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Abstract 

We report an experiment comparing sequential and simultaneous contributions to a public good 

in a quasi-linear two-person setting. In one parameterization we find that overall provision is 

lower under sequential than simultaneous contributions, as predicted, but the distribution of 

contributions is not as extreme as predicted and first movers do not attain their predicted first-

mover advantage. In another parameterization we again find that the distribution of contributions 

is not as predicted when the first mover is predicted to free ride, but we find strong support for 

equilibrium predictions when the second mover is predicted to free ride. These results can be 

explained by second movers' willingness to punish first movers who free ride, and unwillingness 

to reward first movers who contribute. 
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1. Introduction 

In an important theoretical contribution to the literature on the voluntary provision of public 

goods Varian (1994) shows that, under appropriate assumptions, a sequential contribution 

mechanism elicits lower contributions than a simultaneous contribution mechanism. Key to this 

result is that under sequential moves a first-mover may enjoy a first-mover advantage by 

contributing zero, relying on other contributors to provide the public good on their own. We 

examine this and related predictions using a laboratory experiment. There is now a large body of 

evidence from a variety of experimental studies documenting the importance of concerns for 

fairness and reciprocity. Specifically, numerous public goods experiments have shown that many 

people are “conditional cooperators”, that is, they are willing to contribute to the public good but 

only if others do the same.
1
 Moreover, numerous experiments have also shown that people are 

prepared to punish decisions that lead to unfair outcomes (Fehr and Gächter (2000)). Since first-

movers may not want to exploit their first-mover advantage if they care about more than their 

narrow self-interest, and they may not be able to exploit their first-mover advantage if others are 

willing to eschew their private interests in order to resist unfair outcomes, it is unclear whether 

Varian‟s theoretical comparative static results will hold in a laboratory setting. 

Our experiment focuses on the simplest version of Varian‟s model with two players, quasi-

linear returns from public/private good consumption, and complete information about returns 

from public/private good consumption. This differs from most previous experimental work on 

voluntary contributions in three important respects. First, we use a setup more aligned with the 

theoretical literature, where a selfish second-mover‟s contribution is decreasing in the first-

mover‟s contribution, rather than the usual setup where predicted contributions are independent 

of others‟ contributions. Second, we use a set up where the returns from the public good vary 

across players, whereas the usual setup studies symmetric games. Third, whereas the usual setup 

has participants make simultaneous contributions, we also study sequential contribution 

mechanisms.
2
  

Previously Andreoni, et al. (2002) (ABV hereafter) studied a similar environment. They 

also compared simultaneous and sequential contribution games based on Varian‟s model and 

                                                 
1
 See, e.g., Andreoni (1995); Keser and van Winden (2000); Fischbacher, et al. (2001); Croson (2007); Muller, et al. 

(2008); Fischbacher and Gächter (forthcoming). 
2
 There are some studies which look at the role of move structure for the provision of step-level public goods (Erev 

and Rapoport (1990); Coats, et al. (2009)). For a general discussion of the importance of move structures in public 

good and other dilemma games and an overview of experimental findings see Au and Budescu (1999).  
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concluded: “…while the pull of equilibrium is evident in early rounds – with the first-movers 

attempting to exploit their advantaged position – the pull of fairness eventually dominates – 

simultaneous and sequential play are very similar by the end of the experiment.” (p. 19). Our 

experimental design (described in detail in the next Section) studies the robustness of these 

findings by examining two different parameterizations of Varian‟s model.  

In one parameterization one player gets much lower returns from the public good than the 

other. ABV introduced minimal asymmetry between players, with the consequences that equal 

contributions resulted in roughly equal earnings, and predicted aggregate contributions varied by 

just one token across move orderings.
3
 By introducing a greater degree of asymmetry we 

increase the predicted effect of move order on aggregate contributions, and so the theoretical 

comparative static result may have a better chance of being observed in the data. By increasing 

the degree of asymmetry we also reduce the saliency of fairness: equal contributions generally 

lead to inequitable earnings and it is more difficult for players to identify equitable allocations. 

Thus, with this parameterization we can test whether the „pull of fairness‟ still dominates the 

„pull of equilibrium‟ in environments where there is no prominent contribution combination that 

can enforce an equitable distribution of earnings.  

Our second parameterization features an even greater degree of asymmetry in returns from 

the public good and extends ABV‟s study to a setting where the existence of commitment 

opportunities does not affect equilibrium outcomes: regardless of the move ordering, equilibrium 

predicts the person with lowest returns will contribute nothing and all contributions will be made 

by the person with highest returns. Under this parameterization we can study behavior in a 

sequential game where in theory it is the second-mover who free rides off the first-mover, and it 

is the first-mover who earns less in equilibrium. As a consequence, attaining fair distributions of 

earnings in this game requires second-movers, and not first-movers, to contribute more than 

predicted. Thus, this game illustrates a case where the „pull of fairness‟ relies on the use of 

rewards by second-movers, and not on first-movers‟ generosity or fear of punishment.  

We report our results in Section 3. In our first parameterization we find that, consistent 

with comparative static predictions, aggregate contributions are lowest when the person with 

highest returns moves first. However, as in ABV, the extreme prediction that the first-mover free 

                                                 
3
 ABV‟s main focus is on comparing behavior across games with similar equilibrium predictions in order to identify 

factors that may cause equilibrium predictions to work well or to fail, rather than on testing Varian‟s theoretical 

comparative static results. 
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rides completely off the second-mover is not supported and the distribution of contributions is 

more compressed than predicted. A consequence of this is that we do not observe a predicted 

first-mover advantage. In our second parameterization we find that, contrary to Varian‟s model 

predictions, move order matters. In the game where the pull of fairness relies on the use of 

rewards the equilibrium prediction is a very good approximation of actual behavior, and the first-

mover suffers low earnings as predicted. In the other move orderings we observe more equitable 

distributions of contributions and earnings than predicted. As a consequence we observe an 

unpredicted first-mover disadvantage. In Section 4 we discuss our results and conclude. 

2. Experimental design and methods 

2.1 The experimental game 

Our experiment is based on the following two-player game. Each player is endowed with 17 

tokens, and must decide how many to place in a Private Account and how many to place in a 

Shared Account. For each token a player places in the Private Account that player receives 50 

points. For each token placed in the Shared Account both players receive an additional amount of 

points, as shown in Table 1. 

In all treatments the „LOW‟ player receives a lower return from the Shared Account than 

the „HIGH‟ player. In our FMA (for “First-Mover Advantage”) treatments we use a set of 

parameters where theory predicts that each player prefers moving first to moving second in a 

sequential move game. In the sequential move game where LOW moves first (our LOW-FMA 

treatment) the unique subgame perfect equilibrium involves LOW contributing 0 tokens and 

HIGH contributing 15 tokens, so that LOW earns 1555 and HIGH earns 1150. In the game where 

HIGH moves first (HIGH-FMA treatment) the unique subgame perfect equilibrium has HIGH 

contributing 0 tokens and LOW contributing 6 tokens, so that HIGH earns 1340 and LOW earns 

890. The HIGH-FMA treatment illustrates a case where sequential moves yield lower overall 

contributions (and earnings) than simultaneous moves – the unique Nash equilibrium of the 

simultaneous move game (SIM-FMA treatment) is for HIGH to contribute 15 tokens and LOW 

to contribute 0 tokens (this is the same predicted outcome as LOW-FMA).
4
  

                                                 
4
 For a full derivation of theoretical predictions see the online appendix. 
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Table 1. Returns from Shared Account* 

*The earnings were derived from a quadratic utility function of the form i = 50(17 – gi) + ti(68G – G
2
), where gi 

represents i‟s contribution to the Shared Account, G represents aggregate contributions, tHIGH = 1.32 and tLOW = 0.89 

(FMA treatments) or 0.78 (NOFMA treatments). Earnings were then rounded to a multiple of 5 points. 

Tokens  

in the 

Shared 

Account 

HIGH PLAYER 
LOW PLAYER  

(FMA treatments) 

LOW PLAYER 

(NOFMA treatments) 

Earnings 

from the 

Shared 

Account 

Marginal 

return from 

the Shared 

Account 

Earnings 

from the 

Shared 

Account 

Marginal 

return from 

 the Shared 

Account 

Earnings 

from the 

Shared 

Account 

Marginal 

return from 

 the Shared 

Account 

0 0 - 0 - 0 - 

1 90 90 60 60 55 55 

2 180 90 120 60 110 55 

3 260 80 175 55 155 45 

4 340 80 230 55 200 45 

5 415 75 285 55 245 45 

6 490 75 340 55 290 45 

7 565 75 385 45 330 40 

8 635 70 430 45 370 40 

9 700 65 475 45 410 40 

10 765 65 520 45 450 40 

11 825 60 560 40 485 35 

12 885 60 600 40 520 35 

13 940 55 635 35 555 35 

14 995 55 670 35 590 35 

15 1050 55 705 35 620 30 

16 1095 45 740 35 650 30 

17 1140 45 770 30 675 25 

18 1180 40 800 30 700 25 

19 1220 40 830 30 725 25 

20 1260 40 855 25 750 25 

21 1295 35 880 25 770 20 

22 1330 35 900 20 790 20 

23 1360 30 920 20 805 15 

24 1385 25 940 20 820 15 

25 1410 25 960 20 835 15 

26 1435 25 975 15 850 15 

27 1455 20 990 15 860 10 

28 1470 15 1000 10 870 10 

29 1485 15 1010 10 880 10 

30 1500 15 1020 10 890 10 

31 1510 10 1025 5 895 5 

32 1515 5 1030 5 900 5 

33 1520 5 1035 5 905 5 

34 1525 5 1040 5 910 5 
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The other parameter set increases the asymmetry between players by reducing LOW‟s 

returns from the Shared Account. In this parameterization there is no predicted first-mover 

advantage and so we refer to these as our NOFMA treatments. For any move ordering the unique 

(subgame perfect) equilibrium involves HIGH contributing 15 tokens and LOW contributing 0 

tokens, yielding HIGH 1150 and LOW 1470. Note that the HIGH-NOFMA game differs from 

the other three sequential move games in that, in equilibrium, it is the first-mover, HIGH, who 

supplies the public good, while the second mover, LOW, free rides. Table 2 summarizes our 

design. 

Table 2. Overview of treatments 

Treatment 

Subgame Perfect Equilibrium 

Contributions Payoffs 

{HIGH, LOW}  {HIGH, LOW} 

LOW-FMA {15, 0} {1150, 1555} 

HIGH-FMA {0, 6} {1340, 890} 

SIM-FMA {15, 0} {1150, 1555} 

LOW-NOFMA {15, 0} {1150, 1470} 

HIGH-NOFMA {15, 0} {1150, 1470} 

SIM-NOFMA {15, 0} {1150, 1470} 

2.2 Procedures 

The experiment was conducted at the University of Nottingham using 192 subjects recruited 

from a university-wide pool of students who had previously indicated their willingness to be paid 

volunteers in decision-making experiments.
5
 Twelve sessions were conducted (two per 

treatment) with 16 participants per session. No subject took part in more than one session. Upon 

arrival, subjects were welcomed and randomly seated at visually separated computer terminals. 

Subjects were then given a written set of instructions that the experimenter read aloud. The 

instructions included a set of control questions about how choices translated into earnings. 

Subjects had to answer all the questions correctly before the experiment could continue. 

The session then consisted of 15 rounds of the game described above, where in each round 

subjects were randomly matched with another participant. Subjects were not informed of the 

identities of the other people in the room they were matched with, neither during nor after the 

experiment. Moreover, we did not make use of subject IDs, and so subjects‟ decisions were not 

                                                 
5 

Subjects were recruited through the online recruitment system ORSEE (Greiner (2004)). The experiment was 

programmed and conducted with the software z-Tree (Fischbacher (2007)). Experimental instructions and earnings 

tables are reproduced in the online appendix. 



 7 

associated with identification numbers which could be used to establish reputations. The 

matching procedure worked as follows. At the beginning of each session the participants were 

randomly allocated to one of two eight-person matching groups. The computer then randomly 

allocated the role of HIGH to four subjects and the role of LOW to the other four subjects in 

each matching group. Subjects were informed of their role at the beginning of the first round and 

kept this role throughout the 15 rounds. At the beginning of each round the computer randomly 

formed pairs consisting of one HIGH and one LOW participant within each matching group. To 

ensure comparability among sessions and treatments, we randomly formed pairings within each 

matching group prior to the first session and used the same pairings for all sessions. Because no 

information passed across the two matching groups, we treat data from each matching group as 

independent. Thus our design generates four independent observations per treatment. Repetition 

of the task was used because we expected that subjects might learn from experience. However, 

our desire to test predictions based on a one-shot model led us to use the random re-matching 

design in order to reduce repeated game effects.
 6

 

Subjects were paid based on their choices in one randomly-determined round. At the end of 

round fifteen a poker chip was drawn from a bag containing chips numbered from 1 to 15. The 

number on the chip determined the round that was used for determining all participants‟ cash 

earnings. At the end of the experiment subjects were asked to complete a short questionnaire 

asking for basic demographic information and were then privately paid according to their point 

earnings in the round which had been randomly selected at the end of round fifteen. Point 

earnings were converted into British Pounds at a rate of £0.01 per point. Subject earnings ranged 

from £8.50 to £17.50, averaging £12.69 (at the time of the experiment £1 ≈ $1.61), and sessions 

lasted about 75 minutes on average. 

3. Experimental results 

3.1 Aggregate Contributions 

Figure 1 displays aggregate contributions in the six treatments. In all treatments contributions fall 

in the first five rounds before stabilizing from round six onwards. In the SIM-FMA and LOW-

FMA treatments equilibrium aggregate contributions are predicted to be 15 tokens. On average, 

pairs contributed 14.3 tokens per game in SIM-FMA compared with 13.3 in LOW-FMA – this 

                                                 
6
 Subjects were informed that they would be randomly matched with another person in the room in each round, but 

the details of the matching procedure were not specified. For details see the instructions in the online appendix. 
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difference is not significant at conventional levels (p = 0.457).
7
 In HIGH-FMA contributions are 

predicted to be lower, 6 tokens. Although on average pairs contribute more than this, 10.2 tokens 

per game, this is significantly lower than in the other FMA treatments (HIGH-FMA vs. SIM-

FMA: p = 0.029; HIGH-FMA vs. LOW-FMA: p = 0.029). Similar results are obtained if we 

focus on the last five rounds: contributions in SIM-FMA and LOW-FMA are not significantly 

different (p = 0.457), but contributions in HIGH-FMA are significantly lower than in SIM-FMA 

(p = 0.029) or LOW-FMA (p = 0.086). 

Figure 1. Aggregate contributions across rounds
*
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*
Equilibrium aggregate contributions shown by dashed lines. HIGH-FMA light dash, all other treatments dark dash. 

In the NOFMA treatments, consistent with equilibrium predictions, aggregate contributions 

do not differ significantly across move orderings (p > 0.457 in all pair-wise comparisons, 

whether we focus on all rounds or the last five rounds). All three treatments track the prediction 

quite well: average contributions across all three treatments are 14.3 tokens per game compared 

with the predicted 15 tokens per game.  

In summary, our data are consistent with comparative static predictions regarding 

aggregate contributions. In particular, in the FMA treatments aggregate contributions are lower 

when the person with highest returns from the public good most moves first. By comparison, 

ABV found that aggregate contributions were slightly lower in their sequential treatment, and 

noted that while players of a given role should behave differently across simultaneous and 

                                                 
7
 All p-values are based on two-sided randomization tests applied to 4 independent observations per treatment, 

unless otherwise stated. Summary data on individual and group contributions are given in the online appendix. 
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sequential move games, by the end of the experiment they are behaving, on average, similarly in 

the two games.
8
 It is interesting that in their experiment differences across treatments 

disappeared with repetition, whereas our treatment effect is robust across rounds. First, it may be 

that our predicted effect is sufficiently large that fairness considerations can lead to deviations 

from equilibrium outcomes without overcoming the comparative static result. Second, fairness 

considerations may be less relevant in our experiment simply because the degree of asymmetry 

makes it difficult to identify fair allocations. Further evidence on this comes from examining the 

distribution of contributions. 

3.2 Individual Contributions 

ABV found that players contributed almost equal amounts (especially in their simultaneous 

treatment), in contrast to the extreme theoretical prediction that one player would free ride 

completely off the other. Figure 2 displays individual contributions in our FMA treatments. For 

the sequential game treatments black bars indicate second-mover contributions consistent with a 

best response, light grey bars contributions in excess of the best response, and dark grey bars 

contributions below the best response. The results are qualitatively similar to ABV (c.f. their 

Figures 3a and 3b). In SIM-FMA only 4% of games correspond to the equilibrium prediction and 

the data are relatively disorganized. The major difference from ABV is that contributions are 

more asymmetric in our experiment: HIGH contributes 10.5 tokens on average compared with 

LOW‟s 3.8 tokens.  

 

 

                                                 
8
 ABV do not report formal statistical comparisons of aggregate contributions across move orderings, but using their 

data we found that aggregate contributions were significantly different at the 10% level when one looks at all rounds 

(p = 0.100), but not significantly different in the last five rounds (p = 0.800). These p-values are based on 

randomization tests treating aggregate contributions in a session as the unit of observation, and so are based on 

comparing two sets of three observations. One can also use a less conservative approach and treat each game in a 

round as an independent observation. Doing this we found that contributions were often significantly different in 

early rounds, but not significant in any of the last five rounds (p > 0.204 for the last five rounds). We thank the 

authors for making their data available at http://econlab.ucsd.edu/getdata/. 

http://econlab.ucsd.edu/getdata/
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Figure 2. Individual contributions (FMA treatments)
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 11 

In the sequential move treatments, first note that although few games result in the subgame 

perfect equilibrium (7% in HIGH-FMA and 4% in LOW-FMA), a substantial portion lies along 

the diagonals corresponding to the predicted aggregate (24% in HIGH-FMA and 21% in LOW-

FMA). Thus when the predicted aggregate is observed it usually involves both players sharing  

the burden of providing the public good, rather than the predicted allocation where one player 

free rides off the other. Second, while second-movers often play a best-response to the first-

mover‟s contribution (60% in HIGH-FMA, 25% in LOW-FMA), in a large number of games 

second-movers choose to reward first-movers by contributing above the best response (in 31% of 

games in HIGH-FMA, in 26% of games in LOW-FMA), or to punish them by contributing 

below (in 9% of games in HIGH-FMA, in 49% of games in LOW-FMA).
9
 Notably, 65% of the 

games involving punishment occur when the first-mover contributes between 0 and 2 tokens, but 

games involving rewards are not clustered at any specific interval of the first-mover‟s 

contributions. Moreover, the pattern of rewards and punishment changes across rounds: focusing 

on the last five rounds, deviations from best-responses are just as frequent as in earlier rounds, 

but they are more likely to be deviations below the best-response function. Thus, as subjects gain 

experience with the experimental setting the incidence of punishment increases, while rewarding 

behavior tends to diminish. 

Figure 3 displays individual contributions in our NOFMA treatments. Again, only 6% of 

simultaneous move games result in the equilibrium outcome, and there is considerable dispersion 

in outcomes. As in the sequential FMA treatments there is a clustering of data in LOW-NOFMA 

where many games result in the predicted aggregate contribution of 15 tokens (41%). Again, 

however, only 6% of games correspond to the predicted extreme allocation. As in the sequential 

FMA treatments we observe both punishing (32% of all games and increasing over time) and 

rewarding behavior (27% of all games, decreasing over time). Thus the general patterns in these 

two treatments are similar to those observed in the FMA treatments. 

                                                 
9
 For expositional purposes we refer to a second-mover contribution below the best response as a punishment (since, 

relative to the best response, it reduces the first-mover‟s payoff at a cost to oneself) and a contribution above the best 

response as a reward (since it raises the first-mover‟s payoff at a cost to oneself). Of course a variety of other 

motives, or even error, could account for deviations from best responses. We describe later temporal patterns in 

punishment that suggest limited scope for interpreting punishments as due to error. See also Gächter, et al. (2008) 

who observe punishment even after 50 rounds of experience with a public goods game. 
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Figure 3. Individual contributions (NOFMA treatments)
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aken together these five treatments provide little support for the extreme theoretical prediction, 

and suggest fairness considerations are relevant in our experiment. Contributions are less 

asymmetric than predicted and in the sequential games fairer allocations are supported by 

“punishment strategies” whereby second-movers react to low first-mover contributions by 

contributing less than the best-response. All of this is qualitatively similar to the results in ABV. 

Finally, the last panel of Figure 3 shows the HIGH-NOFMA treatment. The picture is 

remarkably similar to the outcomes of a third “best shot” ABV treatment, where the only point of 

any significance is the subgame perfect equilibrium. They attribute the difference between their 

sequential and best shot treatments to the difference in payoff possibilities: equilibrium works 

well in the best shot game because players cannot reduce inequality and at the same time 

increase the payoff of the disadvantaged party. While we do not doubt that this is an important 

factor in determining when an equilibrium prediction works well, this cannot account for the 

difference we observe across NOFMA treatments. In all move orderings, there are deviations 

from equilibrium that enable players to attain more equal payoffs and at the same time increase 

the payoff to the disadvantaged party. Thus it is unclear why fairness considerations that are 

relevant in the other treatments appear less important in HIGH-NOFMA. 

This treatment differs from the other sequential treatments in that theory predicts the first-

mover is the disadvantaged party. Reducing inequality and increasing the disadvantaged party‟s 

payoff requires second-movers to contribute more than predicted. In particular, attaining the same 

distribution of payoffs as observed in LOW-NOFMA requires the first-mover to contribute less 

than 15 tokens and the second-mover to reward. In contrast, in the other sequential treatments the 

second-mover is disadvantaged in equilibrium, and for inequality to be reduced while increasing 

the second-mover‟s payoff the first-mover must contribute more than predicted. Even a selfish 

first-mover might be willing to do so if they anticipated that selfish behavior would be punished (as 

in fact it is). Thus, in the other sequential treatments the anticipation of punishment is sufficient to 

reduce inequality and benefit the disadvantaged party.
10

 The ineffectiveness of rewards relative to 

                                                 
10

 Another structural feature of the HIGH-NOFMA treatment that distinguishes it from the other sequential 

treatments is that the subgame perfect equilibrium outcome is also the unique Nash equilibrium outcome, whereas in 

the other treatments there are (imperfect) Nash equilibria where aggregate contributions are the same as in the 

subgame perfect equilibrium, but the first-mover makes positive contributions. For example, a second-mover might 

threaten to contribute 0 tokens if the first-mover contributes less than a threshold value ĝ and to best-respond if and 

only if g ≥. ĝ Given this threat the first-mover may find it optimal to choose ĝ. 
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punishment for moving first-mover behavior from the theoretical prediction is reminiscent of 

results from the proposer-responder games reported in Andreoni, et al. (2003).
11

  

3.3 Earnings 

Table 3 shows how the compression of contributions in the FMA treatments leads to 

compression of earnings. Although the model‟s comparative static prediction about aggregate 

earnings is borne out – earnings in HIGH-FMA are significantly lower than in other treatments 

(focusing on all rounds: HIGH-FMA vs. SIM-FMA: p = 0.029; HIGH-FMA vs. LOW-FMA: p = 

0.029: focusing on the last five rounds; HIGH-FMA vs. SIM-FMA: p = 0.029; HIGH-FMA vs. 

LOW-FMA: p = 0.086) – there are some important deviations from comparative static 

predictions. In particular HIGH earns less in HIGH-FMA than in the other move orderings.
12

  

Table 3. Earnings
*
 

 

HIGH LOW AGGREGATE 

Predicted 

All 

Rounds 

Last 5 

Rounds Predicted 

All 

Rounds 

Last 5 

Rounds Predicted 

All 

Rounds 

Last 5 

Rounds 

SIM-FMA 1150 
1289 

(169.8) 

1235 
(172.0) 

1555 
1311 

(193.7) 

1291 
(214.6) 

2705 
2601 

(244.9) 

2525 
(306.3) 

LOW-FMA 1150 
1293 

(202.6) 

1220 
(174.3) 

1555 
1269 

(202.4) 

1289 
(197.4) 

2705 
2562 

(262.3) 

2509 
(272.3) 

HIGH-FMA 1340 
1203 

(168.8) 

1166 
(154.1) 

890 
1228 

(234.2) 

1172 
(259.2) 

2230 
2431 

(270.9) 

2338 
(301.9) 

SIM-NOFMA 1150 
1230 

(162.1) 

1197 
(122.4) 

1470 
1302 

(178.7) 

1336 
(154.3) 

2620 
2532 

(203.1) 

2533 
(182.3) 

LOW-NOFMA 1150 
1321 

(189.1) 

1232 
(138.5) 

1470 
1219 

(194.9) 

1277 
(182.8) 

2620 
2540 

(203.9) 

2509 
(233.0) 

HIGH-NOFMA 1150 
1164 

(104.2) 

1151 
(53.4) 

1470 
1373 

(162.3) 

1416 
(109.2) 

2620 
2537 

(184.8) 

2568 
(144.0) 

*
 The table shows average point earnings per game. Standard deviations in parentheses. 

Likewise, in the NOFMA treatment aggregate earnings are, as predicted, invariant to move 

ordering (p > 0.371 in all pair-wise comparisons, whether we focus on all rounds or the last five 

rounds), but, in contrast to predictions, the distribution of earnings varies across treatments. Here 

                                                 
11

 Sefton, et al. (2007) also find that the opportunity to reward by itself is insufficient to sustain contributions in a 

public goods game, whereas the opportunity to punish is a more effective mechanism for sustaining cooperation. In 

addition, a wide range of experiments find positive reciprocity to be weak relative to negative reciprocity (see, e.g., 

Abbink, et al. (2000); or Offerman (2002)). 
12

 An inspection of ABV‟s data reveals that their HIGH player earned slightly more when they moved first than 

moving simultaneously, although the difference is insignificant. Randomization tests applied to the two sets of three 

observations, where each observation is average HIGH player earnings within a session yields p = 0.800. Restricting 

attention to the last five rounds yields p = 0.400. A less conservative approach treating each HIGH player as an 

independent observation yields p = 0.949 (last five rounds p = 0.206). 
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we observe a first-mover disadvantage: both players earn most when they move second and least 

when they move first. The differences in earnings between LOW-NOFMA and HIGH-NOFMA 

are significant for both types of player (p = 0.029 in both comparisons).
13

 

4. Conclusion 

Our paper reports an experiment examining the effects of move structure in a quasi-linear public 

good setting. Previously Andreoni, et al. (2002) (ABV) studied a similar setting, and we extend their 

experimental analysis by considering two different sets of parameters. In our FMA treatments the 

asymmetry between players is more pronounced than in ABV, and in terms of equilibrium incentives 

our design creates greater separation between equilibrium aggregate contributions across move 

structures. At the same time, while in ABV‟s design equal contributions lead to almost-equal 

earnings, our design makes it more difficult for players to identify fair allocations. Our results are 

qualitatively similar to ABV‟s in that individual contributions are not as asymmetric as predicted, 

and when first-movers free ride second-movers often punish them by contributing less than their best 

response. However, whereas in their experiment any differences between aggregate contributions in 

simultaneous and sequential games disappeared by the end of their experiment, in ours we find 

robust support for the theoretical comparative static prediction that aggregate contributions are lower 

in a sequential move ordering when the person who values the public good most moves first. On the 

other hand, we do not observe the first-mover advantage predicted by the model. 

In a second parameter set (our NOFMA treatments) differences in returns from the public 

good are so large that, in theory, the player with the highest returns from the public good 

supplies the public good regardless of move ordering. Thus, we study three games that differ 

only in terms of move orderings: in each game the players‟ action sets are the same, the players‟ 

payoff functions are the same, and the equilibrium allocations are the same. Here we find the 

distribution of contributions varies across move structures and in fact equilibrium predictions 

work remarkably well in one game but not in the others. This allows us to refine ABV‟s 

explanation for why equilibrium provides a good approximation to behavior in some games but 

not in others. Move orderings matter because they determine what mechanism is required in 

order to achieve more equitable allocations. Consistent with findings from experiments in other 

settings, punishment, or merely the anticipation of punishment, can be an effective mechanism 

                                                 
13

 The result holds for LOW even in the last five rounds (p = 0.029). HIGH earnings are still higher in LOW-

NOFMA than in HIGH-NOFMA in the last five rounds, but the difference is just insignificant (p = 0.114). 
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for moving outcomes away from equilibrium predictions toward more equitable outcomes, 

whereas rewards are much less effective. In the NOFMA treatments earnings are predicted to be 

independent of move ordering, but we observe a first-mover disadvantage. 

Our results on the distribution of contributions and earnings have important policy 

implications. First, if a fundraiser is choosing between a sequential and simultaneous solicitation 

mechanism the optimal choice may depend on the distribution of contributions as well as the level of 

overall contributions. Although aggregate contributions follow theoretically predicted directions, the 

distribution of contributions does not. When the person with lowest returns from the public good 

moves first aggregate contributions are never lower and the distribution of contributions is also more 

even. Thus, this sequential move ordering may be quite acceptable on many normative criteria, and 

may even be preferred to a simultaneous move structure. An implication of our results on earnings is 

that there is not much of an advantage to committing to being a free-rider, and this in turn may have 

important implications for endogenous move structures. In naturally occurring settings the move 

structure is not exogenously imposed, but rather emerges endogenously, and this process typically 

reflects how alternative move structures reward participants. Since no first-mover advantage is 

actually attained it is unclear whether the detrimental move ordering would emerge in practice.
14

 

Taken together these results suggest that commitment opportunities may be less damaging 

than previously thought. ABV show that when there is limited asymmetry in players‟ preferences 

the existence of commitment opportunities does not exacerbate the free-rider problem as the 

„pull of fairness‟ ends up dominating the „pull of equilibrium‟, and, as a consequence, sequential 

and simultaneous mechanisms do not lead to dramatically different levels of public good 

provision. When the asymmetry in players‟ preferences is very large aggregate contributions are 

predicted to be the same in sequential and simultaneous move games and the data from our 

NOFMA treatments confirm this prediction. Thus, only when players‟ preferences are 

sufficiently different, but not too different, does Varian‟s theoretical result that sequential 

mechanisms yield lower provision than simultaneous mechanisms seem to hold, as confirmed by 

our FMA treatments. However, even in this case, the absence of a first mover advantage makes it 

questionable whether the sequential move ordering would emerge naturally. 

                                                 
14

 Nosenzo and Sefton (2009) report an experiment using the FMA payoff tables where move orderings emerge 

endogenously through subjects‟ timing decisions. In one treatment most games end up as simultaneous move games 

because both players want to move second, and in another treatment most games end up as simultaneous move 

games because both players choose to wait rather than exploit the possibility of making an early commitment. 
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APPENDIX A: Theoretical Background 

This appendix outlines the theoretical background underlying the payoff functions used in 

the experiment. For further details and discussion of the model refer to Varian (1994). The 

payoff functions are based on a simple two-player quasi-linear model. The two players have 

different preferences over the public good. We refer to the player who enjoys a higher return 

from the public good as the „HIGH‟ player, and the player who enjoys a lower return as the 

„LOW‟ player. 

Player i, i  {HIGH, LOW}, is endowed with wealth wi and contributes an amount 0  gi  

wi to a public good. The remainder is allocated to private good consumption. The total amount of 

the public good provided is G = gHIGH + gLOW. Player i‟s payoff is given by:  

i = wi – gi + fi(G) 

where individual i‟s return from the public good, fi(G), is increasing and strictly concave. 

If the other agent contributes zero, player i‟s best response is her „stand-alone contribution‟ 

ĝi. We assume that wi > ĝi so that the first order condition for an interior optimum is satisfied: 

f i(ĝi) = 1. 

If player j contributes gj > ĝi then i‟s marginal return from contributing gi is f i(gj + gi) – 1 

< 0. Thus i‟s best response is gi = 0. If player j contributes gj  ĝi, then i‟s best response satisfies: 

f i(gi + gj) = 1. 

Comparing this with the first-order condition for an interior optimum we have:  

f i (gi + gj) = f i (ĝi) 

or 

gi = ĝi – gj. 

 Thus, i‟s best response function is: 

gi = max{ĝi – gj, 0}. 
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Figure AA.1 shows the best response functions. With simultaneous moves, the unique Nash 

Equilibrium is the intersection of the best response functions: gHIGH = ĝHIGH, gLOW = 0. Thus LOW 

contributes zero and HIGH makes her stand-alone contribution.  

Figure AA.1. Best-response functions 

 

Next, suppose LOW moves first. In a subgame perfect equilibrium the second-mover‟s 

strategy is given by her best response function: gHIGH = max{ĝHIGH – gLOW, 0}. LOW‟s 

subgame perfect equilibrium strategy results in her most preferred point on the HIGH‟s best 

response function. Suppose gLOW > ĝHIGH so that HIGH then contributes zero. LOW could 

reduce gLOW so that HIGH still contributes zero, but LOW moves closer to her stand-alone 

contribution (which is her optimal contribution given that gHIGH = 0). Thus, LOW‟s payoff 

increases as she moves down the vertical part of HIGH‟s best response function. Now 

suppose that 0 < gLOW  ĝHIGH so that HIGH responds by ensuring that G = ĝHIGH. LOW player 

can reduce her first-mover contribution and HIGH will compensate by increasing her second-

mover contribution so that overall provision remains at G = ĝHIGH. Thus LOW‟s payoff 

continues to increase as she moves down HIGH‟s best response function. Her most preferred 

point is where gLOW = 0 and HIGH responds by choosing gHIGH = ĝHIGH. Thus, when LOW 

moves first she contributes zero, free-riding off the second mover‟s stand-alone contribution. 

This outcome is the same as with simultaneous moves.  

If HIGH moves first she could also commit to contributing zero and rely on LOW to 

contribute ĝLOW, giving her a payoff of wHIGH + fHIGH(ĝLOW). If she were to contribute a small 

gHIGH ĝHIGH ĝLOW 

ĝLOW 

ĝHIGH 
gLOW(gHIGH) 

 
gHIGH(gLOW) 

 

gLOW 
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amount LOW would reduce her contribution to the public good so that total provision 

remains at ĝLOW. Thus HIGH‟s payoff would decrease, as she would enjoy a lower level of 

private good consumption and the same level of public good consumption. If HIGH 

contributes more than ĝLOW then LOW contributes zero and HIGH‟s payoff will be wHIGH – 

gHIGH + fHIGH(gHIGH). In this range her payoff is maximized by her stand-alone contribution, 

ĝHIGH, leading to a payoff of wHIGH – ĝHIGH + fHIGH(ĝHIGH). HIGH‟s optimal first-mover 

contribution depends on the comparison between her payoff when she contributes zero, wHIGH 

+ fHIGH(ĝLOW), and her payoff when she makes her stand-alone contribution, wHIGH – ĝHIGH + 

fHIGH(ĝHIGH). 

Figure 2 displays HIGH‟s payoff as a function of her contribution for each of the two 

following cases. In the “No First Mover Advantage” case (NOFMA), with fHIGH(ĝHIGH) – 

fHIGH(ĝLOW) > ĝHIGH, the subgame perfect equilibrium is for HIGH to choose gHIGH = ĝHIGH and the 

LOW player responds with gLOW = 0. Again, the outcome is the same as with simultaneous 

moves. However, in the “First Mover Advantage” case (FMA) where fHIGH(ĝHIGH) – fHIGH(ĝLOW) < 

ĝHIGH, the subgame perfect equilibrium is for HIGH to choose gHIGH = 0 and LOW responds with 

gLOW = ĝLOW. Here, since ĝLOW < ĝHIGH public good provision is lower than with simultaneous 

moves. If the players have similar preferences ĝHIGH will be similar to ĝLOW and so fHIGH(ĝHIGH) – 

fHIGH(ĝLOW) will be close to zero, and we are in the FMA case. Thus when preferences are not 

too different and HIGH moves first, contributions are lower than with simultaneous moves. 

The earnings tables used in the experiment were derived from a quadratic utility function of 

the form i = 50(17 – gi) + ti(68G – G
2
), where tHIGH = 1.32 and tLOW = 0.89 (FMA treatments) or 

0.78 (NOFMA treatments), and earnings were then rounded to a multiple of 5 points. The 

rounding preserved the key features of the Varian model predictions. HIGH‟s stand-alone 

contribution is gHIGH = 15, and her best response function is gHIGH = max{15 – gLOW, 0}. LOW‟s 

stand-alone contribution is gLOW = 2 (NOFMA) or gLOW = 6 (FMA). In the simultaneous move 

games the unique Nash equilibrium is gHIGH = 15, gLOW = 0. In the sequential games the 

unique subgame perfect equilibrium is for the first-mover to contribute zero and the second-

mover to best respond, except for HIGH-NOFMA, where the first-mover makes her stand-

alone contribution, gHIGH = 15, and the second-mover best responds (and in equilibrium 

contributes zero). 



 4 

Figure AA.2. The HIGH player‟s payoff as a function of her first-mover contribution 
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APPENDIX B: Instructions 

General 

Welcome! You are about to take part in an experiment in the economics of decision making. You will be 

paid in private and in cash at the end of the experiment. The amount you earn will depend on your 

decisions, so please follow the instructions carefully. It is important that you do not talk to any of the 

other participants until the experiment is over. If you have a question at any time, raise your hand and a 

monitor will come to your desk to answer it. 

The experiment will consist of fifteen rounds. There are sixteen participants in this room. Before the first 

round begins the computer will randomly assign the role of “RED” to eight participants and the role of 

“BLUE” to eight participants. You will be informed of your role, either RED or BLUE, at the beginning 

of round one and you will keep this role throughout the fifteen rounds. In each round the computer will 

randomly form eight pairs consisting of one RED and one BLUE participant. Thus, you will be randomly 

matched with another person in this room in each round, but this may be a different person from round to 

round. You will not learn who is matched with you in any round, neither during nor after today‟s session.  

Each round is identical. In each round you and the person you are matched with will make choices and 

earn points. The point earnings will depend on the choices as we will explain below. At the end of the 

experiment one of the fifteen rounds will be selected at random. Your earnings from the experiment will 

depend on your point earnings in this randomly selected round. These point earnings will be converted 

into cash at a rate of 1p per point. 

How You Earn Points 

At the beginning of the round you will be given an endowment of 17 tokens. You have to decide how 

many of these tokens to place in a Private Account and how many to place in a Shared Account.  

For each token you place in your Private Account you will earn 50 points, as shown in Table 1. 

For each token placed in the Shared Account you will earn an additional amount, regardless of whether 

the token was placed by you or the person you are matched with. Likewise, for each token placed in the 

Shared Account the person you are matched with will earn an additional amount, regardless of whether 

the token was placed by you or them. Earnings from the Shared Account are shown in Table 2. 

Your point earnings for the round will be the sum of your earnings from your Private Account and your 

earnings from the Shared Account. 
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So that everyone understands how choices translate into point earnings we will give an example and a 

test. Please note that the allocations of tokens used for the example and test are simply for illustrative 

purposes. In the experiment the allocations will depend on the actual choices of the participants. 

[NOFMA treatments: 

Example: Suppose RED places 9 tokens in his Private Account and 8 tokens in the Shared Account, and 

BLUE places 10 tokens in his Private Account and 7 tokens in the Shared Account. In this example there 

are a total of 15 tokens in the Shared Account. RED will earn 450 points from his Private Account, plus 

1050 points from the Shared Account, for a total of 1500 points. BLUE will earn 500 points from his 

Private Account, plus 620 points from the Shared Account, for a total of 1120 points. ] 

[FMA treatments: 

Example: Suppose RED places 9 tokens in his Private Account and 8 tokens in the Shared Account, and 

BLUE places 10 tokens in his Private Account and 7 tokens in the Shared Account. In this example there 

are a total of 15 tokens in the Shared Account. RED will earn 450 points from his Private Account, plus 

1050 points from the Shared Account, for a total of 1500 points. BLUE will earn 500 points from his 

Private Account, plus 705 points from the Shared Account, for a total of 1205 points.] 

 

Test: Before we continue with the instructions we want to make sure that everyone understands how their 

earnings are determined. Please answer the questions below. Raise your hand if you have a question.  

After a few minutes a monitor will check your answers. When everyone has answered the questions 

correctly we will continue with the instructions. 

Suppose RED allocates 11 tokens to his Private Account and 6 tokens to the Shared Account, and 

BLUE allocates 5 tokens to his Private Account and 12 tokens to the Shared Account. 

1. What will be RED‟s point earnings from his private account?   __________ 

2. What will be RED‟s point earnings from the shared account?   __________ 

3. What will be RED‟s point earnings for the round?     __________ 

4. What will be BLUE‟s point earnings from his private account?   __________ 

5. What will be BLUE‟s point earnings from the shared account?   __________ 

6. What will be BLUE‟s point earnings for the round?    __________ 



 7 

How You Make Decisions 

[Sequential treatments: 

At the beginning of a round BLUE will make a decision about how to allocate his or her endowment by 

typing in a number of tokens to place in the Shared Account. BLUE can enter any whole number between 0 

and 17 inclusive. The computer will then automatically place the remainder of BLUE‟s endowment in 

BLUE‟s Private Account.  

The computer will then inform RED of BLUE‟s decision.  

After RED has seen how many tokens BLUE has allocated to the Shared Account, RED will decide how to 

allocate his or her endowment. RED will do this by typing in a number of tokens to place in the Shared 

Account. RED can enter any whole number between 0 and 17 inclusive. The computer will then 

automatically place the remainder of RED‟s endowment in RED‟s Private Account.  

After RED has made his or her decision the computer will then show an information screen to both RED and 

BLUE. This screen will display the total number of tokens placed in the Shared Account and the earnings of 

each person for that round.] 

[Simultaneous treatments: 

At the beginning of a round you will make a decision about how to allocate your endowment by typing in a 

number of tokens to place in the Shared Account. You can enter any whole number between 0 and 17 

inclusive. The computer will then automatically place the remainder of your endowment in your Private 

Account.  

At the same time, the person with whom you are matched will be deciding how many tokens to place in the 

Shared Account by entering a number between 0 and 17 inclusive.  

After you and the person you are matched with have both made your decisions the computer will then show 

an information screen to both RED and BLUE. This screen will display the total number of tokens placed in 

the Shared Account and the earnings of each person for that round.] 

After you have read the information screen, you must click on the continue button to go on to the next round.  

How Your Cash Earnings Are Determined  

At the end of round fifteen there will be a random draw to select the round for which you will be paid. A 

poker chip will be drawn from a bag containing chips numbered from 1 to 15. The number on the chip will 

determine the round that is used for determining all participants‟ cash earnings. Your point earnings in this 

randomly selected round will be converted into cash at a rate of 1p per point. You will be paid in private and 

in cash. 

Beginning the Experiment  

Now, please look at your computer screen and begin making your decisions. If you have a question at any 

time please raise your hand and a monitor will come to your desk to answer it. 
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APPENDIX C: Earnings Tables  

This appendix contains the earnings tables given to subjects. 

FMA treatments: 

EARNINGS TABLES 

Table 1. Earnings from Your Private Account           Table 2. Earnings from the Shared Account 

TOKENS IN YOUR 

PRIVATE ACCOUNT 

YOUR POINT EARNINGS 

FROM THE  

PRIVATE ACCOUNT 

 

TOKENS IN 

THE SHARED 

ACCOUNT 

RED‟S POINT 

EARNINGS FROM 

THE SHARED 

ACCOUNT 

BLUE‟S POINT 

EARNINGS FROM 

THE SHARED 

ACCOUNT 

      

0 0  0 0 0 

1 50  1 90 60 

2 100  2 180 120 

3 150  3 260 175 

4 200  4 340 230 

5 250  5 415 285 

6 300  6 490 340 

7 350  7 565 385 

8 400  8 635 430 

9 450  9 700 475 

10 500  10 765 520 

11 550  11 825 560 

12 600  12 885 600 

13 650  13 940 635 

14 700  14 995 670 

15 750  15 1050 705 

16 800  16 1095 740 

17 850  17 1140 770 

   18 1180 800 

   19 1220 830 

   20 1260 855 

   21 1295 880 

   22 1330 900 

   23 1360 920 

   24 1385 940 

   25 1410 960 

   26 1435 975 

   27 1455 990 

   28 1470 1000 

   29 1485 1010 

   30 1500 1020 

   31 1510 1025 

   32 1515 1030 

   33 1520 1035 

   34 1525 1040 
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NOFMA treatments 

EARNINGS TABLES 

Table 1. Earnings from Your Private Account               Table 2. Earnings from the Shared Account 

TOKENS IN YOUR 

PRIVATE ACCOUNT 

YOUR POINT EARNINGS 

FROM THE  

PRIVATE ACCOUNT 

 

TOKENS IN 

THE SHARED 

ACCOUNT 

RED‟S POINT 

EARNINGS FROM 

THE SHARED 

ACCOUNT 

BLUE‟S POINT 

EARNINGS FROM 

THE SHARED 

ACCOUNT 

      

0 0  0 0 0 

1 50  1 90 55 

2 100  2 180 110 

3 150  3 260 155 

4 200  4 340 200 

5 250  5 415 245 

6 300  6 490 290 

7 350  7 565 330 

8 400  8 635 370 

9 450  9 700 410 

10 500  10 765 450 

11 550  11 825 485 

12 600  12 885 520 

13 650  13 940 555 

14 700  14 995 590 

15 750  15 1050 620 

16 800  16 1095 650 

17 850  17 1140 675 

   18 1180 700 

   19 1220 725 

   20 1260 750 

   21 1295 770 

   22 1330 790 

   23 1360 805 

   24 1385 820 

   25 1410 835 

   26 1435 850 

   27 1455 860 

   28 1470 870 

   29 1485 880 

   30 1500 890 

   31 1510 895 

   32 1515 900 

   33 1520 905 

   34 1525 910 
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APPENDIX D: Screenshots of the decision screens used by subjects in the experiment 

 

Screenshot of the decision screen used by a first-mover in a sequential treatment. 

 
 

Screenshot of the decision screen used by a second-mover in a sequential treatment. 
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APPENDIX E: Average Contributions per treatment. 

 

Table AE.1 Average Contributions in SIM-FMA 

 

AGGREGATE HIGH LOW 

All 

Rounds 

Last 5 

Rounds 

Subject 

ID 

All 

Rounds 

Last 5 

Rounds 

Subject 

ID 

All 

Rounds 

Last 5 

Rounds 

Session 1, Matching Group 1 12 10.2 

 

     

   5 5 4 1 4 1 

   6 5.1 3.2 2 11.3 4 

   7 12.2 12.8 3 0.3 0.6 

   8 9.3 9.4 4 0.8 6 

Session 1, Matching Group 2 15.4 13.7 
 

  
 

  

   13 12.3 13.8 9 1.1 0 

   14 6.3 1.2 10 0.3 6.4 

   15 17 17 11 1 0 

   16 12.7 13.6 12 2.8 3 

Session 2, Matching Group 1 13.7 12.8 
 

  
 

  

   5 15.7 13 1 2 4.4 

   6 9.9 8.4 2 2.7 2.4 

   7 8.8 8.2 3 1.9 0 

   8 11.1 14.4 4 0.4 0.4 

Session 2, Matching Group 2 16.1 13.5 
 

  
 

  

   13 7.9 3.2 9 4.7 6 

   14 6.3 5 10 5.8 6 

   15 10.9 10.2 11 0.3 5 

   16 17 17 12 1.3 1.8 

MEAN 14.3 12.6 
      

MEDIAN 15 13       
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Table AE.2 Average Contributions in LOW-FMA 

 

AGGREGATE HIGH LOW 

All 

Rounds 

Last 5 

Rounds 

Subject 

ID 

All 

Rounds 

Last 5 

Rounds 

Subject 

ID 

All 

Rounds 

Last 5 

Rounds 

Session 1, Matching Group 1 14.1 12.2 

 

     

   5 6.1 6 1 7.3 7 

   6 11.6 12.4 2 5.5 1 

   7 8.7 8.8 3 3.3 0.4 

   8 9.3 8.4 4 4.6 5 

Session 1, Matching Group 2 15 13 
 

  
 

  

   13 10.2 12.4 9 3.6 0.2 

   14 12.1 10.6 10 4.5 4.2 

   15 8.5 10.8 11 6.7 4.8 

   16 8.7 5.6 12 5.8 3.6 

Session 2, Matching Group 1 12.5 11.8 
 

  
 

  

   5 15.5 15 1 4.6 3.6 

   6 6.5 5.2 2 2.3 2.4 

   7 11.6 13.2 3 0.6 0 

   8 7.2 7.2 4 1.8 0.6 

Session 2, Matching Group 2 11.7 8.7 
 

  
 

  

   13 8.3 7.4 9 4.3 1 

   14 9.7 11.2 10 4.6 3 

   15 4.1 1.2 11 0.7 0.2 

   16 11.9 10 12 3.1 1 

MEAN 13.3 11.5 
      

MEDIAN 15 12.5       
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Table AE.3 Average Contributions in HIGH-FMA 

 

AGGREGATE HIGH LOW 

All 

Rounds 

Last 5 

Rounds 

Subject 
ID 

All 

Rounds 

Last 5 

Rounds 

Subject 
ID 

All 

Rounds 

Last 5 

Rounds 

Session 1, Matching Group 1 10.7 9.2 

 

     

   5 4.3 0.8 1 3.1 0.6 

   6 16.4 17 2 3.4 4.2 

   7 7.3 7.8 3 2.2 1.2 

   8 3.6 3.4 4 2.6 2 

Session 1, Matching Group 2 8.7 7.8 
 

  
 

  

   13 4.8 4 9 1.1 1 

   14 6.5 5.2 10 3.3 3.2 

   15 6.5 5 11 3.6 2.8 

   16 7.9 8.2 12 1.1 1.8 

Session 2, Matching Group 1 10.6 7.3 
 

  
 

  

   5 2.9 0 1 4.4 1.8 

   6 9.1 5.4 2 3.6 4.2 

   7 6.9 5.2 3 3.1 3 

   8 10.3 8.8 4 2.1 0.8 

Session 2, Matching Group 2 10.8 9.4 
 

  
 

  

   13 12 15 9 2.2 4.8 

   14 4.3 0 10 0.5 0 

   15 6.5 0 11 3.5 3 

   16 14.1 15 12 0.1 0 

MEAN 10.2 8.4 
      

MEDIAN 9 6       
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Table AE.4 Average Contributions in SIM-NOFMA 

 

AGGREGATE HIGH LOW 

All 

Rounds 

Last 5 

Rounds 

Subject 
ID 

All 

Rounds 

Last 5 

Rounds 

Subject 
ID 

All 

Rounds 

Last 5 

Rounds 

Session 1, Matching Group 1 16.2 15.3 

 

     

   5 14.8 15 1 4 4 

   6 12.3 10.4 2 11.3 9.2 

   7 7.1 8.2 3 0.3 0 

   8 14.3 14.4 4 0.8 0.2 

Session 1, Matching Group 2 15 15 
 

  
 

  

   13 13 14 9 1.1 0 

   14 17 17 10 0.3 0 

   15 13.1 16.6 11 1 0 

   16 11.6 10.8 12 2.8 1.6 

Session 2, Matching Group 1 13.5 12.5 
 

  
 

  

   5 11.3 11.2 1 2 2 

   6 8.2 7.8 2 2.7 0 

   7 12.2 13.2 3 1.9 1.2 

   8 15.3 14.6 4 0.4 0 

Session 2, Matching Group 2 13.4 12.6 
 

  
 

  

   13 10.7 11.2 9 4.7 4.6 

   14 15.3 15 10 5.8 2.8 

   15 3.7 1.6 11 0.3 0 

   16 12.1 15 12 1.3 0.4 

MEAN 14.5 13.9 
      

MEDIAN 15 14       
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Table AE.5 Average Contributions in LOW-NOFMA 

 

AGGREGATE HIGH LOW 

All 

Rounds 

Last 5 

Rounds 

Subject 
ID 

All 

Rounds 

Last 5 

Rounds 

Subject 
ID 

All 

Rounds 

Last 5 

Rounds 

Session 1, Matching Group 1 13.4 10.3 

 

     

   5 11.1 13 1 5.3 1.6 

   6 10.8 6.4 2 5.4 0.2 

   7 12.6 14 3 3 2.8 

   8 3.6 1.6 4 1.9 1.6 

Session 1, Matching Group 2 14.9 12.9 
 

  
 

  

   13 10.9 13.6 9 7.7 2.6 

   14 7.8 7.2 10 2.9 2 

   15 13.1 14 11 2.9 1 

   16 8.3 10.4 12 5.8 1 

Session 2, Matching Group 1 14.9 14.4 
 

  
 

  

   5 12.1 11.6 1 2.3 1 

   6 12.6 12.8 2 0 0 

   7 7.2 8.4 3 6.7 6.4 

   8 16.3 16.4 4 2.3 1 

Session 2, Matching Group 2 14.3 14.5 
 

  
 

  

   13 7.6 8.2 9 4.8 0.6 

   14 9.3 11.2 10 3.7 3.2 

   15 10.2 11.6 11 7 7 

   16 9.2 11.2 12 5.4 5 

MEAN 14.4 13 
      

MEDIAN 15 15       
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Table AE.6 Average Contributions in HIGH-NOFMA 

 

AGGREGATE HIGH LOW 

All 

Rounds 

Last 5 

Rounds 

Subject 
ID 

All 

Rounds 

Last 5 

Rounds 

Subject 
ID 

All 

Rounds 

Last 5 

Rounds 

Session 1, Matching Group 1 16.3 14.3 

 

     

   5 15 15 1 0.3 0 

   6 11.8 11.4 2 1.9 1.8 

   7 13.5 14.4 3 5.8 0 

   8 14.2 13.6 4 2.5 1.2 

Session 1, Matching Group 2 13 13.9 
 

  
 

  

   13 14.8 16 9 1.4 1.6 

   14 6.1 7.4 10 0.1 0 

   15 14.3 15 11 0.3 0 

   16 14.9 15 12 0.3 0.8 

Session 2, Matching Group 1 12.2 12.9 
 

  
 

  

   5 14.7 15 1 0.1 0 

   6 13.1 15 2 0.3 0 

   7 8.5 12.8 3 0.7 0 

   8 10.3 9 4 1.2 0.8 

Session 2, Matching Group 2 14.9 15 
 

  
 

  

   13 14.5 15 9 0.3 0 

   14 15.5 15 10 0 0 

   15 15.3 15 11 0 0 

   16 13.1 15 12 0.9 0.2 

MEAN 14.1 14.1 
      

MEDIAN 15 15       

 

 

 

 

 

 

 

 


