}, C(k*) ⊇* C′(k) implies C(k*) 

⊇* C′(k+1).  Suppose C(k*) ⊇* C′(k).  By the Lemma, ζ[C(k*)] ⊇* ζ[C′(k)].  But ζ[C(k*)] = 

C(k*) by the definition of k*, and ζ[C′(k)] ⊇* C′(k+1) by rule (ii).  Thus C(k*) ⊇* C′(k+1).  

We complete the proof by showing that C′(k**) ⊇* C(k*).  Since C′(k**) ⊇* C(0) follows 

trivially from the initiation rule of the categorisation procedure, it is sufficient to prove that, 

for all k ∈ {0, 1, 2, ….}, C′(k**) ⊇* C(k) implies C′(k**) ⊇* C(k+1).  Suppose C′(k**) ⊇* 

C(k).  By the Lemma, ζ[C′(k**)] ⊇* ζ[C(k)].  But ζ[C′(k**)] = C′(k**) by the definition of 

k** and rule (iii), and ζ[C(k)] = C(k+1) by the continuation rule of the categorisation 

procedure.  Thus C′(k**) ⊇* C(k+1). 

□ 
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Notes 

                                                 
1
 More recently, Asheim and Dufwenberg (2003) show how an iterative procedure (which we discuss in 

Section 4) can be used to identify what they call “fully permissible sets”.  Such sets provide an equilibrium 

concept in the sense that a game may have more than one profile of fully permissible sets.  Asheim and 

Dufwenberg’s procedure identifies exactly all the fully permissible sets.  Another way in which an iterative 

procedure might assist an equilibrium search is illustrated by the results of Brandenburger, Friedenberg and 

Kiesler (2008).  They show that the strategies which survive (maximal) IDWDS must comprise a “self-

admissible set”.  In this case, the iterative procedure always identifies exactly one self-admissible set, but the 

game may still have others. 
2
 Cubitt and Sugden (2003) describe how Lewis’s conception of common knowledge, which has the 

commonality of certain modes of reasoning as its central ingredient, differs from those which are now more 

familiar in the game theory literature.  Cubitt and Sugden (2008) sets out formal foundations for a Lewisian 

approach but here we focus, not on foundations, but on solution concepts. 
3
    Throughout, we use the term “profile” of objects of a given type to denote a function which associates with 

each player i ∈ N an object of that type that applies to i.  For example, a strategy profile associates with each 
player i an element of Si.   
4
    Player indices are not always necessary.  To avoid unnecessary subscripts, we use the convention that, for 

two-player games, first, second, …, are strategies for player 1 and left, centre, right are strategies for player 2.   
5
    Throughout, we use ⊂ to denote ‘is a strict subset of’.   
6
    This notation uses unions of sets of strategies, some of which “belong” to one player and some to another.  

Recall that our labelling convention enables us, as analysts, to keep track of which strategies belong to whom. 
7
    Monotonicity is not the only formal restriction on categorisation functions that might be justified by appeal 

to principles of reasoning; but it is sufficient for our purposes. 
8
   For any categorisation C–i, the set of probability distributions satisfying these conditions is well-defined and 

non-empty.   
9
    For discussion of IDSDS in infinite games, see Dufwenberg and Stegeman (2002) and Chen et al (2007).  
10
    This formulation of IDSDS, and later analogous formulations of IDWDS, rely on Theorems 1.6 and 1.7 of 

Myerson (1991).  These theorems establish equivalences between propositions about dominance and 

propositions about optimality, conditional on allowable probability distributions.  By using and “if and only if” 

here, we are defining maximal IDSDS, i.e. the form of IDSDS in which all strategies which are strictly 

dominated at a given stage are deleted at that stage.  It is well-known that, in finite games, it makes no 

difference to the strategies which survive IDSDS whether this requirement is imposed or some non-maximal 

variant used.  The maximal variant is, however, simpler to define. 
11
   The procedure we have defined differs from IDSDS by distinguishing between two ways in which strategies 

may survive the deletion process: a strategy may be optimal for all beliefs that attach zero marginal probability 

to deleted strategies (and therefore be accumulated), or it may merely be optimal for some but not all such 

beliefs (and therefore be neither accumulated nor deleted).   
12
   Samuelson uses the game in support of an argument that common knowledge of admissibility is not a 

consistent concept. 
13
 Notice that, by accumulating centre, RBEU actually accumulates (and not merely fails to delete) a strategy 

that IDWDS deletes. 
14
 This conception of caution is discussed by Asheim and Dufwenberg (2003).  See Asheim and Perea (2009) 

for further exploration of iterative procedures that incorporate this concept.  
15
   We use the term “permissible” here in the same sense as in our informal interpretation of categorisations in 

Section 2.  Asheim and Dufwenberg (2003) have a different, and formal, concept of permissible sets.  
16
 This would result in the “ICEU”procedure proposed by Cubitt and Sugden (2008). 


