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Abstract

We use a limited information environment to mimic the state of confusion in an

experimental, repeated public goods game. The results show that reinforcement

learning leads to dynamics similar to those observed in standard public goods

games. However, closer inspection shows that individual decay of contributions in

standard public goods games cannot be fully explained by reinforcement learning.

According to our estimates, learning only accounts for 41 percent of the decay

in contributions in standard public goods games. The contribution dynamics of

subjects, who are identified as conditional cooperators, differ strongly from the

learning dynamics, while a learning model estimated from the limited information

treatment tracks behavior for subjects, who cannot be classified as conditional

cooperators, reasonably well.
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1 Introduction

The degree to which subjects, who participate in an experiment, understand the task

involved is typically not observable by the researcher. Efforts to reduce confusion through

detailed instructions and to control for confusion using control questions are valuable but

can never fully rule out that some observed behavior was caused by a lack of understand-

ing. Unlike naturally selected and experienced individuals in real-world situations, people

who come to the laboratory, typically are unfamiliar and inexperienced with the choices

they need to make. Additionally, experimental environments are often artificial and delib-

erately do not provide a real-world context to the experiment, which makes understanding

difficult. Arising non-observable confusion poses a threat to the internal validity of exper-

imental results. Some behavior caused by confusion might be wrongly attributed to some

other cause. At best, confusion – if it does not lead to systematic changes of behavior –

only causes an inference problem through increased noise. Generally, confusion may thus

impair the researchers’ confidence in internal and external validity of experimental results

(for a general discussion see Levitt and List 2007).

A widely used alternative instrument intended to overcome the problem of confusion

is repetition. Repetition enables subjects to gain familiarity with the new environment

and to experience the consequences of their decisions. However, in games, where payoffs

depend on the actions of all players in a group, a characteristic of repetition is that the

subjects does not only learn about the game itself but can also use feedback to predict

future play of others. The researcher then faces the complicated task of separating the

strategic response to this information from learning behavior that results from overcoming

confusion. This task is complicated further, as there might also be interaction effects, since

a strategic response is likely to depend on a player’s assessment of how confused the group

members are. In this paper we tackle this problem for the domain of public goods games.

Experimental research on the private provision of public goods has an interest to

discriminate between strategic behavior and confusion. The repeated public goods exper-

iment is among the best known games in economics. It is meant to mimic behavior in

a wide class of situations outside of laboratories and classrooms. Today, social scientists

employ the experiment as tool to measure social norms and preferences (see, e.g., Camerer

and Fehr 2003). The outcome of the typical experiment is that subjects contribute more

to the public good than the standard model predicts, while contribution levels decrease

with repetition (for a recent and comprehensive list of references reporting an increase of

free riding over multiple decision rounds see Fischbacher and Gächter 2009). One early

explanation for this pattern of behavior is that contribution levels fall due to the learning
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of initially confused subjects (for a discussion see Ledyard 1995). Another explanation,

which is favored by many researches, is that the decay of contributions stems from the

heterogeneity of social preferences within a group, where conditional cooperators start

out with high contributions but consecutively adjust their contributions downwards as a

negative-reciprocal reaction to selfish group members (see Andreoni 1995; Kurzban and

Houser 2005; Muller et al. 2008; Fischbacher and Gächter 2009).1

In this paper we take a new avenue to assess the role of learning of confused subjects

in explaining the dynamic pattern of choices in repeated public goods experiments. Our

approach starts with the assumption that a confused subject neither understands the

incentive structure, nor uses the contributions of other subjects as a basis for imitation

learning. One might label this kind of confusion as “ignorant”. Admittedly, this view of

confusion is somewhat extreme but has a considerable advantage over other definitions

when it comes to experimental methodology. Confusion of this kind can be studied in

an experiment that withholds information about the payoff structure and the choices of

other group members from subjects. A treatment, where subjects do neither know the

incentive structure nor the past choices of the group members, perfectly mimics this kind

of “ignorant” confusion. We run such a treatment and compare the contribution dynamics

to those in a standard public goods game.

The traditional approach to studying confusion in public goods games follows a differ-

ent strategy. Confusion is identified as a residual instead of implementing conditions that

allow for studying learning directly. Designing two treatments, a standard treatment and

at least one other, where strategic and/or social motives are excluded by design, under

certain assumptions allows for an isolation of the strategic and/or social component. The

difference in contributions between the treatments is attributed to strategic and social

factors, respectively. Then the residual contributions are attributed to confusion. In this

tradition Andreoni (1988) compares public goods games with partner and stranger treat-

ments, in order to isolate strategic repeated game effects. This study and the replications

by Croson (1995) and Keser and van Winden (2000) produced outcomes that are consis-

tent with strategic motives rather than learning being the explanation for an increase in

free-riding.2

Andreoni (1995) introduced a treatment where subjects played a public goods game

but were paid according to how they rank compared to group members with respect

to their experimental earnings. In this design the dominant strategy of full free-riding

1Gintis et al. (2003) explain similar dynamics with an evolutionary approach.
2Andreoni (1988) also observed that cooperation increases again after a restart of the game, which is

at odds with the simple learning hypothesis. See also Cookson (2000).
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is preserved while the imposed zero-sum nature is designed to remove any cooperation

incentives. In this treatment, subjects’ contributions fell rapidly already in early decision

rounds, which suggests that the decline of cooperation in the standard game “may not be

due to learning, but instead ... due to frustrated attempts at kindness” (p. 892).

Houser and Kurzban (2002) designed a study to tighten the bounds on the impact of

confusion as identified by Andreoni (1995). They ran a “computer condition” in which all

other group members were simulated by automata. Off-equilibrium play in the computer

condition cannot be associated with social motives towards other players. Hence, a com-

parison to a standard public goods game was used to isolate the effect of confusion. The

results were that approximately 50% of all contributions can – under certain assumptions

– be attributed to confusion and that the contributions in the computer condition fell

with repetition at a rate much higher than in the human condition.3 The second obser-

vation casts doubts on the previously identified role of reciprocity in causing the decay of

contributions.

We contribute to this literature in that we analyze the contribution behavior under a

condition of limited information. The study of behavior in limited information environ-

ments is common in experiments on learning. Mookherjee and Sopher (1994) varied the

information available to the subjects about past choices and payoffs of their opponents

in a repeated matching pennies game. They found that experience with choices in the

past affected behavior under limited information. Van Huyck et al. (1996) asked whether

a simple reinforcement learning algorithm can predict behavior in a coordination game.

To do so, they limited the information available to subjects to their feasible choices and

their experienced payoffs. The results were that the median play converges to the inte-

rior equilibrium and that convergence is much faster than reinforcement learning would

predict. Chen and Khoroshilov (2003) evaluate alternative payoff-based learning models

to explain behavior in a cost-sharing and coordination game under limited information.

They found that a simple reinforcement learning model tracks the data not as well as

the payoff-assessment learning model (Sarin and Vahid 1999) or the experience-weighted

attraction learning model (Camerer and Ho 1999).

We believe that the method of limiting information can generate novel insights that

add to the hitherto incomplete picture of learning in the repeated public goods experi-

ment. In particular, the extreme assumption of ignorant confusion assures that subjects

can only learn by reinforcement. More sophisticated learning models such as belief learn-

ing, experience-weighted attraction learning or rule learning are ruled out (for a nice

3Ferraro and Vossler (2006) used a similar design for the same purpose and complemented it with

econometric modeling.
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overview of alternative learning models see Camerer 2003, chapter 6, and the references

therein). In fact, all studies that try to isolate the dynamic effects of confusion have to

make assumptions about the nature of confusion. For example, in the study by Houser

and Kurzban (2002) contributions fell faster in the computer than in the human con-

dition. This observation might indicate that cooperation is stable at an initial level in

the absence of confusion. The authors note that such a conclusion would be warranted

only if “cooperation due to confusion is similar in the human and computer conditions”

(p. 1066). Such an assumption may not hold empirically (see Duersch et al. 2009, who

explore how subjects learn to play a Cournot duopoly game against computers that are

programmed to follow one of various learning algorithms).

The merit of studying confusion as ignorance is that it gives sufficient structure to

model behavior by simple learning dynamics and at the same time avoids a great deal

of other necessary implicit assumptions. While measured confusion in traditional exper-

iments is a residual and might contain other impact factors not removed by the design,

inducing confusion with a limited information approach provides additional control. On

the flip side, the assumption of ignorant confusion comes at a price. Subjects that are

more sophisticated but still confused are not properly represented. Confused subjects,

who are cleverer than the assumed “ignorant” subjects, are expected to learn and re-

duce their contributions more quickly (if they are self interested).4 Hence, the dynamics

observed in a treatment inducing confusion defined as ignorance can be seen as a lower

bound to the true impacts of confusion on contribution dynamics. We believe that com-

plementing the traditional approach, which can be seen as providing an upper bound (in

particular Houser and Kurzbahn, 2002), with a methodology that provides a lower bound

is valuable in that it helps to better understand the impact of confusion on free-riding.

Our results are as follows. At the aggregate level we find that contributions drop off

in both our confusion condition and the standard public goods game. This observation

supports the claim that reinforcement learning leads to dynamics similar to those readily

interpreted as conditional cooperation in standard public goods games. However, we also

find that the contributions in the standard treatment decrease at a significantly higher

rate than in the confusion condition. According to our estimates learning only accounts

4Janssen and Ahn (2006) apply an agent-based modeling approach to estimate the dynamic pattern of

contributions in the repeated public goods experiment. They conclude that the stylized facts about the

contribution dynamics are explicable only by a complicated mixture of social preferences, learning, and

signaling. Within the learning explanation, they found reinforcement learning to play a prominent role.

However, their results depend very much on the specific functional forms they used. Their study also

differs from ours in that it does not employ limited information to reduce the complexity of the choice

environment.
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for 41 percent of the contribution dynamics. We also analyzed whether the reduction of

confusion (due to reinforcement learning) can cause correlated behavior at the individual

level that can be mistaken for conditional cooperation. A dynamic panel analysis provides

direct evidence that the correlation of contributions with average past contributions of

the other group members cannot be explained by the reduction of confusion. Moreover,

we used our estimation results to simulate contributions of those classified as “conditional

cooperators” and of “others”. While the learning dynamics estimated from our limited

information treatment does a poor job at explaining the behavior of “conditional coop-

erators”, it tracks that of the “others” reasonably well. Finally, we use our estimation

results to investigate if a hypothetical group of four conditional cooperators would be able

to prevent contributions from declining. We find that they would not be able to achieve

stable cooperation.

The next section describes the experimental design. Section 3 presents our findings

and section 4 concludes.

2 Experimental design

Our design deliberately withholds information about the game from the subjects. Par-

ticipants in the Learning Condition only know the admissible action space and that the

environment may change over time. After each stage subjects are informed about their

payoff (see Appendix A).

We employ a within-subject comparison across two phases, which we complement

by a control treatment that ensures that we can test for the effect of the same subject

participating in two treatments. The within-subject comparison enables us to observe

the same subject’s behavior both in a state of confusion (Learning Condition) and in an

otherwise identical public goods game, where subjects have all the information (Standard

Condition). Each condition consists of 20 periods. In the Learning Condition, the subjects

choose a number between 0 and 20 in each period. The subjects do not know that this

number is a contribution choice. The instructions tell them that the aim of the experiment

is the study of learning behavior. We inform the subjects that their payoff is determined

by their choice and “other factors that might change across periods”.

At the end of this first phase, the subjects in the within-subject treatment are informed

that a new experiment (the Standard Condition) will start. Only at this stage, they are

given instructions for a standard linear public goods game, where they are assigned to
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groups of four.5 In the control treatment subjects only play the standard public goods

game with instructions. This design enables us to test if the fact that the subjects played

phase one first altered the behavior in the following standard public goods game. We did

not find any differences in behavior and therefore are confident that our within-subject

analysis is valid.

The structure of the experimental public goods game was as follows. Every period

the subjects receive 20 points as their initial endowment. Every point invested into a

public good pays 0.4 Australian Cents to each subject in the group, while every point

kept for private investment pays 1 Cent to only the subject who kept it. This underlying

structure was the same in both Learning and Standard Condition. The sole difference

was the information the subjects received. In the standard condition full free-riding is

a dominant strategy and therefore in the subgame-perfect Nash Equilibrium noone ever

contributes anything. It would be socially optimal however, if everyone contributed their

full endowment.

3 Results

We ran five sessions with 16 or 20 subjects each. Out of 96 subjects in total, 60 were

participating in the within-subject treatment (learning condition in phase 1 followed by

the standard condition in phase 2) and 36 in control treatment (the standard condition in

phase 1, no phase 2). The subjects were first-year students at the University of Adelaide

from a variety of fields, who had never before been in an experiment. The experiments

were conducted with the software package z-Tree (Fischbacher 2007). The experiment

lasted between 15 (control treatment) and 25 minutes (both phases), and the average

subject earned the equivalent of US$ 10.1 (in Australian Dollars) within this time.

Figure 1 shows the time series of the average contributions in the learning condition as

a percentage of the endowment. The black line shows the average observed contribution

behavior. As one would expect for a situation where subjects cannot understand the

implications of their behavior, the contributions start out around the midpoint of the

admissible action space. With repeated play, however, contributions drop off from 53.4

percent of the total endowment in period one to 35.7 percent in period 20. On average

(using a linear trend) contributions drop by 0.18 units per period. This negative time

trend is significant at the 1-percent level.6

5We told the subjects in the within-subject condition that they will now participate in a new experi-

ment, and also used very different styles for the instructions and screen layouts.
6We use robust standard errors adjusted for clustering on groups throughout this paper.
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3.1 A learning model

The observation that chosen numbers decrease with repetition in the Learning Condition

just as contributions do in the standard public goods game provides support for the claim

that learning can be mistaken for conditional cooperation. To gain some more confidence

that our Learning Condition accurately picks up learning dynamics – and nothing else –

we compare the actual behavior to the simulated outcomes of a simple learning model.

A stochastic adaptive decision rule maps the observed history – in our case past

contributions and past profits – into a probability distribution from which the actual

contribution is drawn. In the past a large variety of different learning models requiring

different levels of sophistication of subjects have been proposed.7 The rule we use is

in the tradition of reinforcement learning. This is governed by the sparse information

environment in our Learning Condition. “Confusion as ignorance” as observed in this

treatment, means that individuals do not know the underlying structure of the public

goods game. They also do not observe any action of the other group members. Therefore,

more sophisticated learning models such as belief learning, experience-weighted attraction

learning or rule learning are ruled out. We also restrict the memory of the learning rule.

Individuals decide over their choices by comparing the payoffs resulting from their last

two choices.8

So we arrive at an extremely simple learning model. Define the set of players as

I = {1, 2, 3, 4} and the action space as C = {0, 1, ..., 20}. Denote the contribution of

person i ∈ I in period t ∈ {1, 2, .., 20} as ci
t ∈ C. The player uses the payoffs p and the

own choices of the last two periods to determine the contribution in the current period (if

possible). The attraction of choosing a certain contribution A(ci
t) is therefore a function

of the two past contributions and the payoffs in the two last periods:

A(ci
t) = f(ci

t−1, c
i
t−2, p

i
t−1, p

i
t−2). (1)

After having observed the two last outcomes given the choices made, for the next round

individuals only consider choices which are closer to the choice that resulted in a higher

payoff. Suppose ci
t−1 was greater than ci

t−2 and the payoff in period t−1 was greater than

in period t− 2, then the individual only chooses values in the interval from the midpoint

between the two previous choices to the maximum choice (20). For equal profits in periods

t− 1 and t− 2 the support is [0, 20], as then the history contains no information about in

7See Camerer (2003, chapter 6) and the references therein for a nice overview.
8We use such a short memory for two reasons: i) in the instructions we inform subjects that the

environment might change over time and ii) Sarin and Vahid (2004) have shown that the use of rapidly

decaying past attractions improves the fit of reinforcement-learning models.
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which direction to go. Moreover, the support will also be the whole spectrum of possible

choices if the previous two choices were identical.

To find the region of choices (the support) that satisfies these conditions given the

history, define the changes in choices and payoffs between periods t− 1 and t− 2 as

∆pi
t ≡ pi

t−2 − pi
t−1 (2)

∆ci
t ≡ ci

t−2 − ci
t−1 (3)

Then we can introduce a variable di
t that tells us whether the player wants to choose a

number closer to the higher (di
t = 1) or the lower of the previous choices (di

t = −1):

di
t = sign(∆pi

t ·∆ci
t). (4)

Note that if either the profits or the previous choices have not changed between periods

t− 2 and t− 1 then we have di
t = 0. Denoting the admissible support for period t as Ci

t

we have:

Ci
t =





{
c ∈ C : c ≤ (ci

t−1 + ci
t−2)/2

}
if di

t = −1
{
c ∈ C : c ≥ (ci

t−1 + ci
t−2)/2

}
if di

t = 1

{c ∈ C} if di
t = 0

(5)

Next, we have to specify which point within the admissible range will be chosen. The

simplest assumption is that subjects are equally likely to choose any element of Ci
t .

9 To

implement this we set the attraction for a choice in C i
t equal to one, while the attraction

of a contribution outside of Ci
t is set to zero:

A(ci
t) =

{
1 if ci

t ∈ Ci
t

0 if ci
t 6∈ Ci

t

(6)

To arrive at the desired uniform distribution over the support Ci
t we transform attrac-

tions into probabilities using the following rule:

g(ci
t) =

A(ci
t)∑

ci
t∈Ci

t
A(ci

t)
(7)

Analyzing the data, we found that the median of choices for both experimental con-

ditions is approximately in the middle of the support, which is consistent with assuming

9This assumption differs slightly from a traditional reinforcement learning model in that it allows for

“strategy similarity”. Sarin and Vahid (2004) show that this modification helps to explain behavior in

minimal information games like ours.
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choices with equal probabilities. However, we observed quite a few focal points (bottom

or top of the range), which cannot be modeled with the uniform distribution. This is

not problematic, since this clustering around boundary values typically occurred in the

Standard Condition, where we do not expect the learning model to fit well.

The remaining question is how to deal with the choice behavior of the individuals in

periods one and two. In these early periods there is not enough information available

to use reinforcement-learning. We follow the widespread approach and use the observed

choice distribution in those first two periods. The first two choices are assumed to be

driven by some factors exogenous to our learning model, such as focal points.

In summary, the choice rule in our learning model is simple. A subject only chooses

numbers that are closer to the number that led to the higher payoff in the previous two

periods. For simplicity we assume that subjects randomize over all choices that are in the

remaining domain with equal probability. In cases where a subject is not able to learn

anything from her last choices – either the last two choices or the last two payoffs are

equal – a subject randomizes over the unrestricted domain.

This simple model produces quite tricky dynamics. The grey line in Figure 1 shows

the result of simulated behavior from the model. We simulated 5000 groups. As the

starting values are not determined endogenously in the model, we drew them from the

empirical distributions of the real contributions observed in the two first periods.10 We

see that a model as simple as ours does very well at tracking the behavior in the Learning

Condition. Hence, we feel confident to conclude that our Learning Condition can be used

to isolate learning dynamics from the dynamics generated by strategic behavior of any

kind.

Our next step is to quantify how much of the downward trend of contributions in

the standard public goods game (Standard Condition and control treatment) is due to

the reduction of confusion. In Figure 2, the black line plots the average contributions

of the subjects in the Standard Condition. Obviously, the rate at which subjects reduce

their contributions is greater than in the Learning Condition. In the Standard Condition,

contributions drop from 57.7 percent of the total endowment in period one to 16.6 percent

in period 20.

As before, the grey line in Figure 2 shows the choices simulated using the learning

model with the starting values drawn from the empirical distributions of the first two pe-

riods. The learning model does not fit the data well. The dynamics in the standard public

10We also simulated the learning model with different initial choices. Even starting with extreme

values (only 0 or 20) simulated behavior quickly converges to that following starting values drawn from

the empirical distribution.
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Figure 1: Time series of average contributions in the Learning Condition

goods game appear to be different than the simulated reinforcement-learning dynamics,

which performed so well at explaining behavior in the Learning Condition. A Wilcoxon

matched-pairs test (for the subjects that played both phases) confirms that the deviations

of the average group contributions from the simulated contribution averages summed over

the 20 periods are significantly smaller in the Learning Condition (p < 0.01, N = 15).11

The analysis above shows that a reinforcement-learning model explains the dynamics in

the Learning Condition, while it fails to explain the dynamics in the standard public goods

game. The learning speed predicted by the model is insufficient to explain actual behavior

in the Standard Condition. Therefore confusion defined as ignorance cannot explain all of

the decrease in cooperation in the public goods game. Even after controlling for learning

dynamics some decay in contributions still remains.12 In the Standard Condition the

linear time trend is −0.44, which is significantly different both from zero and −0.18 (the

time trend estimated for the Learning Condition).

To summarize: Assuming that confusion in a standard public goods game takes the

form of ignorance, we conclude that the reduction of confusion accounts for −0.18/ −
0.44 = 41 percent of the total decrease in cooperation. From our discussion above, this

figure gives a lower bound for the true impact of learning on contribution dynamics, as

11The average mean square error of the simulation is more than four times larger in the Standard

condition (3.66 vs. 0.82 points).
12Taking the difference between the real and simulated contributions in Figure 2 reveals that the

remaining dynamics still point downwards.
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confusion as ignorance is an extreme assumption.

Figure 2: Time series of average contributions in the standard condition

3.2 Econometric Analysis

In what follows, we investigate the dynamics in the two treatments econometrically. We

run two separate dynamic panel regressions – one per treatment – where we try to explain

ci
t, the contribution in period t, with lagged own contributions (ci

t−1, c
i
t−2) and the past

average contributions of the other group members (c−i
t−1, c

−i
t−2). We also include period

dummies. This econometric model is designed to test for reciprocity in the Standard

Condition and to check if the Learning Condition can produce data that could be misin-

terpreted as being generated by reciprocity. We are mainly interested in the coefficient on

the lagged average contribution of the other group members. A positive significant coef-

ficient in the Standard Condition is evidence for reciprocity, as it measures how subjects

react to past kindness (or unkindness) of the other group members. However, a positive

coefficient in the Learning Condition would mean that the simple learning environment

can produce the same dynamics. This would support the hypothesis that the positive

coefficient in the Standard Condition might not be due to reciprocity but learning.

Note that simple random-effect panel-data estimators yield biased estimates if lagged

dependent variables are included, since by construction, the unobserved panel-level effects

are correlated with the lagged dependent variables. For this reason, we use an Arellano-

Bond GMM estimator (Arellano and Bond 1991) with additional moment conditions
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(Arellano and Bover 1995, Blundell and Bond 1998), which improve the performance of

the estimator.13

3.2.1 The standard condition

Table 1 reports the estimation results for the Standard Condition. The standard errors

for the coefficients are reported in parentheses. Two stars indicate significance on the

one-percent level, one star on the five percent level. We find that the evolution of the

contributions of an individual is governed by two main influences. On the one hand,

there is a feedback structure. Contributions react to the past own and past average

contributions of others. On the other hand there are some period effects, which are

independent from the feedback structure.

The regression shows that the contribution in the previous period has a positive in-

fluence on the actual contribution. Contributions are somewhat persistent. More impor-

tantly, actual contributions ci
t increase with the average contribution of the other group

members from the previous period c−i
t−1. Previously generous group members who con-

tribute, induce the subjects to reciprocate with a higher contribution. An increase in

the average last period contribution of the other group members by one unit induces an

increase of a subject’s contribution by about one third of a unit. Through the persistence

of the own contribution this increase will have a positive but decaying influence on future

contributions. In the public goods game this kind of reciprocity is responsible for a large

part of the decay. As some subjects reduce their contributions, other subjects will respond

with negative reciprocity and will reduce theirs in the future.

If we ignore the insignificant second lags and all time effects (but include the intercept)

then contributions within a group have a single stable steady state where all subjects con-

tribute somewhat less than 12 monetary units or 60 percent.14 If subjects kept behaving

like this from the beginning of the game (here period 3) they would soon reach this steady

state. However, the period effects push the steady state downwards. If we take the aver-

age of all time dummies in the model then the steady state the contributions converge to

is at about 4.8 monetary units (24 percent). For periods with large negative time effects

(such as periods 14, 18 and 20) the steady state shifts to full free riding. The downward

13We use the two-step estimation technique with robust standard errors. All our models passes tests for

the validity of the over-identification restrictions (Sargan Test) and autocorrelation in the first-differenced

errors (Arrelano-Bond Test).
14To see this take ci

t = α + β1c
i
t−1 + β2c

−i
t−1, replace the lagged own and average other contributions by

the own actual contributions, plug in the estimated coefficients and solve.
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Table 1: Dynamic Panel Estimation of contributions in the standard condition

Variable Coefficient (Std. Err.)

Lagged own contribution

ci
t−1 0.299∗∗ (0.088)

ci
t−2 0.055 (0.078)

Lagged average contribution of others

c−i
t−1 0.324∗∗ (0.107)

c−i
t−2 -0.037 (0.123)

Period dummies, t = 3 omitted

t = 4 -0.807∗ (0.382)

t = 5 -1.334∗∗ (0.307)

t = 6 -1.646∗∗ (0.361)

t = 7 -2.167∗∗ (0.602)

t = 8 -1.731∗ (0.755)

t = 9 -1.772 (0.944)

t = 10 -1.535 (0.796)

t = 11 -2.157∗ (0.926)

t = 12 -1.809 (0.994)

t = 13 -2.318∗ (0.968)

t = 14 -3.175∗∗ (1.048)

t = 15 -2.301∗ (1.175)

t = 16 -3.061∗ (1.419)

t = 17 -2.599 (1.553)

t = 18 -3.134 (1.610)

t = 19 -3.243∗ (1.638)

t = 20 -4.262∗ (1.777)

Intercept 4.580 (2.788)

N 1728

prob > χ2
(21) 0.000

shift caused by the period effects tends to be larger in the later periods of the game. We

also find a strong end effect in the final period.

Note that the reciprocity resulting from the estimation is quite weak compared to
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strong reciprocity or tit-for-tat behavior.15 A large part of the contribution is not de-

termined by the lagged contributions of the other group members. There is quite some

persistence. Ceteris paribus, subjects who start with higher contributions keep contribut-

ing more. In addition we observe otherwise not explained time dependent level effects.

These level effects tend to reduce contributions as the game progresses. Consequently,

reciprocity explains some but not all decay of contributions. Compared to period three

(the first period for which we can estimate period effects), ceteris paribus a subject con-

tributes about 4.8 (out of a maximum of 20) monetary units less in the last period.

However, it is important to keep in mind that this is average behavior and does not take

into account that there might be different types of subjects.

Figure 3 shows the contribution dynamics under the assumptions that the players

2, 3, 4 initially choose identical contributions. This reduces the dimensionality of the

dynamics to two and allows plotting. In the graph we include an average of the period

effects (, which is −2.17). The blue (bold) dot represents the unique steady state the

contributions converge to. Note that this steady state and the fact that it is globally and

asymptotically stable are independent of our assumptions that three players start with

the same initial contribution.16

3.2.2 The Learning Condition

We have seen that the dynamic panel estimation for the Standard Condition is consistent

with negative reciprocity being responsible for (at least some of) the decay of contribu-

tions. We now ask if this could be an artifact of learning dynamics. In other words, does

the Learning Condition produce similar dynamics as the Standard Condition? As we have

seen in previous sections, both treatments show decay of contributions over time. The

decay is stronger in the the standard condition though. This alone does not prove that

the processes driving the decay are different. For this reason we run the same regression

we used for the Standard Condition also for the learning data. Table 2 shows the results.

The regression results clearly show that the dynamics in the Learning Condition are

quite different to those in the Standard Condition. There is no significant feedback.

There is no significant influence of past own or past average contributions of other group

members.17 The regression does a bad job explaining the data in the Learning Condition.

15Strong reciprocity would imply a coefficient of one, while tit-for-tat behaviour would also require that

all other coefficients are equal to zero.
16The coefficient matrix of the dynamic system has eigenvalues which are below unity.
17This is established by testing if the coefficients on the four variables capturing past contributions

(own or by others) are jointly different from zero, which they are not (p > 0.87).
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Figure 3: Contribution dynamics in the standard condition (with average period effects)
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The dynamics are driven by factors not included in the model, as only the intercept and

some period effects are significant.

Summarizing our results so far, we can say that the dynamics from the two different

treatments are clearly distinct. A simple learning model explains the data in the Learning

Condition reasonably well, while it fails to explain the data from the Standard Condition.

Providing further evidence for this claim, a dynamic panel-data regression designed to

identify the occurrence of reciprocity fits well in the case of the standard public goods

game. The parameter on the influence of the past average contribution of other group

members on the own contribution hints at reciprocity, as it is positive. The same re-

gression model does not fit well for the learning data and the coefficient of interest is

not significantly different from zero. These findings provide strong evidence against the

claim that learning of subjects initial in the state of ignorant confusion can explain the

typical dynamics in public goods games. In other words, dynamics typically interpreted

as stemming (at least partly) from the breakdown of cooperation due to conditional coop-

erators withdrawing their concern for free-riders is not an artefact of simple reinforcement
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Table 2: Dynamic Panel Estimation of contributions in the Learning Condition

Variable Coefficient (Std. Err.)

Lagged own contribution

ci
t−1 -0.032 (0.107)

ci
t−2 -0.032 (0.085)

Lagged average contribution of others

c−i
t−1 -0.039 (0.067)

c−i
t−2 -0.029 (0.078)

Period dummies, t = 3 omitted

t = 4 -1.156 (0.844)

t = 5 -4.200∗∗ (1.130)

t = 6 -2.718 (1.622)

t = 7 -2.161 (1.348)

t = 8 -1.946 (1.270)

t = 9 -3.026∗ (1.209)

t = 10 -2.783∗ (1.378)

t = 11 -3.067∗ (1.226)

t = 12 -3.152∗∗ (1.176)

t = 13 -5.145∗∗ (1.381)

t = 14 -3.690∗ (1.734)

t = 15 -4.082∗ (1.757)

t = 16 -4.048∗ (1.686)

t = 17 -3.737∗ (1.691)

t = 18 -3.188 (1.939)

t = 19 -4.816∗∗ (1.752)

t = 20 -3.884∗ (1.639)

Intercept 12.328∗∗ (3.811)

N 1080

prob > χ2
(21) 0.000

learning by confused subjects.
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3.3 Individual analysis and different types of subjects

The analysis so far has been on an aggregate (or average) level. In this section we

want to dig a bit deeper and look at individual behavior. A last test of whether one

could wrongly attribute the contribution dynamics to conditional cooperation explicitly

takes into account individual heterogeneity with respect to social preferences and learning

by exploiting the within-subject variation between phase one (Learning Condition) and

phase two (Standard Condition). Appendix B contains a table indicating whether a

subject’s contributions are significantly correlated with past contributions of others within

a treatment (Spearman rank-correlation coefficient, 5-percent level).

In the Learning Condition there are only four out of 60 subjects (6.6 percent) who

exhibit a significantly positive correlation, whereas in the Standard Condition 32 of 60

(53.3 percent) do so. The subjects identified as conditional cooperators due to positive

correlation in the standard condition are therefore unlikely to be just confused subjects

who learn. Only 12.5 percent of the subjects (four out of 32) showing positive correlation

in the standard condition also show a positive correlation in the Learning Condition. An

individual, who behaves in a way consistent with conditional cooperation in the standard

condition, typically does not show that same behavior in the Learning Condition. This is

more evidence that learning behavior (in the sense of reduced ignorance) does not fully

explain the decay in public goods games, which leaves room for conditional cooperation

as an important factor.

The fact that in the standard condition not all but only about 53.3 percent of subjects

exhibit a positive correlation of their contributions with the past contributions made by

their group members shows that there is quite some heterogeneity. While these subjects

conform with the criterion for conditional cooperation, the others do not. In the previous

section we estimated average contribution dynamics. It is instructive to also separately

estimate the contribution dynamics of the two sub-populations.

Table 3 shows the regression results for the sub-populations of the “conditional coop-

erators” and the “others” in the standard public goods game. The dynamics of the con-

ditional cooperators are as expected. These subjects react strongly to the average lagged

contribution of the other group members. By design, picking out only the subjects, who

exhibit positive correlation between ci
t and c−i

t−1, increases the estimated coefficient (here

from 0.346 to 0.496). Conditional cooperation is still not “perfect” though. Three group

members, who increase their contribution by one monetary unit on average only induce

a conditional cooperator (the fourth group member) to increase her contribution by half

a unit. Interestingly, the conditional cooperators do not exhibit significant persistence.
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Table 3: Estimation of contributions in the standard condition by subject type

Cond. Coop. Others

Variable Coef. (S. E.) Coef. (S. E.)

Lagged own contribution

ci
t−1 0.185 (0.198) 0.181 (0.096)

ci
t−2 −0.127 (0.202) −0.021 (0.086)

Lagged average contribution of others

c−i
t−1 0.496∗∗ (0.129) 0.074 (0.128)

c−i
t−2 −0.052 (0.226) −0.068 (0.106)

Period dummies, t=3 omitted

t = 4 1.290 (1.291) −1.819∗ (0.776)

t = 5 1.292 (1.330) −1.979∗∗ (0.688)

t = 6 −0.339 (1.122) −2.592∗∗ (0.859)

t = 7 −1.413 (1.567) −3.062∗∗ (0.684)

t = 8 −1.041 (1.950) −2.783∗ (1.092)

t = 9 −1.116 (2.470) −4.478∗∗ (1.343)

t = 10 −2.745 (2.863) −3.372∗ (1.417)

t = 11 −1.846 (3.336) −3.795∗ (1.615)

t = 12 −2.824 (3.399) −3.038∗ (1.530)

t = 13 −2.979 (3.287) −4.416∗∗ (1.451)

t = 14 −3.583 (3.788) −4.342∗∗ (1.600)

t = 15 −3.139 (4.244) −3.933∗∗ (1.404)

t = 16 −5.221 (4.322) −3.844∗ (1.874)

t = 17 −3.396 (4.814) −4.982∗ (2.008)

t = 18 −4.726 (4.821) −4.857∗ (2.004)

t = 19 −5.134 (4.669) −4.703∗ (2.140)

t = 20 −6.211 (5.278) −5.403∗ (2.121)

Intercept 6.307 (7.040) 9.212∗∗ (3.347)

N 738 990

prob > χ2
(21) 0.000 0.000

Furthermore, a group which consists entirely of “conditional cooperators” is not able

to sustain full cooperation. To see this we used the estimated dynamics (including the

period effects) and simulated contributions for a group of four identical “conditional co-
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operators”. As starting values we used the empirical average first-period contributions of

the conditional cooperators, which were around 61.5 percent. The time series identified

by circles in Figure 4 depicts the resulting contributions. In early periods groups are able

to build considerable cooperation. In periods five to eleven cooperation moves close to

100 percent. Then negative exogenous period effects start to destroy the achieved level

of cooperation. Contributions fall by about seven to eight percentage points per period.

The observation that even subjects who are deemed to be “conditional cooperators” are

not able to sustain full cooperation is consistent with the recent study by Fischbacher and

Gaechter (2009). The existence of free-riders is not necessary for contributions to decline

eventually.

Figure 4 also shows the simulated contributions of “conditional cooperators” depend-

ing on how many conditional cooperators are contained in a group. The simulation is

again based on the dynamics previously estimated. For the subjects classified as “oth-

ers” the starting contribution is taken from the empirical distribution (around 52 percent

of the endowment). It is apparent that the first non-cooperator in a group has a very

strong influence. A single non-cooperator prevents a group from reaching full cooperation

temporarily. Facing one non-cooperator, cooperators reduce their contributions already

after period five. The existence of a free-rider accelerates the decline of contributions

from “conditional cooperators”. Adding additional non-cooperators does not change the

dynamics much but slightly shifts the cooperators’ contributions downwards.

Figure 4: Contribution dynamics in mixed groups (conditional cooperators and group

averages)
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Finally, we investigate if the subjects we called “others” exhibit contribution dynamics

that could stem from the reduction of ignorant confusion. Recall that subjects that were
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not identified as conditional cooperators do not react to the past contributions of the other

group members. The same is true for the subjects in the Learning Condition (see Table 2).

Under some (very) strong assumptions we could hypothesize that the contributions of the

two groups should follow the same dynamics. If (a) the dynamics in our learning treatment

capture all learning dynamics (even though the information environment is quite different

to the standard treatment), (b) the subjects in the category “others” have no other

motivation than to maximize their payoff and if (c) the “others” do not expect to be able to

strategically manipulate the contributions of potentially existing conditional cooperators

then the dynamics should be the same. We do not really expect all these assumptions

to hold. However, not too dissimilar dynamics would give us some confidence that our

Learning Condition actually captures something comparable to learning dynamics in the

standard public goods game.

Figure 5 plots the two contribution time series (the estimated dynamics for “oth-

ers” and the actual average contributions in the Learning Condition). Contributions of

“others” in the Standard Condition fall below the average contributions in the Learning

Condition, after starting off almost identically. Both curves are relatively flat if one com-

pares them to the contributions of the “conditional cooperators” from Figure 4. So on

average the time series show similarities. However, recall that on an individual level we

have found some differences: in the Learning Condition contributions show no significant

persistence (the coefficient on the own lagged contribution is positive but not significant),

while the “others” in the standard condition exhibit slight persistence (only significant

at the 10 percent level though) in their contributions. We conclude that our Learning

Condition (as expected) cannot capture all the learning and other potentially relevant be-

havioral factors beyond conditional cooperation at work in standard public goods games.

Nevertheless, the similarities of the time series (as described above) give us some confi-

dence that the dynamics in the Learning Condition are related to the unobserved learning

dynamics in standard public goods games.

4 Conclusion

In this paper we report on a novel experiment designed to identify the influence of con-

fusion on the dynamics in repeated public goods games. In contrast to previous studies,

we study confusion in a benchmark treatment by withholding information on the struc-

ture of the game (instead of treating confusion as a residual) and compare the resulting

contributions to those in a standard public goods game. We argue that this approach

can provide a lower bound for the role confusion plays in reducing contributions over
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Figure 5: Contribution dynamics of “others” in the standard condition vs. all subjects in

the Learning Condition
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time. We find that the reduction of confusion causes a decay in contributions over time.

However, learning only accounts for 41 percent of the total decay. Furthermore, we could

not find evidence for the reduction of confusion (due to reinforcement learning) producing

correlation patterns of contributions within groups that could be wrongly attributed to

conditional-cooperation behavior. Consequently, we conclude that part of the dynamics

in public goods games is due to conditional cooperators reacting to low contributions of

other group members. This claim is backed by both within-subject comparisons of behav-

ior across treatments and dynamic panel analysis allowing for heterogeneity with respect

to types of subjects. In line with findings from other studies, conditional cooperation is

not sufficient to prevent the decline of contributions even in groups where all subjects

can be classified as conditional cooperators. Finally, we observe similar contribution time

series for subjects who could not be classified as conditional cooperators in the Standard

Condition and for subjects in the Learning Condition. This provides some support for our

underlying assumption that the sort of confusion we have considered in our experiment

generates learning dynamics that are also relevant in standard public goods games.
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A Instructions

A.1 Instructions to subjects for the Learning Condition

General Information

You are participating in an experiment on learning behaviour

Money

In the experiment you earn points, which will be converted into real money

at the end of the experiment with the following exchange rate:

100 points = AUD 1.25.

Your earnings are paid in cash at the end of the experiment

Please note

It is strictly forbidden to communicate with other participants during the

experiment. You are not allowed to speak with other participants.

If you have questions during the experiment please raise your arm and some-

body will come and help you.

The timing of the experiment

The proceedings for the 20 periods are:

At the beginning of each period you see the following screen:

In every period you just have to make a single decision. You simply have to

choose a number between 0 and 20. After you have entered your number and

have clicked “OK” you will see the following result screen:
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Here you can see your previous decision and the number of points you receive.

How is the outcome determined?

Your income depends on the number you have entered. However, other factors

may influence your income. These factors may change from period to period.

This means that a certain number you choose does not lead to the same

outcome all the time.

Are there any further questions?
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A.2 Instructions to subjects for the standard condition and for

the control treatment.

Experimental Instructions

Thank you for participating in the experiment. If you read these instructions

carefully and follow all rules, you can earn money. The money will be paid

out to you in cash immediately after the experiment. During the experiment

we shall not speak of Dollars but rather of points. Points are converted to

Dollars at the following exchange rate:

100 Points = AUD 1.25

It is forbidden to speak to other participants during the experiment. If you

have any question, please ask us. We will gladly answer your questions indi-

vidually. It is very important that you follow this rule. Otherwise, we shall

have to exclude you from the experiment and from all payments.

Participants of this experiments are randomly assigned into groups of 4 mem-

bers, i.e., there are three more persons forming a group together with you.

The composition of groups will remain the same during the whole experiment,

i.e. there will always be the same persons in your group. The identity of your

group members will not be revealed to you at any time. At the start of each

period, each participant gets 20 points. We will refer to these points as your

endowment. Your task is it to decide, how many of your 20 points you want

to contribute to a project or to keep for yourself.

Your income consists of two parts:

1. Points that you keep

2. Your “income from the project”. This income is calculated as follows:

Your income from the project = 0.4× Sum of contributions of all group mem-

bers to the project

The income of the other members of your group is determined in the same way,

i.e. each group member receives the same income from the project. Suppose,

for example, that the total contributions to the project by all members in your

group sum up to 60. In this case you and every other member of your group

receives 0.4 × 60 = 24 points as income from the project. Suppose that you
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and the other 3 members of your group in total contribute only 10 points to

the project. In this case every group member receives 0.4 × 10 = 4 points as

income from the project.

For each point that you keep for yourself you earn an income of one point. If

you contribute that point to the project, instead, the sum of contributions to

the project would rise by one point, and your income from the project would

rise by 0.4× 1 = 0.4 points. However, the income of the other group members

would also rise by 0.4 points, such that the total income of the group would

rise by 4×0.4 = 1.6 points. Your contribution to the project, therefore, raises

the income of the other members of your group. On the other hand, you earn

from each point that other members of your group contribute to the project.

For each point that another group member contributes, you earn 0.4×1 = 0.4

points.

You take your decision via the computer. After all participants have made

their contributions a new period starts, in which you decide again how many

of your 20 points you want to contribute to the project. In total there will be

20 periods.
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B Within-subject comparison

Individual correlation between own and others’ contributions (learning and standard con-

dition): Spearman rank-correlation coefficient; positive and significant (+); negative and sig-

nificant (–); insignificant (0); α = 0.05.

Subject Learning Standard Subject Learning Standard

1 0 0 31 0 +

2 0 – 32 0 +

3 0 0 33 0 +

4 0 0 34 0 +

5 + + 35 0 0

6 + + 36 0 +

7 + + 37 0 +

8 0 0 38 0 +

9 0 0 39 0 0

10 0 0 40 0 +

11 0 0 41 0 +

12 0 0 42 0 0

13 0 0 43 0 0

14 0 + 44 0 +

15 0 + 45 0 +

16 0 + 46 0 0

17 0 + 47 0 0

18 0 + 48 0 0

19 0 + 49 0 +

20 0 + 50 0 0

21 0 + 51 0 0

22 + + 52 0 0

23 0 + 53 0 +

24 0 0 54 0 +

25 0 0 55 0 0

26 0 0 56 0 +

27 0 0 57 0 0

28 0 + 58 0 0

29 0 + 59 0 +

30 0 + 60 0 0
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C Contribution dynamics in groups
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Figure 6: Contributions in groups over time in the standard condition
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Figure 7: Contributions in groups over time in the Learning Condition
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