Simon Gächter,
Daniele Nosenzo, Elke Renner and Martin Sefton September 2009

Sequential versus
Simultaneous Contributions
to Public Goods:
Experimental Evidence

CENTRE FOR DECISION RESEARCH \& EXPERIMENTAL ECONOMICS

The Centre for Decision Research and Experimental Economics was founded in 2000, and is based in the School of Economics at the University of Nottingham.

The focus for the Centre is research into individual and strategic decision-making using a combination of theoretical and experimental methods. On the theory side, members of the Centre investigate individual choice under uncertainty, cooperative and non-cooperative game theory, as well as theories of psychology, bounded rationality and evolutionary game theory. Members of the Centre have applied experimental methods in the fields of Public Economics, Individual Choice under Risk and Uncertainty, Strategic Interaction, and the performance of auctions, Markets and other economic institutions. Much of the Centre's research involves collaborative projects with researchers from other departments in the UK and overseas.

Please visit http://www.nottingham.ac.uk/economics/cedex/ for more information about the Centre or contact

Karina Terry
Centre for Decision Research and Experimental Economics
School of Economics
University of Nottingham
University Park
Nottingham
NG7 2RD
Tel: +44 (0) 1159515620
Fax: +44 (0) 1159514159
karina.terry@nottingham.ac.uk

The full list of CeDEx Discussion Papers is available at
http://www.nottingham.ac.uk/economics/cedex/papers/index.html

Sequential versus simultaneous contributions to public goods: Experimental evidence

by
Simon Gächter ${ }^{*}$, Daniele Nosenzo ${ }^{* *}$, Elke Renner ${ }^{* *}$ and Martin Sefton ${ }^{* *,+}$

11 September 2009

Abstract

We report an experiment comparing sequential and simultaneous contributions to a public good in a quasi-linear two-person setting. In one parameterization we find that overall provision is lower under sequential than simultaneous contributions, as predicted, but the distribution of contributions is not as extreme as predicted and first movers do not attain their predicted firstmover advantage. In another parameterization we again find that the distribution of contributions is not as predicted when the first mover is predicted to free ride, but we find strong support for equilibrium predictions when the second mover is predicted to free ride. These results can be explained by second movers' willingness to punish first movers who free ride, and unwillingness to reward first movers who contribute.

Keywords: Public Goods; Voluntary Contributions; Sequential Moves; Experiment
JEL Classifications: C92, D03, H41
Acknowledgement: We thank the British Academy for supporting this research under small grant SG-44918. Simon Gächter gratefully acknowledges the hospitality of the Universities of Maastricht and Bar-Ilan (Israel) while working on this paper. We also thank James Andreoni, two anonymous referees, and participants at the European Econometric Society 2009 Meetings in Barcelona for useful comments.

[^0]
1. Introduction

In an important theoretical contribution to the literature on the voluntary provision of public goods Varian (1994) shows that, under appropriate assumptions, a sequential contribution mechanism elicits lower contributions than a simultaneous contribution mechanism. Key to this result is that under sequential moves a first-mover may enjoy a first-mover advantage by contributing zero, relying on other contributors to provide the public good on their own. We examine this and related predictions using a laboratory experiment. There is now a large body of evidence from a variety of experimental studies documenting the importance of concerns for fairness and reciprocity. Specifically, numerous public goods experiments have shown that many people are "conditional cooperators", that is, they are willing to contribute to the public good but only if others do the same. ${ }^{1}$ Moreover, numerous experiments have also shown that people are prepared to punish decisions that lead to unfair outcomes (Fehr and Gächter (2000)). Since firstmovers may not want to exploit their first-mover advantage if they care about more than their narrow self-interest, and they may not be able to exploit their first-mover advantage if others are willing to eschew their private interests in order to resist unfair outcomes, it is unclear whether Varian's theoretical comparative static results will hold in a laboratory setting.

Our experiment focuses on the simplest version of Varian's model with two players, quasilinear returns from public/private good consumption, and complete information about returns from public/private good consumption. This differs from most previous experimental work on voluntary contributions in three important respects. First, we use a setup more aligned with the theoretical literature, where a selfish second-mover's contribution is decreasing in the firstmover's contribution, rather than the usual setup where predicted contributions are independent of others' contributions. Second, we use a set up where the returns from the public good vary across players, whereas the usual setup studies symmetric games. Third, whereas the usual setup has participants make simultaneous contributions, we also study sequential contribution mechanisms. ${ }^{2}$

Previously Andreoni, et al. (2002) (ABV hereafter) studied a similar environment. They also compared simultaneous and sequential contribution games based on Varian's model and

[^1]concluded: "...while the pull of equilibrium is evident in early rounds - with the first-movers attempting to exploit their advantaged position - the pull of fairness eventually dominates simultaneous and sequential play are very similar by the end of the experiment." (p. 19). Our experimental design (described in detail in the next Section) studies the robustness of these findings by examining two different parameterizations of Varian's model.

In one parameterization one player gets much lower returns from the public good than the other. ABV introduced minimal asymmetry between players, with the consequences that equal contributions resulted in roughly equal earnings, and predicted aggregate contributions varied by just one token across move orderings. ${ }^{3}$ By introducing a greater degree of asymmetry we increase the predicted effect of move order on aggregate contributions, and so the theoretical comparative static result may have a better chance of being observed in the data. By increasing the degree of asymmetry we also reduce the saliency of fairness: equal contributions generally lead to inequitable earnings and it is more difficult for players to identify equitable allocations. Thus, with this parameterization we can test whether the 'pull of fairness' still dominates the 'pull of equilibrium' in environments where there is no prominent contribution combination that can enforce an equitable distribution of earnings.

Our second parameterization features an even greater degree of asymmetry in returns from the public good and extends ABV's study to a setting where the existence of commitment opportunities does not affect equilibrium outcomes: regardless of the move ordering, equilibrium predicts the person with lowest returns will contribute nothing and all contributions will be made by the person with highest returns. Under this parameterization we can study behavior in a sequential game where in theory it is the second-mover who free rides off the first-mover, and it is the first-mover who earns less in equilibrium. As a consequence, attaining fair distributions of earnings in this game requires second-movers, and not first-movers, to contribute more than predicted. Thus, this game illustrates a case where the 'pull of fairness' relies on the use of rewards by second-movers, and not on first-movers' generosity or fear of punishment.

We report our results in Section 3. In our first parameterization we find that, consistent with comparative static predictions, aggregate contributions are lowest when the person with highest returns moves first. However, as in ABV, the extreme prediction that the first-mover free

[^2]rides completely off the second-mover is not supported and the distribution of contributions is more compressed than predicted. A consequence of this is that we do not observe a predicted first-mover advantage. In our second parameterization we find that, contrary to Varian's model predictions, move order matters. In the game where the pull of fairness relies on the use of rewards the equilibrium prediction is a very good approximation of actual behavior, and the firstmover suffers low earnings as predicted. In the other move orderings we observe more equitable distributions of contributions and earnings than predicted. As a consequence we observe an unpredicted first-mover disadvantage. In Section 4 we discuss our results and conclude.

2. Experimental design and methods

2.1 The experimental game

Our experiment is based on the following two-player game. Each player is endowed with 17 tokens, and must decide how many to place in a Private Account and how many to place in a Shared Account. For each token a player places in the Private Account that player receives 50 points. For each token placed in the Shared Account both players receive an additional amount of points, as shown in Table 1.

In all treatments the 'LOW' player receives a lower return from the Shared Account than the 'HIGH' player. In our FMA (for "First-Mover Advantage") treatments we use a set of parameters where theory predicts that each player prefers moving first to moving second in a sequential move game. In the sequential move game where LOW moves first (our LOW-FMA treatment) the unique subgame perfect equilibrium involves LOW contributing 0 tokens and HIGH contributing 15 tokens, so that LOW earns 1555 and HIGH earns 1150. In the game where HIGH moves first (HIGH-FMA treatment) the unique subgame perfect equilibrium has HIGH contributing 0 tokens and LOW contributing 6 tokens, so that HIGH earns 1340 and LOW earns 890. The HIGH-FMA treatment illustrates a case where sequential moves yield lower overall contributions (and earnings) than simultaneous moves - the unique Nash equilibrium of the simultaneous move game (SIM-FMA treatment) is for HIGH to contribute 15 tokens and LOW to contribute 0 tokens (this is the same predicted outcome as LOW-FMA). ${ }^{4}$

[^3]Table 1. Returns from Shared Account*

*The earnings were derived from a quadratic utility function of the form $\pi_{i}=50\left(17-g_{i}\right)+t_{i}\left(68 G-G^{2}\right)$, where g_{i} represents i 's contribution to the Shared Account, G represents aggregate contributions, $\mathrm{t}_{\text {HIGH }}=1.32$ and $\mathrm{t}_{\text {Low }}=0.89$ (FMA treatments) or 0.78 (NOFMA treatments). Earnings were then rounded to a multiple of 5 points.

The other parameter set increases the asymmetry between players by reducing LOW's returns from the Shared Account. In this parameterization there is no predicted first-mover advantage and so we refer to these as our NOFMA treatments. For any move ordering the unique (subgame perfect) equilibrium involves HIGH contributing 15 tokens and LOW contributing 0 tokens, yielding HIGH 1150 and LOW 1470. Note that the HIGH-NOFMA game differs from the other three sequential move games in that, in equilibrium, it is the first-mover, HIGH, who supplies the public good, while the second mover, LOW, free rides. Table 2 summarizes our design.

Table 2. Overview of treatments

Treatment	Subgame Perfect Contributions EHIGH, LOW $\}$	Payoffs \{HIGH, LOW $\}$
LOW-FMA	$\{15,0\}$	$\{1150,1555\}$
HIGH-FMA	$\{0,6\}$	$\{1340,890\}$
SIM-FMA	$\{15,0\}$	$\{1150,1555\}$
LOW-NOFMA	$\{15,0\}$	$\{1150,1470\}$
HIGH-NOFMA	$\{15,0\}$	$\{1150,1470\}$
SIM-NOFMA	$\{15,0\}$	$\{1150,1470\}$

2.2 Procedures

The experiment was conducted at the University of Nottingham using 192 subjects recruited from a university-wide pool of students who had previously indicated their willingness to be paid volunteers in decision-making experiments. ${ }^{5}$ Twelve sessions were conducted (two per treatment) with 16 participants per session. No subject took part in more than one session. Upon arrival, subjects were welcomed and randomly seated at visually separated computer terminals. Subjects were then given a written set of instructions that the experimenter read aloud. The instructions included a set of control questions about how choices translated into earnings. Subjects had to answer all the questions correctly before the experiment could continue.

The session then consisted of 15 rounds of the game described above, where in each round subjects were randomly matched with another participant. Subjects were not informed of the identities of the other people in the room they were matched with, neither during nor after the experiment. Moreover, we did not make use of subject IDs, and so subjects' decisions were not

[^4]associated with identification numbers which could be used to establish reputations. The matching procedure worked as follows. At the beginning of each session the participants were randomly allocated to one of two eight-person matching groups. The computer then randomly allocated the role of HIGH to four subjects and the role of LOW to the other four subjects in each matching group. Subjects were informed of their role at the beginning of the first round and kept this role throughout the 15 rounds. At the beginning of each round the computer randomly formed pairs consisting of one HIGH and one LOW participant within each matching group. To ensure comparability among sessions and treatments, we randomly formed pairings within each matching group prior to the first session and used the same pairings for all sessions. Because no information passed across the two matching groups, we treat data from each matching group as independent. Thus our design generates four independent observations per treatment. Repetition of the task was used because we expected that subjects might learn from experience. However, our desire to test predictions based on a one-shot model led us to use the random re-matching design in order to reduce repeated game effects. ${ }^{6}$

Subjects were paid based on their choices in one randomly-determined round. At the end of round fifteen a poker chip was drawn from a bag containing chips numbered from 1 to 15 . The number on the chip determined the round that was used for determining all participants' cash earnings. At the end of the experiment subjects were asked to complete a short questionnaire asking for basic demographic information and were then privately paid according to their point earnings in the round which had been randomly selected at the end of round fifteen. Point earnings were converted into British Pounds at a rate of $£ 0.01$ per point. Subject earnings ranged from $£ 8.50$ to $£ 17.50$, averaging $£ 12.69$ (at the time of the experiment $£ 1 \approx \$ 1.61$), and sessions lasted about 75 minutes on average.

3. Experimental results

3.1 Aggregate Contributions

Figure 1 displays aggregate contributions in the six treatments. In all treatments contributions fall in the first five rounds before stabilizing from round six onwards. In the SIM-FMA and LOWFMA treatments equilibrium aggregate contributions are predicted to be 15 tokens. On average, pairs contributed 14.3 tokens per game in SIM-FMA compared with 13.3 in LOW-FMA - this

[^5]difference is not significant at conventional levels $(p=0.457) .{ }^{7}$ In HIGH-FMA contributions are predicted to be lower, 6 tokens. Although on average pairs contribute more than this, 10.2 tokens per game, this is significantly lower than in the other FMA treatments (HIGH-FMA vs. SIMFMA: $\mathrm{p}=0.029$; HIGH-FMA vs. LOW-FMA: $\mathrm{p}=0.029$). Similar results are obtained if we focus on the last five rounds: contributions in SIM-FMA and LOW-FMA are not significantly different ($\mathrm{p}=0.457$), but contributions in HIGH-FMA are significantly lower than in SIM-FMA $(p=0.029)$ or LOW-FMA $(p=0.086)$.

Figure 1. Aggregate contributions across rounds*

*Equilibrium aggregate contributions shown by dashed lines. HIGH-FMA light dash, all other treatments dark dash.
In the NOFMA treatments, consistent with equilibrium predictions, aggregate contributions do not differ significantly across move orderings (p > 0.457 in all pair-wise comparisons, whether we focus on all rounds or the last five rounds). All three treatments track the prediction quite well: average contributions across all three treatments are 14.3 tokens per game compared with the predicted 15 tokens per game.

In summary, our data are consistent with comparative static predictions regarding aggregate contributions. In particular, in the FMA treatments aggregate contributions are lower when the person with highest returns from the public good most moves first. By comparison, ABV found that aggregate contributions were slightly lower in their sequential treatment, and noted that while players of a given role should behave differently across simultaneous and

[^6]sequential move games, by the end of the experiment they are behaving, on average, similarly in the two games. ${ }^{8}$ It is interesting that in their experiment differences across treatments disappeared with repetition, whereas our treatment effect is robust across rounds. First, it may be that our predicted effect is sufficiently large that fairness considerations can lead to deviations from equilibrium outcomes without overcoming the comparative static result. Second, fairness considerations may be less relevant in our experiment simply because the degree of asymmetry makes it difficult to identify fair allocations. Further evidence on this comes from examining the distribution of contributions.

3.2 Individual Contributions

ABV found that players contributed almost equal amounts (especially in their simultaneous treatment), in contrast to the extreme theoretical prediction that one player would free ride completely off the other. Figure 2 displays individual contributions in our FMA treatments. For the sequential game treatments black bars indicate second-mover contributions consistent with a best response, light grey bars contributions in excess of the best response, and dark grey bars contributions below the best response. The results are qualitatively similar to ABV (c.f. their Figures 3a and 3b). In SIM-FMA only 4% of games correspond to the equilibrium prediction and the data are relatively disorganized. The major difference from ABV is that contributions are more asymmetric in our experiment: HIGH contributes 10.5 tokens on average compared with LOW's 3.8 tokens.

[^7]Figure 2. Individual contributions (FMA treatments)*

HIGH-FMA

*Based on all 240 games in each treatment. (Subgame perfect) equilibrium outcome is marked with a star. In the sequential game treatments, games lying on the secondmover's best-response are shown in black, while games resulting in deviations below (above) the best-response are shown in dark (light) grey.

In the sequential move treatments, first note that although few games result in the subgame perfect equilibrium (7% in HIGH-FMA and 4% in LOW-FMA), a substantial portion lies along the diagonals corresponding to the predicted aggregate (24% in HIGH-FMA and 21% in LOWFMA). Thus when the predicted aggregate is observed it usually involves both players sharing the burden of providing the public good, rather than the predicted allocation where one player free rides off the other. Second, while second-movers often play a best-response to the firstmover's contribution (60% in HIGH-FMA, 25% in LOW-FMA), in a large number of games second-movers choose to reward first-movers by contributing above the best response (in 31% of games in HIGH-FMA, in 26% of games in LOW-FMA), or to punish them by contributing below (in 9% of games in HIGH-FMA, in 49% of games in LOW-FMA). ${ }^{9}$ Notably, 65% of the games involving punishment occur when the first-mover contributes between 0 and 2 tokens, but games involving rewards are not clustered at any specific interval of the first-mover's contributions. Moreover, the pattern of rewards and punishment changes across rounds: focusing on the last five rounds, deviations from best-responses are just as frequent as in earlier rounds, but they are more likely to be deviations below the best-response function. Thus, as subjects gain experience with the experimental setting the incidence of punishment increases, while rewarding behavior tends to diminish.

Figure 3 displays individual contributions in our NOFMA treatments. Again, only 6% of simultaneous move games result in the equilibrium outcome, and there is considerable dispersion in outcomes. As in the sequential FMA treatments there is a clustering of data in LOW-NOFMA where many games result in the predicted aggregate contribution of 15 tokens (41\%). Again, however, only 6% of games correspond to the predicted extreme allocation. As in the sequential FMA treatments we observe both punishing (32% of all games and increasing over time) and rewarding behavior (27% of all games, decreasing over time). Thus the general patterns in these two treatments are similar to those observed in the FMA treatments.

[^8]Figure 3. Individual contributions (NOFMA treatments)*

HIGH-NOFMA

*Based on all 240 games in each treatment. (Subgame perfect) equilibrium outcome is marked with a star. In the sequential game treatments, games lying on the secondmover's best-response are shown in black, while games resulting in deviations below (above) the best-response are shown in dark (light) grey.
aken together these five treatments provide little support for the extreme theoretical prediction, and suggest fairness considerations are relevant in our experiment. Contributions are less asymmetric than predicted and in the sequential games fairer allocations are supported by "punishment strategies" whereby second-movers react to low first-mover contributions by contributing less than the best-response. All of this is qualitatively similar to the results in ABV .

Finally, the last panel of Figure 3 shows the HIGH-NOFMA treatment. The picture is remarkably similar to the outcomes of a third "best shot" ABV treatment, where the only point of any significance is the subgame perfect equilibrium. They attribute the difference between their sequential and best shot treatments to the difference in payoff possibilities: equilibrium works well in the best shot game because players cannot reduce inequality and at the same time increase the payoff of the disadvantaged party. While we do not doubt that this is an important factor in determining when an equilibrium prediction works well, this cannot account for the difference we observe across NOFMA treatments. In all move orderings, there are deviations from equilibrium that enable players to attain more equal payoffs and at the same time increase the payoff to the disadvantaged party. Thus it is unclear why fairness considerations that are relevant in the other treatments appear less important in HIGH-NOFMA.

This treatment differs from the other sequential treatments in that theory predicts the firstmover is the disadvantaged party. Reducing inequality and increasing the disadvantaged party's payoff requires second-movers to contribute more than predicted. In particular, attaining the same distribution of payoffs as observed in LOW-NOFMA requires the first-mover to contribute less than 15 tokens and the second-mover to reward. In contrast, in the other sequential treatments the second-mover is disadvantaged in equilibrium, and for inequality to be reduced while increasing the second-mover's payoff the first-mover must contribute more than predicted. Even a selfish first-mover might be willing to do so if they anticipated that selfish behavior would be punished (as in fact it is). Thus, in the other sequential treatments the anticipation of punishment is sufficient to reduce inequality and benefit the disadvantaged party. ${ }^{10}$ The ineffectiveness of rewards relative to

[^9]punishment for moving first-mover behavior from the theoretical prediction is reminiscent of results from the proposer-responder games reported in Andreoni, et al. (2003). ${ }^{11}$

3.3 Earnings

Table 3 shows how the compression of contributions in the FMA treatments leads to compression of earnings. Although the model's comparative static prediction about aggregate earnings is borne out - earnings in HIGH-FMA are significantly lower than in other treatments (focusing on all rounds: HIGH-FMA vs. SIM-FMA: $\mathrm{p}=0.029$; HIGH-FMA vs. LOW-FMA: $\mathrm{p}=$ 0.029: focusing on the last five rounds; HIGH-FMA vs. SIM-FMA: $\mathrm{p}=0.029$; HIGH-FMA vs. LOW-FMA: $\mathrm{p}=0.086$) - there are some important deviations from comparative static predictions. In particular HIGH earns less in HIGH-FMA than in the other move orderings. ${ }^{12}$

Table 3. Earnings*

	HIGH			LOW			AGGREGATE		
	Predicted	All Rounds	Last 5 Rounds	Predicted	All Rounds	Last 5 Rounds	Predicted	All Rounds	Last 5 Rounds
SIM-FMA	1150	$\begin{gathered} 1289 \\ (169.8) \end{gathered}$	$\begin{gathered} 1235 \\ (172.0) \end{gathered}$	1555	$\begin{gathered} 1311 \\ (193.7) \end{gathered}$	$\begin{gathered} 1291 \\ (214.6) \end{gathered}$	2705	$\begin{gathered} 2601 \\ (244.9) \end{gathered}$	$\begin{gathered} 2525 \\ (306.3) \end{gathered}$
LOw-FMA	1150	$\begin{gathered} 1293 \\ (202.6) \end{gathered}$	$\begin{gathered} 1220 \\ (174.3) \end{gathered}$	1555	$\begin{gathered} 1269 \\ (202.4) \end{gathered}$	$\begin{gathered} 1289 \\ (197.4) \end{gathered}$	2705	$\begin{gathered} 2562 \\ (262.3) \end{gathered}$	$\begin{gathered} 2509 \\ (272.3) \end{gathered}$
High-Fma	1340	$\begin{gathered} 1203 \\ (168.8) \end{gathered}$	$\begin{gathered} 1166 \\ (154.1) \end{gathered}$	890	$\begin{gathered} 1228 \\ (234.2) \end{gathered}$	$\begin{gathered} 1172 \\ (259.2) \end{gathered}$	2230	$\begin{gathered} 2431 \\ (270.9) \end{gathered}$	$\begin{gathered} 2338 \\ (301.9) \end{gathered}$
SIM-NOFMA	1150	$\begin{gathered} 1230 \\ (162.1) \end{gathered}$	$\begin{gathered} 1197 \\ (122.4) \end{gathered}$	1470	$\begin{gathered} 1302 \\ (178.7) \end{gathered}$	$\begin{gathered} 1336 \\ (154.3) \end{gathered}$	2620	$\begin{gathered} 2532 \\ (203.1) \end{gathered}$	$\begin{gathered} 2533 \\ (182.3) \end{gathered}$
LOW-NoFMA	1150	$\begin{gathered} 1321 \\ (189.1) \end{gathered}$	$\begin{gathered} 1232 \\ (138.5) \end{gathered}$	1470	$\begin{gathered} 1219 \\ (194.9) \end{gathered}$	$\begin{gathered} 1277 \\ (182.8) \end{gathered}$	2620	$\begin{gathered} 2540 \\ (203.9) \end{gathered}$	$\begin{gathered} 2509 \\ (233.0) \end{gathered}$
High-NofmA	1150	$\begin{gathered} 1164 \\ (104.2) \end{gathered}$	$\begin{aligned} & 1151 \\ & (53.4) \end{aligned}$	1470	$\begin{gathered} 1373 \\ (162.3) \end{gathered}$	$\begin{gathered} 1416 \\ (109.2) \end{gathered}$	2620	$\underset{(184.8)}{2537}$	$\begin{gathered} 2568 \\ (144.0) \end{gathered}$

The table shows average point earnings per game. Standard deviations in parentheses.
Likewise, in the NOFMA treatment aggregate earnings are, as predicted, invariant to move ordering ($\mathrm{p}>0.371$ in all pair-wise comparisons, whether we focus on all rounds or the last five rounds), but, in contrast to predictions, the distribution of earnings varies across treatments. Here

[^10]we observe a first-mover disadvantage: both players earn most when they move second and least when they move first. The differences in earnings between LOW-NOFMA and HIGH-NOFMA are significant for both types of player $\left(\mathrm{p}=0.029\right.$ in both comparisons). ${ }^{13}$

4. Conclusion

Our paper reports an experiment examining the effects of move structure in a quasi-linear public good setting. Previously Andreoni, et al. (2002) (ABV) studied a similar setting, and we extend their experimental analysis by considering two different sets of parameters. In our FMA treatments the asymmetry between players is more pronounced than in ABV , and in terms of equilibrium incentives our design creates greater separation between equilibrium aggregate contributions across move structures. At the same time, while in ABV's design equal contributions lead to almost-equal earnings, our design makes it more difficult for players to identify fair allocations. Our results are qualitatively similar to ABV's in that individual contributions are not as asymmetric as predicted, and when first-movers free ride second-movers often punish them by contributing less than their best response. However, whereas in their experiment any differences between aggregate contributions in simultaneous and sequential games disappeared by the end of their experiment, in ours we find robust support for the theoretical comparative static prediction that aggregate contributions are lower in a sequential move ordering when the person who values the public good most moves first. On the other hand, we do not observe the first-mover advantage predicted by the model.

In a second parameter set (our NOFMA treatments) differences in returns from the public good are so large that, in theory, the player with the highest returns from the public good supplies the public good regardless of move ordering. Thus, we study three games that differ only in terms of move orderings: in each game the players' action sets are the same, the players' payoff functions are the same, and the equilibrium allocations are the same. Here we find the distribution of contributions varies across move structures and in fact equilibrium predictions work remarkably well in one game but not in the others. This allows us to refine ABV's explanation for why equilibrium provides a good approximation to behavior in some games but not in others. Move orderings matter because they determine what mechanism is required in order to achieve more equitable allocations. Consistent with findings from experiments in other settings, punishment, or merely the anticipation of punishment, can be an effective mechanism

[^11]for moving outcomes away from equilibrium predictions toward more equitable outcomes, whereas rewards are much less effective. In the NOFMA treatments earnings are predicted to be independent of move ordering, but we observe a first-mover disadvantage.

Our results on the distribution of contributions and earnings have important policy implications. First, if a fundraiser is choosing between a sequential and simultaneous solicitation mechanism the optimal choice may depend on the distribution of contributions as well as the level of overall contributions. Although aggregate contributions follow theoretically predicted directions, the distribution of contributions does not. When the person with lowest returns from the public good moves first aggregate contributions are never lower and the distribution of contributions is also more even. Thus, this sequential move ordering may be quite acceptable on many normative criteria, and may even be preferred to a simultaneous move structure. An implication of our results on earnings is that there is not much of an advantage to committing to being a free-rider, and this in turn may have important implications for endogenous move structures. In naturally occurring settings the move structure is not exogenously imposed, but rather emerges endogenously, and this process typically reflects how alternative move structures reward participants. Since no first-mover advantage is actually attained it is unclear whether the detrimental move ordering would emerge in practice. ${ }^{14}$

Taken together these results suggest that commitment opportunities may be less damaging than previously thought. ABV show that when there is limited asymmetry in players' preferences the existence of commitment opportunities does not exacerbate the free-rider problem as the 'pull of fairness' ends up dominating the 'pull of equilibrium', and, as a consequence, sequential and simultaneous mechanisms do not lead to dramatically different levels of public good provision. When the asymmetry in players' preferences is very large aggregate contributions are predicted to be the same in sequential and simultaneous move games and the data from our NOFMA treatments confirm this prediction. Thus, only when players' preferences are sufficiently different, but not too different, does Varian's theoretical result that sequential mechanisms yield lower provision than simultaneous mechanisms seem to hold, as confirmed by our FMA treatments. However, even in this case, the absence of a first mover advantage makes it questionable whether the sequential move ordering would emerge naturally.

[^12]
References

Abbink, K., Irlenbusch, B., Renner, E., 2000. The moonlighting game - An experimental study on reciprocity and retribution. Journal of Economic Behavior \& Organization 42, 265-277.
Andreoni, J., 1995. Cooperation in public-goods experiments - kindness or confusion? American Economic Review 85, 891-904.
Andreoni, J., Brown, P. M., Vesterlund, L., 2002. What makes an allocation fair? Some experimental evidence. Games and Economic Behavior 40, 1-24.
Andreoni, J., Harbaugh, W., Vesterlund, L., 2003. The carrot or the stick: Rewards, punishments, and cooperation. American Economic Review 93, 893-902.
Au, W. T., Budescu, D. V., 1999. Sequential effects in give-some and take-some social dilemmas. In Foddy, M., et al., (Eds.), Resolving social dilemmas: dynamic, structural and intergroup aspects. Psychology Press, Philadelphia, pp. 87-99.
Coats, J. C., Gronberg, T. J., Grosskopf, B., 2009. Simultaneous versus sequential public good provision and the role of refunds -- An experimental study. Journal of Public Economics 93, 326-335.
Croson, R., 2007. Theories of commitment, altruism and reciprocity: Evidence from linear public goods games. Economic Inquiry 45, 199-216.
Erev, I., Rapoport, A., 1990. Provision of step-level public goods: the sequential contribution mechanism. Journal of Conflict Resolution 34, 401-425.
Fehr, E., Gächter, S., 2000. Fairness and retaliation: The economics of reciprocity. Journal of Economic Perspectives 14, 159-181.
Fischbacher, U., 2007. z-Tree: Zurich toolbox for readymade economic experiments. Experimental Economics 10, 171-178.
Fischbacher, U., Gächter, S., forthcoming. Social preferences, beliefs, and the dynamics of free riding in public good experiments. American Economic Review.
Fischbacher, U., Gächter, S., Fehr, E., 2001. Are people conditionally cooperative? Evidence from a public goods experiment. Economics Letters 71, 397-404.
Gächter, S., Renner, E., Sefton, M., 2008. The long-run benefits of punishment. Science 322, 1510.

Greiner, B., 2004. An online recruitment system for economic experiments. In Kremer, K., Macho, V., (Eds.), Forschung und wissenschaftliches Rechnen GWDG Bericht 63. Gesellschaft für Wissenschaftliche Datenverarbeitung, Göttingen, pp. 79-93.
Keser, C., van Winden, F., 2000. Conditional cooperation and voluntary contributions to public goods. Scandinavian Journal of Economics 102, 23-39.
Muller, L., Sefton, M., Steinberg, R., Vesterlund, L., 2008. Strategic behavior and learning in repeated voluntary-contribution experiments. Journal of Economic Behavior \& Organization 67, 782-793.
Nosenzo, D., Sefton, M., 2009. Endogenous move structure and voluntary provision of public goods: theory and experiments. CeDEx Discussion Paper No. 2009-09, University of Nottingham.
Offerman, T., 2002. Hurting hurts more than helping helps. European Economic Review 46, 1423-1437.
Sefton, M., Shupp, R., Walker, J. M., 2007. The effect of rewards and sanctions in provision of public goods. Economic Inquiry 45, 671-690.
Varian, H. R., 1994. Sequential contributions to public goods. Journal of Public Economics 53, 165-186.

ONLINE APPENDICES

APPENDIX A: Theoretical Background

APPENDIX B: Experimental Instructions

APPENDIX C: Experimental Earnings Tables

APPENDIX D: Screenshots

APPENDIX E: Summary Data

APPENDIX A: Theoretical Background

This appendix outlines the theoretical background underlying the payoff functions used in the experiment. For further details and discussion of the model refer to Varian (1994). The payoff functions are based on a simple two-player quasi-linear model. The two players have different preferences over the public good. We refer to the player who enjoys a higher return from the public good as the 'HIGH' player, and the player who enjoys a lower return as the 'LOW' player.

Player $i, i \in\{\mathrm{HIGH}, \mathrm{LOW}\}$, is endowed with wealth w_{i} and contributes an amount $0 \leq g_{i} \leq$ w_{i} to a public good. The remainder is allocated to private good consumption. The total amount of the public good provided is $G=g_{\text {HIGH }}+g_{\text {Low. }}$. Player i 's payoff is given by:

$$
\pi_{i}=w_{i}-g_{i}+f_{i}(G)
$$

where individual i 's return from the public good, $f_{i}(G)$, is increasing and strictly concave.
If the other agent contributes zero, player i 's best response is her 'stand-alone contribution' \hat{g}_{i}. We assume that $w_{i}>\hat{g}_{i}$ so that the first order condition for an interior optimum is satisfied:

$$
f^{\prime}{ }_{i}\left(\hat{g}_{i}\right)=1 .
$$

If player j contributes $g_{j}>\hat{g}_{i}$ then i 's marginal return from contributing g_{i} is $f^{\prime}{ }_{i}\left(g_{j}+g_{i}\right)-1$ <0. Thus i 's best response is $g_{i}=0$. If player j contributes $g_{j} \leq \hat{g}_{i}$, then i 's best response satisfies:

$$
f^{\prime}{ }_{i}\left(g_{i}+g_{j}\right)=1 .
$$

Comparing this with the first-order condition for an interior optimum we have:

$$
f^{\prime}{ }_{i}\left(g_{i}+g_{j}\right)=f^{\prime}{ }_{i}\left(\hat{(}_{i}\right)
$$

or

$$
g_{i}=\hat{g}_{i}-g_{j} .
$$

Thus, i 's best response function is:

$$
g_{i}=\max \left\{\hat{g}_{i}-g_{j}, 0\right\} .
$$

Figure AA. 1 shows the best response functions. With simultaneous moves, the unique Nash Equilibrium is the intersection of the best response functions: $g_{\text {HIGH }}=\hat{g}_{\text {HIGH }}, g_{\text {LOW }}=0$. Thus LOW contributes zero and HIGH makes her stand-alone contribution.

Figure AA.1. Best-response functions

Next, suppose LOW moves first. In a subgame perfect equilibrium the second-mover's strategy is given by her best response function: $g_{\text {HIGH }}=\max \left\{\hat{g}_{\text {HIGH }}-g_{\text {Low }}, 0\right\}$. LOW's subgame perfect equilibrium strategy results in her most preferred point on the HIGH's best response function. Suppose $g_{\text {Low }}>\hat{g}_{\text {HIGH }}$ so that HIGH then contributes zero. LOW could reduce $g_{\text {Low }}$ so that HIGH still contributes zero, but LOW moves closer to her stand-alone contribution (which is her optimal contribution given that $g_{\text {HIGH }}=0$). Thus, LOW's payoff increases as she moves down the vertical part of HIGH's best response function. Now suppose that $0<g_{\text {Low }} \leq \hat{g}_{\text {HIGH }}$ so that HIGH responds by ensuring that $G=\hat{g}_{\text {HIGH }}$. LOW player can reduce her first-mover contribution and HIGH will compensate by increasing her secondmover contribution so that overall provision remains at $G=\hat{g}_{\text {HIGH. }}$. Thus LOW's payoff continues to increase as she moves down HIGH's best response function. Her most preferred point is where $g_{\text {Low }}=0$ and HIGH responds by choosing $g_{\text {HIGH }}=\hat{g}_{\text {HIGH }}$. Thus, when LOW moves first she contributes zero, free-riding off the second mover's stand-alone contribution. This outcome is the same as with simultaneous moves.

If HIGH moves first she could also commit to contributing zero and rely on LOW to contribute $\hat{g}_{\text {LOw }}$, giving her a payoff of $w_{\text {HIGH }}+f_{\text {HIGH }}\left(\hat{g}_{\text {LOw }}\right)$. If she were to contribute a small
amount LOW would reduce her contribution to the public good so that total provision remains at $\hat{g}_{\text {Low. }}$. Thus HIGH's payoff would decrease, as she would enjoy a lower level of private good consumption and the same level of public good consumption. If HIGH contributes more than $\hat{g}_{\text {LOw }}$ then LOW contributes zero and HIGH's payoff will be $w_{\text {HIGH }}-$ $g_{\text {HIGH }}+f_{\text {HIGH }}\left(g_{\text {HIGH }}\right)$. In this range her payoff is maximized by her stand-alone contribution, $\hat{g}_{\text {HIGH }}$, leading to a payoff of $w_{\text {HIGH }}-\hat{g}_{\text {HIGH }}+f_{\text {HIGH }}\left(\hat{g}_{\text {HIGH }}\right)$. HIGH's optimal first-mover contribution depends on the comparison between her payoff when she contributes zero, $w_{\text {HIGH }}$ $+f_{\text {HIGH }}\left(\hat{g}_{\text {LOw }}\right)$, and her payoff when she makes her stand-alone contribution, $w_{\text {HIGH }}-\hat{g}_{\text {HIGH }}+$ $f_{\text {HIGH }}\left(\hat{g}_{\text {HIGH }}\right)$.

Figure 2 displays HIGH's payoff as a function of her contribution for each of the two following cases. In the "No First Mover Advantage" case (NOFMA), with $f_{\text {HIGH }}\left(\hat{g}_{\text {HIGH }}\right)-$ $f_{\text {HIGH }}\left(\hat{g}_{\text {LOw }}\right)>\hat{g}_{\text {HIGH }}$, the subgame perfect equilibrium is for HIGH to choose $g_{\text {HIGH }}=\hat{g}_{\text {HIGH }}$ and the LOW player responds with $g_{\text {Low }}=0$. Again, the outcome is the same as with simultaneous moves. However, in the "First Mover Advantage" case (FMA) where $f_{\text {HIGH }}\left(\hat{g}_{\text {HIGH }}\right)-f_{\text {HIGH }}\left(\hat{g}_{\text {LOw }}\right)<$ $\hat{g}_{\text {HIGH }}$, the subgame perfect equilibrium is for HIGH to choose $g_{\text {HIGH }}=0$ and LOW responds with $g_{\text {Low }}=\hat{g}_{\text {LOw }}$. Here, since $\hat{g}_{\text {LOw }}<\hat{g}_{\text {HIGH }}$ public good provision is lower than with simultaneous moves. If the players have similar preferences $\hat{g}_{\text {HIGH }}$ will be similar to $\hat{g}_{\text {Low }}$ and so $f_{\text {HIGH }}\left(\hat{g}_{\text {HIGH }}\right)-$ $f_{\text {HIGH }}\left(\hat{g}_{\text {Low }}\right)$ will be close to zero, and we are in the FMA case. Thus when preferences are not too different and HIGH moves first, contributions are lower than with simultaneous moves.

The earnings tables used in the experiment were derived from a quadratic utility function of the form $\pi_{\mathrm{i}}=50\left(17-\mathrm{g}_{\mathrm{i}}\right)+\mathrm{t}_{\mathrm{i}}\left(68 \mathrm{G}-\mathrm{G}^{2}\right)$, where $\mathrm{t}_{\text {HIGH }}=1.32$ and $\mathrm{t}_{\text {LOW }}=0.89$ (FMA treatments) or 0.78 (NOFMA treatments), and earnings were then rounded to a multiple of 5 points. The rounding preserved the key features of the Varian model predictions. HIGH's stand-alone contribution is $g_{\text {HIGH }}=15$, and her best response function is $g_{\text {HIGH }}=\max \left\{15-g_{\text {Low }}, 0\right\}$. LOW's stand-alone contribution is $g_{\text {Low }}=2(\mathrm{NOFMA})$ or $g_{\text {Low }}=6$ (FMA). In the simultaneous move games the unique Nash equilibrium is $g_{\text {HIGH }}=15, g_{\text {LOw }}=0$. In the sequential games the unique subgame perfect equilibrium is for the first-mover to contribute zero and the secondmover to best respond, except for HIGH-NOFMA, where the first-mover makes her standalone contribution, $g_{\text {HIGH }}=15$, and the second-mover best responds (and in equilibrium contributes zero).

Figure AA.2. The HIGH player's payoff as a function of her first-mover contribution

First mover advantage: $\mathbf{f}_{\text {HIGH }}\left(\hat{\mathbf{g}}_{\text {HIGH }}\right)-\mathbf{f}_{\text {HIGH }}\left(\hat{\mathbf{g}}_{\text {LOw }}\right)<\hat{\mathbf{g}}_{\text {HIGH }}$

APPENDIX B: Instructions

General

Welcome! You are about to take part in an experiment in the economics of decision making. You will be paid in private and in cash at the end of the experiment. The amount you earn will depend on your decisions, so please follow the instructions carefully. It is important that you do not talk to any of the other participants until the experiment is over. If you have a question at any time, raise your hand and a monitor will come to your desk to answer it.

The experiment will consist of fifteen rounds. There are sixteen participants in this room. Before the first round begins the computer will randomly assign the role of "RED" to eight participants and the role of "BLUE" to eight participants. You will be informed of your role, either RED or BLUE, at the beginning of round one and you will keep this role throughout the fifteen rounds. In each round the computer will randomly form eight pairs consisting of one RED and one BLUE participant. Thus, you will be randomly matched with another person in this room in each round, but this may be a different person from round to round. You will not learn who is matched with you in any round, neither during nor after today's session.

Each round is identical. In each round you and the person you are matched with will make choices and earn points. The point earnings will depend on the choices as we will explain below. At the end of the experiment one of the fifteen rounds will be selected at random. Your earnings from the experiment will depend on your point earnings in this randomly selected round. These point earnings will be converted into cash at a rate of 1 p per point.

How You Earn Points

At the beginning of the round you will be given an endowment of 17 tokens. You have to decide how many of these tokens to place in a Private Account and how many to place in a Shared Account.

For each token you place in your Private Account you will earn 50 points, as shown in Table 1.
For each token placed in the Shared Account you will earn an additional amount, regardless of whether the token was placed by you or the person you are matched with. Likewise, for each token placed in the Shared Account the person you are matched with will earn an additional amount, regardless of whether the token was placed by you or them. Earnings from the Shared Account are shown in Table 2.

Your point earnings for the round will be the sum of your earnings from your Private Account and your earnings from the Shared Account.

So that everyone understands how choices translate into point earnings we will give an example and a test. Please note that the allocations of tokens used for the example and test are simply for illustrative purposes. In the experiment the allocations will depend on the actual choices of the participants.

[NOFMA treatments:

Example: Suppose RED places 9 tokens in his Private Account and 8 tokens in the Shared Account, and BLUE places 10 tokens in his Private Account and 7 tokens in the Shared Account. In this example there are a total of 15 tokens in the Shared Account. RED will earn 450 points from his Private Account, plus 1050 points from the Shared Account, for a total of 1500 points. BLUE will earn 500 points from his Private Account, plus 620 points from the Shared Account, for a total of 1120 points.]

[FMA treatments:

Example: Suppose RED places 9 tokens in his Private Account and 8 tokens in the Shared Account, and BLUE places 10 tokens in his Private Account and 7 tokens in the Shared Account. In this example there are a total of 15 tokens in the Shared Account. RED will earn 450 points from his Private Account, plus 1050 points from the Shared Account, for a total of 1500 points. BLUE will earn 500 points from his Private Account, plus 705 points from the Shared Account, for a total of 1205 points.]

Test: Before we continue with the instructions we want to make sure that everyone understands how their earnings are determined. Please answer the questions below. Raise your hand if you have a question. After a few minutes a monitor will check your answers. When everyone has answered the questions correctly we will continue with the instructions.

Suppose RED allocates 11 tokens to his Private Account and 6 tokens to the Shared Account, and BLUE allocates 5 tokens to his Private Account and 12 tokens to the Shared Account.

1. What will be RED's point earnings from his private account?
2. What will be RED's point earnings from the shared account?
3. What will be RED's point earnings for the round?
4. What will be BLUE's point earnings from his private account?
5. What will be BLUE's point earnings from the shared account?
6. What will be BLUE's point earnings for the round?

How You Make Decisions

[Sequential treatments:

At the beginning of a round BLUE will make a decision about how to allocate his or her endowment by typing in a number of tokens to place in the Shared Account. BLUE can enter any whole number between 0 and 17 inclusive. The computer will then automatically place the remainder of BLUE's endowment in

BLUE's Private Account.

The computer will then inform RED of BLUE's decision.
After RED has seen how many tokens BLUE has allocated to the Shared Account, RED will decide how to allocate his or her endowment. RED will do this by typing in a number of tokens to place in the Shared Account. RED can enter any whole number between 0 and 17 inclusive. The computer will then automatically place the remainder of RED's endowment in RED's Private Account.

After RED has made his or her decision the computer will then show an information screen to both RED and BLUE. This screen will display the total number of tokens placed in the Shared Account and the earnings of each person for that round.]

[Simultaneous treatments:

At the beginning of a round you will make a decision about how to allocate your endowment by typing in a number of tokens to place in the Shared Account. You can enter any whole number between 0 and 17 inclusive. The computer will then automatically place the remainder of your endowment in your Private Account.

At the same time, the person with whom you are matched will be deciding how many tokens to place in the Shared Account by entering a number between 0 and 17 inclusive.

After you and the person you are matched with have both made your decisions the computer will then show an information screen to both RED and BLUE. This screen will display the total number of tokens placed in the Shared Account and the earnings of each person for that round.]

After you have read the information screen, you must click on the continue button to go on to the next round.

How Your Cash Earnings Are Determined

At the end of round fifteen there will be a random draw to select the round for which you will be paid. A poker chip will be drawn from a bag containing chips numbered from 1 to 15 . The number on the chip will determine the round that is used for determining all participants' cash earnings. Your point earnings in this randomly selected round will be converted into cash at a rate of 1 p per point. You will be paid in private and in cash.

Beginning the Experiment

Now, please look at your computer screen and begin making your decisions. If you have a question at any time please raise your hand and a monitor will come to your desk to answer it.

APPENDIX C: Earnings Tables

This appendix contains the earnings tables given to subjects.
FMA treatments:

EARNINGS TABLES

Table 1. Earnings from Your Private Account

TOKENS IN YOUR Private Account	YOUR POINT EARNINGS FROM THE Private ACCOUNT
0	0
1	50
2	100
3	150
4	200
5	250
6	300
7	350
8	400
9	450
10	500
11	550
12	600
13	650
14	700
15	750
16	800
17	850

Table 2. Earnings from the Shared Account

TOKENS IN THE SHARED Account	RED'S POINT EARNINGS FROM THE SHARED Account	BLUE'S POINT EARNINGS FROM THE SHARED Account
0	0	0
1	90	60
2	180	120
3	260	175
4	340	230
5	415	285
6	490	340
7	565	385
8	635	430
9	700	475
10	765	520
11	825	560
12	885	600
13	940	635
14	995	670
15	1050	705
16	1095	740
17	1140	770
18	1180	800
19	1220	830
20	1260	855
21	1295	880
22	1330	900
23	1360	920
24	1385	940
25	1410	960
26	1435	975
27	1455	990
28	1470	1000
29	1485	1010
30	1500	1020
31	1510	1025
32	1515	1030
33	1520	1035
34	1525	1040

NOFMA treatments

EARNINGS TABLES

Table 1. Earnings from Your Private Account

TOKENS IN YOUR Private Account	Your Point EARNINGS FROM THE Private Account
0	0
1	50
2	100
3	150
4	200
5	250
6	300
7	350
8	400
9	450
10	500
11	550
12	600
13	650
14	700
15	750
16	800
17	850

Table 2. Earnings from the Shared Account

TOKENS IN THE SHARED ACCOUNT	RED'S POINT EARNINGS FROM THE SHARED ACCOUNT	BLUE'S POINT EARNINGS FROM THE SHARED ACCOUNT
0	0	
1	90	0
2	180	55
3	260	110
4	340	155
5	415	200
6	490	245
7	565	290
8	635	330
9	700	370
10	765	410
11	825	450
12	885	485
13	940	520
14	995	555
15	1050	590
16	1095	620
17	1140	650
18	1180	675
19	1220	700
20	1260	725
21	1295	750
22	1330	770
23	1360	790
24	1385	805
25	1410	820
26	1435	835
27	1455	850
28	1470	860
29	1485	870
30	1500	880
31	1510	890
32	1515	895
33	1520	900
34	1525	905
		910

APPENDIX D: Screenshots of the decision screens used by subjects in the experiment

Screenshot of the decision screen used by a first-mover in a sequential treatment.

Screenshot of the decision screen used by a second-mover in a sequential treatment.

APPENDIX E: Average Contributions per treatment.

Table AE. 1 Average Contributions in SIM-FMA

	AGGR	GATE		HIGH			LOW	
	All Rounds	Last 5 Rounds	Subject ID	All Rounds	Last 5 Rounds	Subject ID	All Rounds	Last 5 Rounds
Session 1, Matching Group 1	12	10.2						
			5	5	4	1	4	1
			6	5.1	3.2	2	11.3	4
			7	12.2	12.8	3	0.3	0.6
			8	9.3	9.4	4	0.8	6
Session 1, Matching Group 2	15.4	13.7						
			13	12.3	13.8	9	1.1	0
			14	6.3	1.2	10	0.3	6.4
			15	17	17	11	1	0
			16	12.7	13.6	12	2.8	3
Session 2, Matching Group 1	13.7	12.8						
			5	15.7	13	1	2	4.4
			6	9.9	8.4	2	2.7	2.4
			7	8.8	8.2	3	1.9	0
			8	11.1	14.4	4	0.4	0.4
Session 2, Matching Group 2	16.1	13.5						
			13	7.9	3.2		4.7	6
			14	6.3	5	10	5.8	6
			15	10.9	10.2	11	0.3	5
			16	17	17	12	1.3	1.8
Mean	14.3	12.6						
Median	15	13						

Table AE. 2 Average Contributions in LOW-FMA

	AGGREGATE		HIGH			LOW		
	All Rounds	Last 5 Rounds	Subject $I D$	All Rounds	Last 5 Rounds	Subject $I D$	All Rounds	Last 5 Rounds
Session 1, Matching Group 1	14.1	12.2						
			5	6.1	6	1	7.3	7
			6	11.6	12.4	2	5.5	1
			7	8.7	8.8	3	3.3	0.4
			8	9.3	8.4	4	4.6	5
Session 1, Matching Group 2	15	13						
			13	10.2	12.4	9	3.6	0.2
			14	12.1	10.6	10	4.5	4.2
			15	8.5	10.8	11	6.7	4.8
			16	8.7	5.6	12	5.8	3.6
Session 2, Matching Group 1	12.5	11.8						
			5	15.5	15	1	4.6	3.6
			6	6.5	5.2	2	2.3	2.4
			7	11.6	13.2	3	0.6	0
			8	7.2	7.2	4	1.8	0.6
Session 2, Matching Group 2	11.7	8.7						
			13	8.3	7.4	9	4.3	1
			14	9.7	11.2	10	4.6	3
			15	4.1	1.2	11	0.7	0.2
			16	11.9	10	12	3.1	1
MEAN	13.3	11.5						
Median	15	12.5						

Table AE. 3 Average Contributions in HIGH-FMA

	AGGREGATE		HIGH			LOW		
	All Rounds	Last 5 Rounds	Subject	All Rounds	Last 5 Rounds	Subject ID	All Rounds	Last 5 Rounds
Session 1, Matching Group 1	10.7	9.2						
			5	4.3	0.8	1	3.1	0.6
			6	16.4	17	2	3.4	4.2
			7	7.3	7.8	3	2.2	1.2
			8	3.6	3.4	4	2.6	2
Session 1, Matching Group 2	8.7	7.8						
			13	4.8	4	9	1.1	1
			14	6.5	5.2	10	3.3	3.2
			15	6.5	5	11	3.6	2.8
			16	7.9	8.2	12	1.1	1.8
Session 2, Matching Group 1	10.6	7.3						
			5	2.9	0	1	4.4	1.8
			6	9.1	5.4	2	3.6	4.2
			7	6.9	5.2	3	3.1	3
			8	10.3	8.8	4	2.1	0.8
Session 2, Matching Group 2	10.8	9.4						
			13	12	15	9	2.2	4.8
			14	4.3	0	10	0.5	0
			15	6.5	0	11	3.5	3
			16	14.1	15	12	0.1	0
Mean	10.2	8.4						
Median	9	6						

Table AE. 4 Average Contributions in SIM-NOFMA

	AGGREGATE		HIGH			LOW		
	All Rounds	Last 5 Rounds	$\begin{gathered} \text { Subject } \\ I D \\ \hline \end{gathered}$	All Rounds	Last 5 Rounds	Subject ID	All Rounds	Last 5 Rounds
Session 1, Matching Group 1	16.2	15.3						
			5	14.8	15	1	4	4
			6	12.3	10.4	2	11.3	9.2
			7	7.1	8.2	3	0.3	0
			8	14.3	14.4	4	0.8	0.2
Session 1, Matching Group 2	15	15						
			13	13	14	9	1.1	0
			14	17	17	10	0.3	0
			15	13.1	16.6	11	1	0
			16	11.6	10.8	12	2.8	1.6
Session 2, Matching Group 1	13.5	12.5						
			5	11.3	11.2	1	2	2
			6	8.2	7.8	2	2.7	0
			7	12.2	13.2	3	1.9	1.2
			8	15.3	14.6	4	0.4	0
Session 2, Matching Group 2	13.4	12.6						
			13	10.7	11.2	9	4.7	4.6
			14	15.3	15	10	5.8	2.8
			15	3.7	1.6	11	0.3	0
			16	12.1	15	12	1.3	0.4
Mean	14.5	13.9						
Median	15	14						

Table AE. 5 Average Contributions in LOW-NOFMA

	AGGREGATE		HIGH			LOW		
	All Rounds	Last 5 Rounds	$\begin{gathered} \text { Subject } \\ I D \\ \hline \end{gathered}$	All Rounds	Last 5 Rounds	Subject ID	All Rounds	Last 5 Rounds
Session 1, Matching Group 1	13.4	10.3						
			5	11.1	13	1	5.3	1.6
			6	10.8	6.4	2	5.4	0.2
			7	12.6	14	3	3	2.8
			8	3.6	1.6	4	1.9	1.6
Session 1, Matching Group 2	14.9	12.9						
			13	10.9	13.6	9	7.7	2.6
			14	7.8	7.2	10	2.9	2
			15	13.1	14	11	2.9	
			16	8.3	10.4	12	5.8	1
Session 2, Matching Group 1	14.9	14.4						
			5	12.1	11.6	1	2.3	1
			6	12.6	12.8	2	0	0
			7	7.2	8.4	3	6.7	6.4
			8	16.3	16.4	4	2.3	1
Session 2, Matching Group 2	14.3	14.5						
			13	7.6	8.2	9	4.8	0.6
			14	9.3	11.2	10	3.7	3.2
			15	10.2	11.6	11	7	7
			16	9.2	11.2	12	5.4	5
Mean	14.4	13						
Median	15	15						

Table AE. 6 Average Contributions in HIGH-NOFMA

	AGGREGATE		HIGH			LOW		
	All Rounds	Last 5 Rounds	Subject ID	All Rounds	Last 5 Rounds	Subject ID	All Rounds	Last 5 Rounds
Session 1, Matching Group 1	16.3	14.3						
			5	15	15	1	0.3	0
			6	11.8	11.4	2	1.9	1.8
			7	13.5	14.4	3	5.8	0
			8	14.2	13.6	4	2.5	1.2
Session 1, Matching Group 2	13	13.9						
			13	14.8	16	9	1.4	1.6
			14	6.1	7.4	10	0.1	0
			15	14.3	15	11	0.3	0
			16	14.9	15	12	0.3	0.8
Session 2, Matching Group 1	12.2	12.9						
			5	14.7	15	1	0.1	0
			6	13.1	15	2	0.3	0
			7	8.5	12.8	3	0.7	0
			8	10.3	9	4	1.2	0.8
Session 2, Matching Group 2	14.9	15						
			13	14.5	15	9	0.3	0
			14	15.5	15	10	0	0
			15	15.3	15	11	0	0
			16	13.1	15	12	0.9	0.2
MEAN	14.1	14.1						
MEDIAN	15	15						

[^0]: * University of Nottingham, IZA and CESifo.
 ** University of Nottingham.
 ${ }^{+}$Corresponding author. School of Economics, Sir Clive Granger Building, University Park, Nottingham NG7 2RD, UK. Email: martin.sefton@nottingham.ac.uk.

[^1]: ${ }^{1}$ See, e.g., Andreoni (1995); Keser and van Winden (2000); Fischbacher, et al. (2001); Croson (2007); Muller, et al. (2008); Fischbacher and Gächter (forthcoming).
 ${ }^{2}$ There are some studies which look at the role of move structure for the provision of step-level public goods (Erev and Rapoport (1990); Coats, et al. (2009)). For a general discussion of the importance of move structures in public good and other dilemma games and an overview of experimental findings see Au and Budescu (1999).

[^2]: ${ }^{3}$ ABV's main focus is on comparing behavior across games with similar equilibrium predictions in order to identify factors that may cause equilibrium predictions to work well or to fail, rather than on testing Varian's theoretical comparative static results.

[^3]: ${ }^{4}$ For a full derivation of theoretical predictions see the online appendix.

[^4]: ${ }^{5}$ Subjects were recruited through the online recruitment system ORSEE (Greiner (2004)). The experiment was programmed and conducted with the software z-Tree (Fischbacher (2007)). Experimental instructions and earnings tables are reproduced in the online appendix.

[^5]: ${ }^{6}$ Subjects were informed that they would be randomly matched with another person in the room in each round, but the details of the matching procedure were not specified. For details see the instructions in the online appendix.

[^6]: ${ }^{7}$ All p-values are based on two-sided randomization tests applied to 4 independent observations per treatment, unless otherwise stated. Summary data on individual and group contributions are given in the online appendix.

[^7]: ${ }^{8} \mathrm{ABV}$ do not report formal statistical comparisons of aggregate contributions across move orderings, but using their data we found that aggregate contributions were significantly different at the 10% level when one looks at all rounds ($p=0.100$), but not significantly different in the last five rounds $(p=0.800)$. These p-values are based on randomization tests treating aggregate contributions in a session as the unit of observation, and so are based on comparing two sets of three observations. One can also use a less conservative approach and treat each game in a round as an independent observation. Doing this we found that contributions were often significantly different in early rounds, but not significant in any of the last five rounds ($\mathrm{p}>0.204$ for the last five rounds). We thank the authors for making their data available at http://econlab.ucsd.edu/getdata/.

[^8]: ${ }^{9}$ For expositional purposes we refer to a second-mover contribution below the best response as a punishment (since, relative to the best response, it reduces the first-mover's payoff at a cost to oneself) and a contribution above the best response as a reward (since it raises the first-mover's payoff at a cost to oneself). Of course a variety of other motives, or even error, could account for deviations from best responses. We describe later temporal patterns in punishment that suggest limited scope for interpreting punishments as due to error. See also Gächter, et al. (2008) who observe punishment even after 50 rounds of experience with a public goods game.

[^9]: ${ }^{10}$ Another structural feature of the HIGH-NOFMA treatment that distinguishes it from the other sequential treatments is that the subgame perfect equilibrium outcome is also the unique Nash equilibrium outcome, whereas in the other treatments there are (imperfect) Nash equilibria where aggregate contributions are the same as in the subgame perfect equilibrium, but the first-mover makes positive contributions. For example, a second-mover might threaten to contribute 0 tokens if the first-mover contributes less than a threshold value \hat{g} and to best-respond if and only if $g \geq . \hat{g}$ Given this threat the first-mover may find it optimal to choose \hat{g}.

[^10]: ${ }^{11}$ Sefton, et al. (2007) also find that the opportunity to reward by itself is insufficient to sustain contributions in a public goods game, whereas the opportunity to punish is a more effective mechanism for sustaining cooperation. In addition, a wide range of experiments find positive reciprocity to be weak relative to negative reciprocity (see, e.g., Abbink, et al. (2000); or Offerman (2002)).
 ${ }^{12}$ An inspection of ABV's data reveals that their HIGH player earned slightly more when they moved first than moving simultaneously, although the difference is insignificant. Randomization tests applied to the two sets of three observations, where each observation is average HIGH player earnings within a session yields $p=0.800$. Restricting attention to the last five rounds yields $p=0.400$. A less conservative approach treating each HIGH player as an independent observation yields $p=0.949$ (last five rounds $p=0.206$).

[^11]: ${ }^{13}$ The result holds for LOW even in the last five rounds ($p=0.029$). HIGH earnings are still higher in LOWNOFMA than in HIGH-NOFMA in the last five rounds, but the difference is just insignificant $(p=0.114)$.

[^12]: ${ }^{14}$ Nosenzo and Sefton (2009) report an experiment using the FMA payoff tables where move orderings emerge endogenously through subjects' timing decisions. In one treatment most games end up as simultaneous move games because both players want to move second, and in another treatment most games end up as simultaneous move games because both players choose to wait rather than exploit the possibility of making an early commitment.

