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crowding in/out in a network model of contagion
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Abstract

We study the effects of an intervention aimed at identifying and
containing outbreaks in a network model of contagion where social
distance is endogenous. The intervention induces a fall in the risk of
infection, to which agents optimally respond by reducing social dis-
tance. If the intervention relies on infrequent or inaccurate testing,
this crowding out effect may fully offset the intervention’s direct ef-
fect, so that the risk of infection increases. In these circumstances, we
show that “slow” interventions – which allow the outbreak to spread
to immediate neighbors before being contained – may generate higher
ex-ante welfare than “fast” ones and may even “crowd in” social dis-
tance. The theory thus identifies a trade off between (i) the swiftness
of the intervention and (ii) the scope for crowding out. We show that
the nature of this trade off crucially depends on the structure of the
underlying social network and prevailing social norms.
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1 Introduction

In the absence of pharmaceutical interventions, containment is the only
tool available to policy makers seeking to mitigate the consequences of an
epidemic. Within the context of the current COVID-19 pandemic, mass
testing and contact tracing have been identified as the two main pillars
of any policy seeking to reduce the social and economic impact of indis-
criminate lockdowns and quarantines. Against this backdrop, two different
sets of problems have been emphasized. First, some behavioral scientists
have expressed concerns that mass testing might crowd out private efforts
at social distancing.1 A second concern shared by policy makers is that,
given the contagiousness of diseases like COVID-19, interventions need to
be fast in order to be effective. For example, experts have argued that tradi-
tional contact tracing methods risk falling “one step behind” the outbreak
and technological solutions to increase the speed of intervention may be
required.2 In this paper, we argue that, although both concerns are theo-
retically plausible if taken in isolation, it is unlikely that they both apply at
the same time. Indeed, the problem is reminiscent of trade-offs familiar to
economists. For instance, the debate on financial crises regularly features
the following policy dilemma: on the one hand, slow interventions are ex-
post suboptimal since they allow contagion to spread and typically end up
being expensive. On the other hand, fast interventions create incentives for
excessive risk taking, thus making an intervention ex-ante more likely.

We start off by rehearsing the traditional crowding out argument. In
particular, we consider the realistic case where interventions may fail to
spot and contain all outbreaks – either because testing is not sufficiently
frequent/widespread or because tests produce false negatives with some
probability. We show that in this case fast interventions may reduce so-
cial distance, increase the expected number of infections and reduce ex-ante
welfare. In contrast, under the same circumstances, “slow” interventions
– which allow limited contagion before containing the outbreak – have a
lower propensity to induce offsetting behavior than fast ones and could
even “crowd in” social distancing. Third, and most important, we show
that the relative advantage of a fast intervention over a slow one crucially
depends on the structure of the underlying social network and on prevailing
social norms.

We do this in a model where agents are part of an exogenously given
social structure. This may reflect economic, social, or geographical con-
straints. Within this structure, agents choose which of their links they
wish to keep active. Active links provide extra benefits (monetary or non-
monetary) but increase the probability of infection. Hence, agents may want

1For instance, two leading British health psychologists wrote a letter highlighting sim-
ilar concerns to England’s Chief Medical Officer. Source: BBC Science Focus Magazine,
April 1st, 2020.

2See for instance the white paper by Hart et al. (2020).
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to render some of their links inactive to reduce their chances of infection.
For instance, while my coauthors are clearly connected to me, during an
epidemic some of them may decide to refrain from meeting me in person.

The intuition for the results is provided by the examples in Figures 1 and
2. In Figure 1, nodes A and B, and B and C, have active links. D is in C’s
social network but their link is currently inactive due to social distancing
choices. Suppose that one node among them carries the disease with some
probability. If C and D were to make their link active, they would provide
a negative externality to A and B, since in the state of nature where D
is the initial carrier, the disease could spread to them via C. Crucially,
however, when deciding whether to activate his link with D or not, C does
not internalize this externality.

A B C D

Figure 1: A chain of active links

Consider now an intervention that, with some probability, removes the
initial carrier before he can infect others. For instance, individuals may
be tested at intervals so that, whenever a positive case is detected, the
outbreak is contained before it can spread further. If testing is infrequent
or inaccurate, the intervention may reduce risk enough to induce C and
D to activate their link but not enough to compensate A and B from the
resulting negative externality. Total welfare may thus decrease.

Suppose in contrast that the intervention is too slow to stop the spread
immediately and the initial carrier is allowed to infect adjacent nodes before
the outbreak is spotted. This affects C’s incentive to activate his link with
D since, in the state where D is the initial carrier, C would still be infected.
Indeed, from C’s viewpoint, the incentive to activate a link with D is the
same as with no intervention.3 Yet, this type of intervention is still beneficial
since, in the states where A or C is the carrier, one individual is spared
infection.

The result, however, crucially depends on the underlying network struc-
ture. To see this, contrast the previous example with that in Figure 2. It
is still true that, under a slow intervention, C’s incentives are the same as
with no intervention. However, one can easily verify that, keeping fixed
the active links, under a slow intervention everyone is infected in the same
states as with no intervention.

These examples show that it is crucial to investigate how the underlying

3The same is not true for D, though. Under the intervention, D has a lower probability
to be indirectly infected by A and B, so that his incentive to activate the link with C
increases, albeit not as much as under a fast intervention. Hence, the extent to which
the intervention avoids crowding out depends on whether C or D is more “reluctant” to
activate the link. We will come back to this when analyzing the star structure.

3



A

B
C D

Figure 2: A clique of active links

network structure interacts with the intervention. In this paper, we analyze
three very different underlying structures: the star, the cycle graph and the
complete graph. In two of these (complete and star) average distances are
short, while the other (cycle) has long average distances. One of these (star)
is strongly hierarchical, while the others are non-hierarchical.

For relatively sparse networks, like the star and the cycle, we show that
there exists a parameter space such that a slow intervention, by avoiding
crowding out, increases welfare when a fast one would reduce it. Things
are more complex in denser networks. Intuition suggests that a slow inter-
vention is very costly if the network is dense because the outbreak could
potentially infect a large number of nodes before being contained. Accord-
ingly, we do find that in some equilibria a slow intervention is dominated
by a fast one. However, there are also equilibria where a slow intervention
may actually “crowd in” social distancing. To see how crowding in may
come about, consider again Figure 2. In the absence of intervention, node
A (or B) has a strong incentive to keep his link with C active because he
knows that, if he were to cut it, he would still have a high chance of being
infected by C via B. A slow intervention, however, reduces the risk of such
an “indirect” infection while leaving the risk of a direct one unchanged. The
intervention may thus convince A to increase his social distance by cutting
the link with C (which in turn increases B’s incentive to follow suit). More
precisely, when the underlying network is the complete graph, we focus on
equilibria featuring collections of isolated cliques. The size of cliques is not
fully determined as cliques of different sizes may be stable under the same
circumstances. We show that, when agents coordinate on the equilibrium
featuring the smallest stable cliques, a fast intervention is always superior.
However, if social norms induce agents to coordinate on the equilibrium
with the largest stable cliques, a slow intervention that crowds in social
distancing may be preferred.

The paper is organized as follows. After a short review of the literature,
Section 2 introduces the model. Section 3 considers the benchmark case
where agents’ behavior is fixed and there is no crowding out. Section 4
provides some general insights, while Section 5 looks at specific network
structures. Section 6 concludes. All proofs can be found in the Appendix.
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1.1 Related literature

At least since Peltzman (1975), economists have been interested in whether
behavioral responses to risk reducing interventions may partially or fully
offset the intervention’s direct effect.4 Starting from Kremer (1996), some
of the recent works specifically focus on infection prevention and mitiga-
tion. These include Geoffard and Philipsons (1996), Gersovits and Hammer
(2004), Reluga (2010), Goyal and Vigiers (2015), Greenwood et al. (2019),
Toxvaerd (2019), Rowthorn and Toxvaerd (2020). These models however
tend to abstract from social structure.5

The economic literature on contagion in networks is sizeable and grow-
ing. Examples include Cabrales et al. (2012), Goyal and Vigiers (2014),
Erol and Vohra (2015), Goyal et al. (2016), Acemoglu et al. (2016a), These
works tend to mostly focus on network design and/or resilience and tend to
abstract from specific policy interventions. A similar point broadly applies
to the literature on financial contagion (see Glasserman and Young (2016)
and Acemoglu et al. (2016b) for surveys).

Closer to our setting, Blume et al. (2013) analyze welfare in a static,
reduced-form model of contagion in networks (see also Bougheas, 2018).
Decentralized equilibria are suboptimal because of the externality outlined
in the introduction: when forming new links, agents do not internalize the
increase in the probability of infection of their neighbors. Using a variant
of Blume et al. (2013), Talamas and Vohra (2020) study the welfare conse-
quences of the introduction of an imperfect vaccine. Although their findings
share similarities with our crowding out (but not crowding in) result, our
focus is on the trade off between speed of containment and crowding out.
This dimension of the problem is clearly absent in the case of a vaccine.

2 Model

The model is a variant of Blume et al. (2013). The main difference is
that agents are only allowed to form contacts within an exogenously given
underlying network structure. This reflects the different purposes of the
two studies: While Blume et al. (2013) look at how contagion shapes net-
work formation, we study how social distancing within per-existing social
networks – which may be the result of economic, social, or geographical
constraints – responds to containment policies.

There are N ≥ 2 nodes. Nodes are organized on a graph (the under-
lying network). Nodes can choose to make each of their links active or to
keep them inactive. Only links featured in the underlying network can be
activated. Links are activated by mutual consent but can be made inactive

4See also Hoy and Polborn (2015).
5The current pandemic has also prompted a number of works on social distancing and

interventions (e.g. Acemoglu et al. 2020; Alvarez et al. 2020; Makris, 2020; Galanis,
2020). These works, however, do not specifically focus on offsetting behavior.
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(cut) unilaterally (Jackson and Wolinsky, 1996). An additional active link
to a node that already has n ≥ 0 active links yields a benefit bδn+1 to the
node, with b > 0 and δ ∈ (0, 1). This implies that there are decreasing
returns from active links. These may reflect time constraints or economic
considerations.6 At time 0, there is a probability θN , θ ∈ (0, 1/N ], that one
of the N nodes (the initial carrier) may exogenously become infected. If a
node becomes infected, the disease may spread through the active links. In
particular, we assume that each node is immune with probability φ ∈ (0, 1).
Immune nodes don’t become infected and do not pass the disease to their
neighbors. A node is therefore infected if and only if it is either the ini-
tial carrier or it is not immune and there is a path of non-immune nodes
connecting it to the initial carrier. We assume nodes do not know ex-ante
whether they are immune.7 Finally, becoming infected entails a loss L > 0.

Timing is as follows

t = 0 Nodes decide which links they want to keep active.

t = 1 One node becomes the initial carrier with probability θN .

t = 2 All non-immune nodes with at least one active path of non-immune
nodes from the initial carrier become infected

t = 3 Payoffs are realized

Intervention The above describes the model under no intervention (NI).
Under an intervention, at the end of time 1 nodes are tested for infection.
If there is an initial carrier, this is identified with probability λ ∈ (0, 1). We
refer to λ as the accuracy of the intervention. This reflects how systemati-
cally nodes are tested for infection or how accurate the test is. Under a fast
intervention (FAST), an initial carrier that is identified is prevented from
infecting any other node. Under a slow intervention (SLOW), an identi-
fied initial carrier infects his first degree neighbors (provided they are not
immune) but the infection does not spread beyond that.
Discussion The model differs from Blume et al. (2013) in a few technical
assumptions made for analytical convenience given the fact that we analyze
several different network structures. In Blume et al. (2013) all benefits
are wiped out if an individual is infected. Similar to Talamás and Vohra
(2018), we assume that the benefits are kept but there are decreasing returns

6The assumption of an exponential decay for the benefits is stark and unnecessary for
the results. That said, in order to have meaningful comparative statics when analyzing
the complete graph in Section 5, we do need that beyond a certain number of active links
the benefit of an additional link tends to go to zero quite sharply.

7This would be the case if immunity were determined by genetic traits that tend to
vary in the population. Alternatively, the same would apply if, during previous outbreaks,
a large number of infections were asymptomatic and/or tests were initially restricted to
clinically severe cases, as in the current epidemic. For instance, using data from China
and repatriation flights, Verity et al. (2020) estimate that a large proportion of COVID-19
cases were not identified.
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from each additional active link. Although conceptually different, the two
assumptions play an analogous role from an ex-ante viewpoint. Also, it
turns out that the analysis of cycles and cliques is massively simplified by
the assumption that only one individual is exogenously infected. This is
similar to the “random adversary attack” in Goyal et al. (2016). Allowing
multiple exogenous infections would not qualitatively change the results.
Finally, we assume that a fraction of agents is immune. This is again close
in spirit to Blume et al. (2013)’s assumption that the infection spreads
through active links only with some positive probability, but not exactly
identical. On the other hand, the presence of a fraction of immune agents
is standard in models of epidemics (see e.g. Toxvaerd, 2020).

3 Preliminaries and benchmark

A node i with n active links becomes infected with probability

π(i) = θ︸︷︷︸
Pr i is the

carrier

+ (1− φ)︸ ︷︷ ︸
Pr i not
immune

1−
n∏
j=1

(1− π(j))


︸ ︷︷ ︸

at least 1 infected
neighor

, (1)

where π(j) ∈ [0, 1] is neighbor j’s probability of being infected, which in
turn depends on j’s active links. Some examples will be useful in what
follows. Conditional on an outbreak hitting a node, a first degree neighbor
of the initial carrier has a conditional probability (1−φ) to become infected.
More generally, a node with only one path of active links of distance k from
the initial carrier has conditional probability (1 − φ)k to be infected. A
node with k paths from the initial carrier, all of distance 2, is infected if not
immune and at least one node out of k is not immune. This occurs with
(conditional) probability (1− φ)[1− φk].

Node i’s expected payoff is given by

n∑
j=1

bδj − π(i)L. (2)

Under a fast intervention, infection occurs only if the initial carrier is not
identified, so that the probability of “endogenous” infection (the second term
in 1) is multiplied by (1− λ). The same applies under a slow intervention,
with the difference that the reduction (1−λ) does not apply to the carrier’s
first degree neighbors.

Consider now ex-ante welfare when active links are given. Total welfare
is the sum of expected payoffs, i.e. the total benefits from active links net
of the expected loss from infection. Let WNI denote ex-ante welfare in the
absence of intervention and let WI , I = FAST, SLOW , denote the same
under an intervention. Then, it is clear that
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Proposition 1. In the absence of behavioral responses, if there is at least
one active link, then WFAST > WSLOW ≥WNI .

In what follows, we will analyze situations under which the welfare rank-
ing is changed when the active subgraph becomes endogenous. We say that
crowding out (CO) occurs if nodes add links in response of the intervention
(so that the intervention triggers a partially or totally offsetting effect on
infection probabilities). We say that crowding out is full if the average in-
fection probability increases as a result of the intervention. Clearly enough,
an intervention can only reduce welfare if there is full crowding out. Full
crowding out, however, is not sufficient for a reduction in welfare since the
increase in infection probability might be compensated by the benefits from
the additional active links. In general, we have

WI −WNI < 0⇒ full CO⇒ CO (3)

Note that, in practice, crowding out is a phenomenon of interest in its own
right. For instance, there may be other externalities connected to the total
number of infected agents not considered by the model (e.g. strain on the
health system). That said, focusing on welfare has the advantage of making
explicit the trade off between health and economic activity that is at the
centre of the current debate. Finally, we say that the intervention crowds in
social distance if the number of active links is reduced by the intervention.

4 Generic networks

The equilibrium concept we use is pairwise stability (Jackson and Wolinsky,
1996): no node can raise his payoff by cutting one of his links and no two
nodes can both benefit (at least one strictly) from activating a link. Before
turning to specific network structures, we provide some general insights that
help to illustrate the policy dilemma.

Proposition 2. Fix an equilibrium under NI. Whenever a slow interven-
tion induces two nodes to deviate and activate an additional link, a fast
intervention also does. However, the reverse is not true.

Slow interventions have a lower propensity to trigger crowding out. This
is because slow interventions, while reducing the risk of indirect contagion,
do not reduce the risk of contagion from a direct link. However, if crowding
out does occur and the behavioral response is similar in terms of number
of additional active links, then FAST is clearly superior as more nodes are
protected. The result is however agnostic about the welfare ranking of the
two types of intervention (and how they compare to no intervention). To
answer these questions, we need to focus on specific network structures.
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5 Specific network structures

In what follows, we will focus on a number of different underlying networks:
the star, the cycle graph, and a complete graph as illustrated in Figure 3.
The focus of our analysis will be the active graph arising in equilibrium (the
solid lines in the Figure).

(ii)

(i) (iii)

(vi) (iv)

(v)

(a) star

(ii)

(i) (iii)

(vi) (iv)

(v)

(b) complete graph

(ii)

(i) (iii)

(vi) (iv)

(v)

(c) cycle graph

Figure 3: Solid lines represent active links. Dashed lines inactive links.

5.1 Stars

Consider the case where the underlying network is a star as illustrated in
Figure 3 (a) and suppose that there are n active links (so that there are
n + 1 active nodes). Note that a peripheral node i is at distance 2 from
every other peripheral node and at distance 1 from the hub. Under a fast
intervention, his ex-ante probability of infection is

θ︸︷︷︸
Pr i is
carrier

+ (1− λ)︸ ︷︷ ︸
interv.
fails

(1− φ)︸ ︷︷ ︸
i not

immune

[ θ︸︷︷︸
hub is
carrier

+ (1− φ)︸ ︷︷ ︸
hub not
immune

θ(n− 1)︸ ︷︷ ︸
other n− 1

carrier

] (4)

On the other hand, the hub is at distance one from every other node. Hence,
he has a higher infection probability,

θ + (1− λ)(1− φ)θn. (5)

Under NI, the same probabilities are obtained by setting λ = 0 in (4)
and (5). Under SLOW, the probability for a peripheral node is given by (4)
plus λθ(1 − φ), i.e. the probability that the hub is identified as a carrier
and the peripheral node is not immune (in which case a peripheral node is
infected under SLOW but not under FAST). Since the hub has distance one
from all active nodes, his probability of infection under SLOW is the same
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as under NI. Interestingly, a slow intervention gives some protection to the
peripheral nodes but leaves the hub totally exposed.

Consider now pairwise stability.
(Note: In the text, we only provide stability conditions for FAST. The con-
ditions for NI are derived by setting λ = 0. Those for SLOW are provided
in the Appendix ).

Lemma 1. Under a fast intervention, a star component with n + 1 active
links is pairwise stable iff

(1− φ)θ(1− λ)Lmax

{
1

δn
,
1 + (1− φ)(n− 1)

δ

}
≤

b ≤

(1− φ)θ(1− λ)Lmax

{
1

δn+1
,
1 + (1− φ)n

δ

}
(6)

Under the same condition, a star component with n + 1 active links is the
only pairwise stable component.

Stability of an n+1-member active component requires that the benefits
are large enough so that both the hub and the peripheral nodes do not want
to deactivate their link – the first inequality in (6) – but not so large that the
hub and an isolated node want to activate an additional link – the second
inequality.

Lemma 1 points to the existence of two regimes. If δ is sufficiently close
to one, the hub – who obtains a benefit bδn+1 from an additional active
link – wants to activate a new link whenever an isolated node wants to but
not vice versa. This is because the hub has a higher probability of being
infected than an isolated node. Hence, in this case, the size of the active
component is determined by the propensity to join of the isolated nodes.
We call this the shy periphery regime. In contrast, if δ is small or n is large,
the returns from an additional links to the hub are small. As a result, the
hub is more reluctant to activate links than the isolated nodes. We call this
the shy hub regime.

How does crowding out occur? Note that in (6), both the upper and
lower bounds on b are decreasing in λ and increasing in n. The same ap-
plies under a slow intervention. It follows that behavioral responses to any
intervention necessarily weakly increase the number of active links. More
generally,

Lemma 2. Consider any intervention (fast or slow). Then, if there are n
active links when the accuracy is λ′ ≥ 0, there are m ≥ n active links under
λ′′ > λ′ .

A star structure provides the natural setting to illustrate the externality
that arises whenever new links become active. Consider what happens when
a new link between the core and the periphery becomes active in a star with

10



n active nodes. For simplicity, let us abstract from intervention. The social
benefit from the new link is given by the sum of the hub’s benefit and the
benefit to the added node, i.e. b(δ + δn). The social cost is proportional to
the increase in the probability of infection for the two nodes that choose to
activate their link plus the increase for all other n − 1 existing nodes with
active links, i.e.

[(1− φ)θ + (1− φ)2θ(n− 1)]L︸ ︷︷ ︸
∆ cost for new member

+

(1− φ)θL︸ ︷︷ ︸
∆ cost for hub

.+ (1− φ)2θ(n− 1)L︸ ︷︷ ︸
extern. on n− 1 members

(7)

Pairwise stability requires that bδ be weakly larger than the first term and
that bδn be weakly larger than the second. However, the presence of the
externality term implies that the change in social welfare may be negative.
This is the mechanism through which an intervention, by increasing the
number of active links, may lead to a welfare loss.

5.2 Cycle graphs

Assume that the underlying network is a cycle. Here, we want to derive con-
ditions under which the equilibrium involves a collection of isolated chains,
each with n active nodes, as in Figure 3 (c). For simplicity, we abstract from
divisibility issues and assume that the total number of nodes N is always
divisible as required. Also, in the case of cycles, assuming δ < 1 brings
complications without adding insights. Hence, we assume in the text that
δ = 1 and relegate the analysis of the δ < 1 case to the Appendix.

Lemma 3. Under a fast intervention, an equilibrium with a collection of
isolated chains each with n active members exists iff

θ(1− λ)
n−1∑
i=1

(1− φ)iL ≤ b ≤ θ(1− λ)
n∑
i=1

(1− φ)iL. (8)

Under the same condition, any equilibrium is characterized by the presence
of n-member chains.

Note that the second statement need not be taken to say that any equi-
librium must feature a collection of chains each with n nodes. Whenever
n-member chains are stable, an equilibrium may alternate n-member chains
and m ≤ n chains along the cycle (see e.g. Figure 4). For simplicity, we
will focus on the equilibria with the highest and lowest total number of ac-
tive links (highest and lowest equilibria for short). The highest equilibrium
features a collection of chains each with n nodes. The lowest equilibrium
has n-member chains interspersed by isolated agents. In the case depicted
in Figure 4, one can verify that both the sequence of chains {2, 2, 2} and
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the sequence {2, 1, 2, 1} are stable under the same condition (8). From the
viewpoint of the isolated nodes in (b), the incentive to activate their link to
a pair is the same as for the nodes in (a) to activate their link to another
pair. Indeed, this perfect overlap in the conditions under which the two
sequences are stable is the main advantage of setting δ = 1. When δ < 1,
the isolated nodes have higher incentive to activate a link than other nodes.
As discussed in the Appendix, this complicates the analysis of the lowest
equilibrium.

(ii)

(i) (iii)

(vi) (iv)

(v)

(a) pairs

(ii)

(i) (iii)

(vi) (iv)

(v)

(b) pairs/singletons

Figure 4: Possible equilibria with 2-member chains

Similar to the case of stars, note that the bounds on b in (8) are increas-
ing in n and decreasing in λ. As a result, an analogous of Lemma 2 also
applies here.

5.3 Complete graphs

Assume that the underlying network is the complete graph. Here, we want
to derive conditions under which the equilibrium involves a collection of iso-
lated cliques, each with n active nodes (as in Figure 3). Again, we abstract
from divisibility issues.

Lemma 4. Under a fast intervention, an equilibrium with a collection of
isolated cliques with n active members exists iff

θ(1− λ)(1− φ)φn−2

δn−1
L ≤ b ≤ θ(1− λ)(1− φ)[1 + (1− φ)(n− 1)]

δn
L (9)

The first inequality in (9) is the condition under which no node wants
to cut a link. The second inequality ensures that two nodes belonging to
two separate cliques do not want to activate a link. Note that, different
from the star structure (and the cycle with δ = 1), the bounds on b do
not perfectly partition the parameter space as we increase n, but tend to
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overlap (i.e. the lower bound evaluated at n = k + 1 is lower than the
upper bound evaluated at n = k). The result thus points to the existence
of multiple equilibria: there exist parameter values where both n-member
and m-member, m > n, cliques are stable. This indeterminacy is generated
by the presence of strategic complementarity. Suppose that i has an active
link to j. If j, but not i, were to activate his link with h, i’s infection
probability would increase but he would not obtain any benefit. Hence, if j
activates a link with h, there is a strong incentive for i to follow suit. This
complementarity is muted in the cycle and the star since, in both cases, i
does not have any link with h to activate.

Note also that, if δ ≥ φ, then the lower bound on b is non-increasing
in n (while the upper bound is always increasing). In other words, the
incentive to cut links is (weakly) smaller in larger cliques. As a result, the
parameter space under which n-member cliques are stable is a subset of
the space under which n + 1-member cliques are stable, which is in turn a
subset of n+ 2-member cliques and so on. In this case, it is not possible to
have meaningful comparative statics on the intervention. In contrast, when
δ < φ, it is worth cutting links if a clique becomes too large. Intuitively, a
high rate of immune nodes reduces the chances of a path of non-immunes
to the initial carrier, thus providing some protection to nodes not directly
linked to the carrier. Since the benefits from active links increase at a rate
lower than φ, the incentive to cut links increases as the clique becomes
larger. Hence, in what follows we will assume

Assumption 1. δ < φ.

More generally, there may also be equilibria that do not involve collec-
tions of isolated cliques. To simplify the analysis, we will thus focus on two
equilibria: the one featuring the smallest cliques and the equilibrium with
the largest cliques. These equilibria are particularly representative since,
within the class of regular equilibria where all nodes have the same number
of active links, the smallest and largest equilibria are the equilibria with the
lowest and highest number of active links, respectively.8 Hence, they cap-
ture the maximum and minimum amounts of social distancing that can be
achieved in a decentralized equilibrium. In the smallest equilibrium, cliques
grow in size only when they are destabilized by the fact that two nodes from
separate cliques have incentive to activate a new link (the second inequality
in 9). In the largest equilibrium, n-member cliques are destabilized only
when a node wants to cut a link (the first inequality in 9). This suggests
that social norms will determine which equilibrium is more likely to emerge.
For instance, if cutting links is not considered socially acceptable, we would
expect an equilibrium characterized by cliques of larger size. This is because

8See Section B in the Appendix. It should be however noted that there may be regular
equilibria with the same number of active links as the largest or the smallest that are not
collections of cliques.
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it is sufficient that a few agents fail to cut a link to a given agent to induce
all other agents in the clique to keep their link active.

Different from stars and cycles, in the largest equilibrium the effect of
a change in λ on the size of cliques is qualitatively different depending on
whether the intervention is fast or slow.

Lemma 5.

1. Under a fast intervention, both in the largest and the smallest equilib-
ria, if under accuracy λ′ each node in a clique has n active links, then
under λ′′ > λ′ each node in a clique has m ≥ n active links.

2. Under a slow intervention, if under accuracy λ′ each node in a clique
has n active links, then under λ′′ > λ′ each node in a clique has m ≥ n
active links in the smallest equilibrium and m ≤ n active links in the
largest equilibrium.

While in the smallest equilibrium interventions can only crowd out so-
cial distance, in the largest equilibrium social distance is crowded out under
a fast intervention but may increase as a result of a slow intervention. The
intuition for this “crowding in” result is as follows. In the largest equilib-
rium, most links are not cut simply because, even if one were to cut a link
with a node, he would still have high chances to be infected by the same
node via common neighbors. A slow intervention, however, changes this as
it reduces the risk of indirect infection but not the direct risk. This makes
nodes more willing to cut links, which results in smaller equilibrium cliques.

5.4 Welfare

We now consider whether crowding out under a fast intervention may lead
to welfare losses.

Proposition 3. There always exists λ∗ such that a fast intervention in-
creases welfare for all λ > λ∗.

1. If the underlying network is a star, then there exists an open set of
parameter values such that WNI > WFAST .

2. If the underlying network is a cycle, then there exists an open set of
parameter values such that WNI > WFAST both in the highest and in
the lowest equilibrium.

3. If the underlying network is complete and the equilibrium involves a
collection of isolated cliques, then a fast intervention always increases
welfare in the smallest equilibrium, i.e. WFAST > WNI for all param-
eter values. However, the same does not hold for the largest equilib-
rium.
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The first statement is obvious: if the intervention is accurate enough,
crowding out is never full, so that welfare can only increase. Stars and cycles
are similar in the insights they provide. An inaccurate intervention may be
enough to induce two nodes to activate an inactive link (with another chain
of the cycle or with an isolated node), but not sufficient to compensate the
other nodes in the active component of the resulting negative externality.
Consider now point 3. In the smallest equilibrium, cliques tend to be too
small relative to the social optimum.9 In this case, even an intervention
causing full crowding out always increases welfare. In contrast, in the largest
equilibrium there are typically too many active links and the intervention
will typically exacerbate a situation of excessive risk taking. Interestingly,
this suggests that an intervention is more likely to be beneficial when social
norms make agents more at ease with cutting links.10

5.5 Tracing fast and slow

We now look at how a slow intervention compares to a fast one depending
on the structure of the underlying network.

Proposition 4.

1. (Complete graphs) Whenever the equilibrium is characterized by iso-
lated cliques, then WFAST > WSLOW for all parameter values in the
smallest equilibrium. However, in the largest equilibrium, WSLOW ≥
WNI for all parameter values (with strict inequality whenever crowding
in occurs), so that WSLOW > WFAST whenever WNI > WFAST .

2. (Stars) If there are at least 2 active links, in the parameter space such
that the “shy hub” regime prevails, there is no crowding out under
SLOW and WSLOW > WNI (so that WSLOW > WFAST whenever
WNI > WFAST ).

3. (Cycle graphs) If the longest chain has at least 2 active links, there
exists an open set of parameters such that full crowding out occurs
under FAST but not under SLOW and WSLOW > WNI > WFAST .

When the equilibrium involves a collection of cliques where all nodes are
at distance one from each other, a slow intervention cannot improve upon
NI in the absence of behavioral responses. In the smallest equilibrium,
welfare tends to increase when crowding out occurs. As a result, a slow
intervention is always dominated by a fast one. In contrast, in the largest

9Optimality requires that n-member cliques should acquire a new member whenever
the benefit from an additional active link bδn is larger than θ(1 − φ). However, for λ = 0
(i.e. under NI), the second inequality in (9) implies a higher threshold.

10A question (not addressed here) is then whether the intervention may also affect social
distancing norms. There are plausible reasons to argue both for norms becoming stricter
or laxer as a result of the intervention.

15



equilibrium, cliques tend to be too large relative to the social optimum. A
slow intervention that crowds in social distancing is thus always better than
NI and may be superior to FAST.

For star structures, a slow intervention is always better than no interven-
tion in the shy hub regime (and thus may improve upon FAST for parameter
values). This is because the hub’s incentives are unchanged relative to NI
– so that there is no issue of crowding out. At the same time, a slow in-
tervention can stop contagion from spreading beyond the hub whenever the
outbreak hits a peripheral node. However, it is worth noting that while a
slow intervention may be desirable ex-ante, it may become extremely dam-
aging ex-post in the event that the outbreak starts at the core. A better
approach would probably combine a slow intervention with high frequency
testing of the hub, so that any outbreak starting at (or reaching) the core
could be quickly contained. Things are different in the shy periphery regime.
In that case, we show in the Appendix that, if δ is sufficiently close to one,
a fast intervention dominates a slow one. The reason is that, if δ is close
to one, any new active link in the shy periphery regime generates a large
surplus for the hub. This effect compensates for the negative externality on
existing peripheral members.

Finally, consider cycles. Relative to a fast intervention, a slow one re-
duces the incentive for the extreme nodes in the chain to destabilize the
chain by activating a link with a neighbour who is part of another chain.
At the same time, if chains have more than two active nodes, it provides
some protection.

6 Concluding remarks

Our results suggest that whether we should be concerned about the speed of
an intervention or its possible unintended consequences strongly depends on
the underlying network structure and on prevailing social norms. In dense
networks, a fast intervention is superior to a slow one if agents coordinate
on small groupings. However, when social norms encourage coordination on
larger cliques, a slow intervention may result in an ex-ante lower probability
of infection as it “crowds in” social distance. In sparser networks, there is
less room for crowding in. However, a slow intervention can be superior to
a fast one by reducing the scope for crowding out. Finally, in hierarchical
networks, a slow intervention fully prevents crowding out when the core is
more reluctant to activate links than the periphery. This however comes at
a price since, if the core is infected, a slow intervention cannot prevent mass
contagion.

An obvious extension of the basic model would consist in introducing
other-regarding motives. Note however that, depending on the precise form
that social preferences take, these could potentially induce either an in-
crease or a reduction in social distancing, as agents partially internalize
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their neighbor’s benefit from activating mutual links. Another key ques-
tion is the extent to which interventions may affect social norms and thus
“select” for high or low social distancing equilibria.
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A Appendix

A.1 Proof of Proposition 2

Proof. Let G denote the equilibrium subgraph formed by active links under
NI and suppose that nodes i or j or both do not want to activate their link
under NI, but both want under the intervention. WLOG, suppose that i
does not want to activate the link to j. Let n ≥ 0 be i’s degree under NI. Let
∆π ∈ (0, 1) denote the additional probability of infection for i if he were to
activate the link under NI given G. Then, under FAST, the same probability
becomes (1− λ)∆π. Clearly enough, for i to be willing to activate the link
under FAST but not under NI, it must be that

(1− λ)∆π <
bδn+1

L
≤ ∆π. (10)
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Under SLOW, i is infected in the same states as under FAST, except for
the state where j is identified as the carrier, in which case if not immune
i is infected if under SLOW but not under FAST. This state occurs with
probability λθ(1− φ). Hence, for i to activate the link under SLOW,

(1− λ)∆π + λθ(1− φ) <
bδn+1

L
≤ ∆π, (11)

Clearly, (10) holds whenever (11) holds but the reverse is not true.

A.2 Proof of Lemma 1

Proof. Assume that the underlying network is a star and consider an equi-
librium characterized by a star subgraph with n active links (i.e. n + 1
active nodes). For this to be stable, it is necessary and sufficient that

1. No node wants to cut any of their existing active links.

2. Both the hub and isolated nodes do not want to make a new link
active.

Each peripheral node has an active link to the hub and is indirectly linked
to the other n − 1 peripheral nodes via the hub. They do not want to cut
their active link if

−θ︸︷︷︸
Pr of inf. if

isolated

L ≤ bδ − [θ + (1− λ)(1− φ)θ[1 + (1− φ)(n− 1)]]︸ ︷︷ ︸
Pr of inf. if
connected

L (12)

The hub, who has n active links, does not want to cut any of these if

bδn ≥ (1− λ)(1− φ)θL. (13)

Rearranging (12) and (13), no node wants to cut an active link if the first
inequality in (6) holds. Consider then the incentive to add an active link. A
similar argument shows that, for this to be mutually optimal both for the
hub and for an isolated node, the second inequality in (6) is necessary and
sufficient. Note also that, in expression (6), the upper bound on b for n = k
coincides with the lower bound for n = k + 1. As a result, so long as b is
within the bounds, no other star subgraph of size different from n is stable.

A.3 Proof of Lemma 2

Proof. This follows directly from the fact that both the upper and lower
bounds on b in (6) are increasing in n and decreasing in λ.

19



A.4 Proof of Lemma 3

Proof. Assume that the underlying network is a cycle and consider an equi-
librium characterized by a collection of active chains each with n− 1 links
(i.e. n nodes). Let k = 1, ...n denote a node’s position in the chain moving
clockwise. For n-member chains to be stable, it is necessary and sufficient
that: 1) the two extreme nodes, k = 1 and k = n, do not want to cut their
link (if they do not want to, all non-extreme nodes never want to cut a link
for δ = 1); 2) nodes in extreme positions k = n and k = 1 in adjacent chains
do not want to activate their mutual link. 1) requires that any extreme node
i obtains a lower payoff as an isolated node than when having an active link
to the chain, i.e.

−θL ≤ b− [ θ︸︷︷︸
Pr i carrier

+ (1− φ)θ(1− λ)︸ ︷︷ ︸
Pr i not imm.
i+1 carrier

+ (1− φ)2θ(1− λ)︸ ︷︷ ︸
Pr i & i+1 not imm.

i+2 carrier

+...

...+ (1− φ)n−1θ(1− λ)]L ⇔

−θL ≤ b−

(
θ + θ(1− λ)

n−1∑
i=1

(1− φ)i

)
L ⇔

b ≥ θ(1− λ)
n−1∑
i=1

(1− φ)iL (14)

As for 2), if node i decides to activate his link with a neighbour who is
part of an adjacent chain, his additional payoff (on top of what he already
obtains from the chain he belongs to) is

b− [(1− φ)θ(1− λ)︸ ︷︷ ︸
Pr i not imm.

i-1 carrier

+ (1− φ)2θ(1− λ)︸ ︷︷ ︸
Pr i & i-1 not imm.

i-2 carrier

+...

...+ (1− φ)nθ(1− λ)]L =

b− θ(1− λ)

n∑
i=1

(1− φ)iL (15)

This has to be negative, hence the second inequality in (8). Finally, note
that under condition (8) there are no equilibria where the largest chain has
m < n members. This is implied by the first inequality in (8); for all m < n,

b− θ(1− λ)

n−1∑
i=1

(1− φ)iL > 0 ⇒

b− θ(1− λ)
m−1∑
i=1

(1− φ)iL > 0, (16)

so that any two nodes in extreme positions k = 1 and k = m in chains
with m < n nodes want to deviate and form a link. Symmetrically, the

20



second inequality in (8) rules out any equilibrium where the largest chain
is of size m > n, since an extreme node would want to cut his link. Hence,
any equilibrium must have chains of size n.

A.5 Proof of Lemma 4

Proof. For a collection of totally connected n member cliques to be stable, it
must be that: 1) no node has incentive to cut a link and 2) no two agents in
two different cliques have incentive to form a link. Consider 1). In a clique
of n nodes, each node has n− 1 active links. Suppose i cuts his n− 1th link
with a node j. i thus forgoes a benefit bδn−1. His probability of infection
is reduced by the fact that he cannot be directly infected by j but only
indirectly through their common links. This means that, if j is infected, i
is infected iff he is not immune and at least one of their common n−2 links
are not immune. Hence, 1) requires

bδn−1 ≥ (1− λ)θ(1− φ)L− (1− λ)θ(1− φ) (1− φn−2)︸ ︷︷ ︸
Pr at least 1
common link
not immume

L, (17)

where the first term on the RHS is the probability of being infected by j if
the link is not cut and the second is the same if the link is cut. This implies
the first inequality in (9). Consider now 2). If node i activates a new link
with j, who must belong to a different clique, his probability of infection is
affected both by the risk that j is the initial carrier and the probability that
j has been infected by a member of his clique. Hence, two nodes i and j in
different cliques (who already have n−1 links) have no incentive to activate
their link if

bδn ≤ (1− λ)θ(1− φ)︸ ︷︷ ︸
j is the
carrier

L+ (1− λ)θ(1− φ)2(n− 1))︸ ︷︷ ︸
j infected

by his links

L (18)

This establishes the second inequality in (9).

A.6 Stability conditions under SLOW

Consider a star subgraph with n+ 1 active nodes. If the hub is the initial
carrier and is identified, all nodes that are not immune are infected under
SLOW but not under FAST. Hence, the change in infection probability for
a peripheral node when activating a new link is the same as under FAST
plus the probability of this state, λθ(1−φ). The same applies when cutting
a link. Since the hub has distance one from all active nodes, his incentives
to activate or cut links are the same as under NI. The stability condition
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(6) under SLOW thus becomes

(1− φ)θLmax

{
1

δn
,
1 + (1− λ)(1− φ)(n− 1)

δ

}
≤

b ≤

(1− φ)θLmax

{
1

δn+1
.
1 + (1− λ)(1− φ)n

δ

}
(19)

Consider now cycles. For any of the extreme nodes in a chain with
n members, both the additional probability of infection when activating a
link and the reduction when cutting one are again increased by λθ(1 − φ)
relative to FAST. As already argued in the proof of Lemma 3, when δ = 1,
no other node wants to cut a link if the extreme nodes do not want to. As
a result, condition (8) becomes

θ

[
(1− λ)

n−1∑
i=1

(1− φ)i + λ(1− φ)

]
L ≤ b ≤ θ

[
(1− λ)

n∑
i=1

(1− φ)i + λ(1− φ)

]
L.

(20)
Consider now cliques with n active nodes when the underlying network

is the complete graph. Again, the change in infection probability for node
i when activating a link to a node j in a different clique is the same under
FAST plus the term λθ(1−φ) (reflecting the probability that j is identified
as a carrier, in which case i is infected under SLOW but not under FAST).
The reduction in the infection probability for i when cutting a link with a
node j who is in i’s clique is the same as under FAST plus again λθ(1− φ).
This is because, under SLOW, if i does not cut the link, he is still infected by
j when j is identified as carrier. Stability condition (9) accordingly becomes

θ(1− φ)[φn−2(1− λ) + λ]

δn−1
L︸ ︷︷ ︸

≡b(n−1;φ,λ)

≤ b ≤ θ(1− φ)[1 + (1− λ)(1− φ)(n− 1)]

δn
L︸ ︷︷ ︸

≡b(n;φ,λ)

.

(21)
Similar to the case of a fast intervention, the smallest equilibrium features
a collection of n-member cliques if

b(n− 1;φ, λ) ≤ b ≤ b(n;φ, λ). (22)

The largest equilibrium, features n-member cliques if

b(n− 1;φ, λ) ≤ b ≤ b(n;φ, λ). (23)

It is important to note that, different from (22), the upper and lower bounds
on b in (23) are increasing in λ, while still increasing in n. This implies
that, different from a fast intervention, under the largest equilibrium a slow
intervention may actually reduce n relative to NI.
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A.7 Proof of Lemma 5

Proof. Point 1. From (9), the stability condition for the smallest equilibrium
requires

B(n− 1;φ, λ) ≤ b ≤ B(n;φ, λ), (24)

where

B(n;φ, λ) ≡ θ(1− φ)(1− λ)[1 + (1− φ)(n− 1)]

δn
L. (25)

The same for the largest equilibrium is

B(n− 1;φ, λ) ≤ b ≤ B(n;φ, λ), (26)

where

B(n;φ, λ) ≡ θ(1− λ)(1− φ)φn−1

δn
L. (27)

In both cases, both the upper and lower bounds for b are increasing in n
and decreasing in λ, which implies that, keeping b fixed, an increase in λ
must weakly increase n. Consider now point 2 and compare the above with
the same derived for SLOW in (22) and (23). The bounds for b are still
increasing in n and, in the smallest equilibrium, decreasing in λ. However,
in the largest equilibrium, the bounds are increasing in λ, which implies
that in the largest equilibrium the size of the clique must be weakly smaller
under λ′′.

A.8 Proof of Proposition 3

Consider the first statement. Note that, since each node’s number of active
links weakly increases under FAST, the total benefits are always weakly
larger under FAST than under NI. Hence, we just need to show that there
exists λ∗ < 1 such that the probability of infection is lower under FAST
for all λ > λ∗. Suppose that, under NI, node i has n active links. Let
π̃n ∈ (0, 1) denote the probability of node i being infected by neighbors
under NI. Clearly enough, if i does not activate any new link, the probability
becomes (1− λ)π̃n < π̃n under FAST, so that welfare must increase for all
λ > 0. Suppose then that i activates k ≥ 1 new links because of the
intervention and let π̃n+k denote the probability of infection that i would
face without intervention with these additional k links. Finally, let π̃M the
probability of infection under no intervention if i activates all his available
links. Then, π̃n+k ≤ π̃M . Let λ∗ < 1 be such that (1− λ∗)π̃M = π̃n. Then,
for all λ > λ∗, we have (1 − λ)π̃n+k < π̃n. Since this holds for all nodes i,
the result is established.

We now prove points 1-3 starting from stars.

Stars
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Proof. Suppose that, under NI, the stable component has n active links (i.e.
n + 1 active nodes). From Lemma 2, the number of active links can only
increase under FAST. Hence, suppose that, under FAST, the component
has m active links, with m ≥ n. The total additional benefit generated by
the additional links is

b δ(m− n)︸ ︷︷ ︸
benefit

to n−m new
members

+ b
m∑

i=n+1

δi︸ ︷︷ ︸
benefit
to hub

. (28)

Compared to n + 1 nodes under NI, the change in infection probability to
the existing n peripheral nodes is given by the probability to be infected by
an outbreak started by any of the new m − n nodes net of the probability
that any outbreak is contained by the intervention, i.e.

(1− φ)θ[(1− φ)(m− n)− λ(1 + (1− φ)(m− 1))] (29)

The same for the hub is

(1− φ)θ[m− n− λm], (30)

and the additional probability for the m− n joining nodes is

(1− φ)θ(1− λ)[1 + (1− φ)(m− 1)]. (31)

Putting all together, the additional social cost is

(1− φ)θ[(1− φ)(m− n)− λ(1 + (1− φ)(m− 1))]nL︸ ︷︷ ︸
externality on exist. n members

+

(1− φ)θ(1− λ)[1 + (1− φ)(m− 1)](m− n)L︸ ︷︷ ︸
∆ cost for new members

+

(1− φ)θ[m− n− λm]L︸ ︷︷ ︸
∆ cost for hub

(32)

We now show that there exists an open set of parameter values such
that WFAST < WNI . For ε > 0 suitably small, set δ such that

δn =
1

1 + (1− φ)n
(1− ε). (33)

Since 1/δn+1 > (1 + (1− φ)n)/δ, from (6), stability of an active component
with n+ 1 nodes requires

b ≤ (1− λ)
(1− φ)θ

δn+1
L. (34)

Set also

b =
(1− φ)θ

δn+1
L(1− ε), (35)

24



so that an active component with n + 1 nodes is (just) stable under NI.
Finally, let λ = `ε, with ` > 1, to ensure that

(1− φ)θ

δn+1
L(1− `ε) < b, (36)

so that the n + 1 active component is unstable under FAST. Hence, for ε
sufficiently small, the intervention triggers a transition from a component
with n+ 1 active nodes to one with n+ 2. Using (33) and (35) and taking
the limit for ε→ 0, the change in total benefits is

b(δ + δn+1) =
(1− φ)θ

δn
L+ (1− φ)θL =[

2(1− φ)θ + (1− φ)2θn
]
L. (37)

Using (32) with m = n + 1, the change in social costs for ε → 0 converges
to

(1− φ)2θnL︸ ︷︷ ︸
extern. on n members

+ [(1− φ)θ + (1− φ)2θn]L︸ ︷︷ ︸
∆ cost for new member

+

(1− φ)θL︸ ︷︷ ︸
∆ cost for centre

. (38)

The difference between additional social benefits and additional social costs
in the limit is thus equal to the size of the externality,

−(1− φ)2θnL < 0 (39)

As a result, by continuity, there exists ε∗ such that WFAST < WNI for all
ε < ε∗.

Cycle graphs

Proof. We now show that there exists an open set of parameter values such
that WFAST < WNI . Suppose that, in the absence of intervention, b is close
to the upper bound of the admissible value for an equilibrium with n − 1
chains, n > 2. Formally, for a suitably small ε > 0, let

b = θ
n−1∑
i=1

(1− φ)iL(1− ε) (40)

and let λ = `ε, with ` > 1 so that

θ

n−1∑
i=1

(1− φ)iL(1− `ε) < θ

n−1∑
i=1

(1− φ)iL(1− ε) (41)

As a result, the intervention destabilizes the sequence of n−1-member chains
and induces a sequence of n-member chains.
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Consider now infection probabilities. For convenience, the argument
below will abstract from the nodes’ identity. Instead, we will track the
change of infection probability for any node in position k = 1, ..., r in r-
member chains (where r is the last node of the chain moving clockwise).
Let p(z) :=

∑z
i=1(1 − φ)i for all z ≥ 1 and p(0) = 0. Under FAST, a node

in position k = 1, .., n in a n chain has probability θ(1−λ)p(k− 1) to catch
an infection spreading clockwise and probability θ(1 − λ)p(n − k) to catch
one spreading anti-clockwise. His total infection probability is thus

θ︸︷︷︸
exog.

+θ(1− λ)[p(k − 1)︸ ︷︷ ︸
clockwise

+ p(n− k)︸ ︷︷ ︸
anticlockw.

] (42)

We start with the highest equilibrium. In a sequence of chains of length
n−1, there are in total N/(n−1) nodes in each of positions k = 1, ..., n−1.
Similarly, in a sequence of chains of length n, there are N/n nodes in each
of positions k = 1, ..., n. As a result, the total change in expected infection
costs between FAST and NI is

∆C := (1− λ)θ
N

n

n∑
k=1

(p(k − 1) + p(n− k))L −

θ
N

n− 1

n−1∑
k=1

(p(k − 1) + p(n− 1− k))L (43)

The total number of active links in a sequence of n-member chains is

N

n︸︷︷︸
number of n chains

× (n− 1)︸ ︷︷ ︸
links per chain

(44)

and in a sequence of n− 1-member chains,

N

n− 1︸ ︷︷ ︸
number of n− 1 chains

× (n− 2)︸ ︷︷ ︸
links per chain

(45)

As a result, the number of additional links generated by moving from n− 1
to n sequences is

N

n(n− 1)
(46)

Hence WFAST < WNI iff

2b
N

n(n− 1)
−∆C < 0. (47)

Replacing b from (40), ∆C from (43), λ with `ε, and taking the limit for
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ε→ 0, we obtain

WFAST −WNI =
2N

n(n− 1)
θp(n− 1)L− θN

n

n∑
k=1

(p(k − 1) + p(n− k))L +

θ
N

n− 1

n−1∑
k=1

(p(k − 1) + p(n− 1− k))L. (48)

The above is negative if

2p(n− 1)− (n− 1)
n∑
k=1

(p(k − 1) + p(n− k)) +

n

n−1∑
k=1

(p(k − 1) + p(n− 1− k)) < 0. (49)

The LHS reduces to

2p(n− 1) +

n∑
k=1

(p(k − 1) + p(n− k))− 2np(n− 1), (50)

or, using
∑n

k=1 (p(k − 1) + p(n− k)) = 2
∑n−1

k=1 p(k),

2

n−1∑
k=1

p(k)− 2(n− 1)p(n− 1). (51)

Since p(n−1) ≥ p(k) for all k ≤ n−1 (with strict inequality for all k < n−1),
this must be negative. Hence, by continuity, there exists ε∗ such that welfare
decreases for all ε < ε∗.

Consider now the lowest equilibrium. Note that, since in both sequences
{n, 1, ...., n, 1} and {n− 1, 1, ...., n− 1, 1} there is an isolated node for each
chain, the total number of active links in an equilibrium with chains of
length n − 1 is N(n − 2)/n and the same for the equilibrium with length
n chains is N(n − 1)/(n + 1). Hence, the change in the number of links is
2N/n(n + 1). Similarly, the number of nodes in position k is N/n for the
sequence {n−1, 1, ..., n−1, 1} and N/(n+1) for the sequence {n, 1, ..., n, 1}.
Noting that the infection probability of isolated nodes does not change, (48)
becomes

4N

n(n+ 1)
θp(n− 1)L− θ N

n+ 1

n∑
k=1

(p(k − 1) + p(n− k))L +

θ
N

n

n−1∑
k=1

(p(k − 1) + p(n− 1− k))L. (52)

One can then verify that the analogous of (53) for the lowest equilibrium is

2
n−2∑
k=1

p(k)− 2(n− 2)p(n− 1), (53)
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which is again negative.

Complete graphs

Proof. From Lemma 4, the smallest equilibrium is characterized by n-member
cliques under FAST if

B(n− 1;φ, λ) ≤ b ≤ B(n;φ, λ), (54)

where

B(n;φ, λ) ≡ θ(1− φ)(1− λ)[1 + (1− φ)(n− 1)]

δn
L. (55)

The same for the largest equilibrium is

B(n− 1;φ, λ) ≤ b ≤ B(n;φ, λ), (56)

where

B(n;φ, λ) ≡ θ(1− λ)(1− φ)φn−1

δn
L. (57)

Assume that, under NI, the equilibrium has n-member cliques. From Lemma
5, a fast intervention will change the size of cliques from n to m ≥ n. If
m = n, then it is straightforward to verify that welfare increases. Suppose
then that m > n. Let us focus first on the smallest equilibrium. When mov-
ing from a n-member clique to a m-member one, each nodes adds m − n
new links. The change in benefits for any node is thus

b
m−1∑
i=n

δi ≥ θ(1− λ)(1− φ)

δm−1
L
m−1∑
i=n

δi ≥

θ(1− λ)(1− φ)(m− n)L (58)

where the first inequality comes from b ≥ B(m − 1;φ, λ), i.e. stability
condition (54) applied to m-member cliques. The second inequality follows
from δ ≤ 1. Consider now expected infection costs. Compared with an
n-member clique under NI, the additional m− n active links increase each
node’s probability of infection by (1− λ)θ(1−φ)(m−n). To this, however,
we need to subtract the reduction in the probability of being infected by
pre-existing links brought about by the intervention. Relative to NI, the
additional expected cost of FAST is thus

θ(1− λ)(1− φ)(m− n)L︸ ︷︷ ︸
∆ cost of

additional links

−λθ(1− φ)(n− 1)L︸ ︷︷ ︸
∆ Pr of inf

from pre-exist. links
due to intervention

(59)

Since the increase in social benefits is clearly larger than the increase in
social costs, WFAST > WNI .
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We now show that, in the largest equilibrium, there exists an open set
of parameter values such that WFAST < WNI . For ε > 0 but sufficiently
small, set

b =
θ(1− φ)φn−1

δn
(1− ε)L (60)

so that a clique with n active members is stable under NI. Let also λ = `ε,
with ` > 1, so that

θ(1− φ)φn−1

δn
(1− ε)L > θ(1− φ)φn−1

δn
(1− `ε)L. (61)

This ensures that the intervention makes n-member cliques unstable, so
that, for ε small, the number of nodes in each clique must increase by one.
This implies that, relative to NI, each node will have an additional active
link. Using (60), the additional benefit for each node, bδn, becomes

θ(1− `ε)(1− φ)φn−1(1− ε)L (62)

while, setting m = n+ 1 in (59), the extra cost is

θ(1− `ε)(1− φ)L− `εθ(1− φ)(n− 1)L. (63)

Finally, it is straightforward to verify that the difference turns negative for
ε → 0. Hence, by continuity, there exists ε∗ such that WFAST < WNI for
all ε < ε∗.

A.9 Proof of Proposition 4

Proof. Point 1. We now show that, in the smallest equilibrium, WFAST >
WSLOW . If there is no CO, then this is trivially true. Suppose then that,
under NI, the smallest equilibrium has stable cliques of n members; under
SLOW, the equilibrium has stable cliques of size f ≥ n, and, under FAST,
of size s ≥ n. Note that, from (9) and (21), the smallest equilibrium is
characterized by k-member cliques if

B(k − 1;λ, φ) ≤ b ≤ B(k;λ, φ) (FAST)

b(k − 1;λ, φ) ≤ b ≤ b(k;λ, φ) (SLOW), (64)

where, under FAST,

B(k;λ, φ) =
θ(1− φ)(1− λ)[1 + (1− φ)(k − 1)]

δk
L (65)

and, under SLOW,

b(k;λ, φ) =
θ(1− φ)[1 + (1− λ)(1− φ)(k − 1)]

δk
L. (66)
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Note that, for all k, b < B, which implies that cliques must be weakly larger
under FAST than under SLOW, i.e. f ≥ s. Relative to NI, the change in
welfare for each node is

WSLOW −WNI =
s−1∑
i=n

(
bδi − θ(1− φ)L

)
=

b

s−1∑
i=n

δi − θ(1− φ)(s− n)L, (67)

under SLOW and

WFAST−WNI = b

f−1∑
i=n

δi−(1−λ)θ(1−φ)(f−n)L+λθ(1− φ)(n− 1)L︸ ︷︷ ︸
Lower Pr of inf

on pre-exist. links

, (68)

under FAST. Hence,

WFAST −WSLOW = b

f−1∑
i=s

δi − θ(1− φ)[(1− λ)f − s+ λ]L. (69)

However, from (64), the smallest equilibrium can have stable f -member
cliques under FAST only if

bδf−1 ≥ (1− λ)θ(1− φ)[1 + (1− φ)(f − 2)]L. (70)

Using this and δ ≤ 1, we obtain

WFAST −WSLOW ≥ (1− λ) [θ(1− φ)[1 + (1− φ)(f − 2)] (f − s) −
θ(1− φ) [(1− λ)f − s+ λ]L =

θ(1− φ)[λ(s− 1) + (1− λ)(1− φ)(f − s)(f − 2)]L > 0.

(71)

We now show that in the largest equilibrium WSLOW ≥WNI with strict
inequality when crowding in occurs. From Lemma 5, compared to NI, the
size of cliques under SLOW is weakly lower. Suppose then that there are
n-member cliques under NI and s-member cliques under SLOW, with n ≥ s.
For n = s, WSLOW = WNI since every node is at distance one from every
other node in the clique. For n > s, the change in welfare is

WSLOW −WNI = θ(1− φ)(n− s)L−
n−1∑
i=s

bδi. (72)

Using (23), the largest equilibrium has stable s-member cliques under SLOW
only if

b

s−1∑
i=n

δi ≤ θ(1− φ)[φs−1(1− λ) + λ]L

∑n−1
i=s δ

i

δs
<

θ(1− φ)[φs−1(1− λ) + λ](n− s)L < θ(1− φ)(n− s)L, (73)
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which implies that WSLOW > WNI .
Point 2. This follows from the observation that, under SLOW, the hub

is infected in all states under which he is infected under NI. Hence, a slow
intervention increases the propensity to join of the periphery but not that
of the hub. As already argued in Section A.6, the stability condition (6) for
an active component with n members under FAST, under SLOW becomes

(1− φ)θLmax

{
1

δn
,
1 + (1− λ)(1− φ)(n− 1)

δ

}
≤

b ≤

(1− φ)θLmax

{
1

δn+1
,
1 + (1− λ)(1− φ)n

δ

}
(74)

If δ−(n−1) > 1 + (1 − φ)(n − 1), a slow intervention never leads to CO.
However, if n > 2, WSLOW > WNI since, in all states where a peripheral
node is identified as the carrier, the infection cannot spread beyond the hub
and all other peripheral nodes are spared.

Point 3. The argument for point 3 is a minor variation on the one
already used for point 2 of Proposition 3. To avoid duplications, we refer
the reader to that proof. In particular, instead of (40), now set b such that

(1− `ε)θ
n−1∑
i=1

(1− φ)iL < b < θ

[
(1− `ε)

n−1∑
i=1

(1− φ)i + `ε(1− φ)

]
L (75)

This ensures that: 1) Under NI and under SLOW the size of stable chains
is n− 1, since b/L < θ(1− λ)

∑n−1
i=1 (1− φ)i + λθ(1− φ) < θ

∑n−1
i=1 (1− φ)i;

2) under FAST the size is n since b/L > (1 − λ)θ
∑n−1

i=1 (1 − φ)i. One can
then use an argument analogous to the proof of point 2 in Proposition 3 to
show that there exsits ε∗ such that WNI > WFAST for all ε < ε∗ both in the
highest and the lowest equilibrium. All that remains to show is that, for all
ε positive but sufficiently small, WSLOW > WNI . Note that, since chains
have size n− 1 both under NI and under SLOW, the benefits are identical.
Hence, it is enough to compare infection probabilities. Let π̂k ∈ (0, 1)
denote the endogenous infection probability under NI for a node in position
k = 1, ..., n − 1 in a chain with n − 1 nodes. Consider first k /∈ {1, n − 1},
(i.e. nodes with two active links). The same probability under SLOW is

(1− λ)π̂k + 2λθ(1− φ) = (1− `ε)π̂k + 2`εθ(1− φ). (76)

Note that, for any node with two active links, π̂k ≥ 2θ(1 − φ) (with strict
inequality when there are more than 3 nodes in a chain). In turn, this
implies that the chances of infection are weakly lower under SLOW for all
ε > 0. Consider now k = 1 or k = n− 1. These nodes have only one active
link. Their probability of infection under SLOW is

(1− `ε)π̂k + `εθ(1− φ). (77)
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Since by assumption there are at least two active links (i.e. at least 3
active nodes) in the chain, an extreme node can be infected with positive
probability even in states when his neighbor is not the initial carrier. Hence,
it must be that, for k ∈ {1, n − 1}, π̂k > θ(1 − φ). This is sufficient
for WSLOW > WNI . As a result, for all ε > 0 sufficiently small, both
WNI > WFAST and WSLOW > WNI , which establishes the result.

B Further claims

Cycles with δ < 1

There are two main differences with the δ = 1 case. First, it is not anymore
true that if an extreme node does not want to cut any link then the non-
extreme nodes never want to: they may if δ is sufficiently small. Second, δ <
1 may create a wedge between the conditions under which the sequence of
chains {n, n, ..., n} and the sequence {n,m, n,m, ..., n,m}, m ≤ n can arise,
while, with δ = 1, the stability condition is identical for both sequences.

A sequence of isolated agents is stable iff b/L ≤ (1 − λ)θ(1 − φ)/δ.
Let p(z) =

∑z
i=1(1 − φ)i for all z ≥ 1 and p(0) = 0. Remember that

a node in position k = 1, ...n in a n-member chain has probability θ(1 −
λ)p(k−1) of catching an infection spreading clockwise and probability θ(1−
λ)p(n− k) of catching one spreading anticlockwise. Consider any sequence
{n,m, n,m..., n,m} with n ≥ 2 and 2 ≤ m ≤ n. This is stable iff

θ(1− λ) max

{
p(n− 1)

δ
,
p(n− 2)

δ2

}
≤ b

L
≤ θ(1− λ)

p(n)

δ2
(78)

The first inequality says that neither the extreme nodes in the n chain (who
have one active link), nor their neighbors in the same chain (who have two)
want to cut a link. If these do not want to cut a link, then no other node
wants to. The second says that the extreme node in a length m chain does
not want to activate a link (if he wants to, his neighbor who belongs to a
length n chain always wants to). Note, however, that for m = 1 the same
condition becomes.

θ(1−λ) max

{
p(n− 1)

δ
,
p(n− 2)

δ2

}
≤ b

L
≤ θ(1−λ) max

{
p(n)

δ
,
p(1)

δ2

}
(79)

This is because, in the second inequality, the new link is with an isolated
node, and therefore the benefit for that node is bδ rather than bδ2. Note
also that

max

{
p(n)

δ
,
p(n− 1)

δ2

}
≥ max

{
p(n)

δ
,
p(1)

δ2

}
(80)

with strict inequality if n > 2 and δ is sufficiently small. This implies that,
for δ sufficiently small, there exist ranges for b where no sequence of the
type {n, 1, n, 1, ..., n, 1} can emerge. Intuitively, there are parameter values
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such that an extreme node in the n chain and the isolated node want to
activate a link but, at the same time, in a n+ 1 chain a non-extreme node
would want to cut a link, so that neither the sequence {n, 1, ..., n, 1} nor the
sequence {n+ 1, 1, ..., n+ 1, 1} are stable. This means that the equilibrium
with the lowest number of active links sometimes features the sequence
{n, 1, ..., n, 1} and sometimes the sequence {n, 2, ..., n, 2}. To avoid further
complications, we only focus on equilibria with equal size chains, i.e. the
sequence {n, n, ..., n}. Note that, even within this class, multiple equilibria
arise. This is because, for δ < 1,

max

{
p(n)

δ
,
p(n− 1)

δ2

}
<
p(n)

δ2
(81)

As a result, in (78), the lower bound for n = k + 1 is larger than the upper
bound for n = k. Hence, there exist parameters such that both the sequence
{n, n, ..., n} and the sequence {n+1, n+1, ..., n+1, } are stable. Intuitively,
there exist ranges of values for b such that no nodes in n chains want to
activate a new link but, at the same time, no nodes in n + 1 chains want
to cut a link. We start from the equilibrium with the highest number of
active links. Similar to the case of a complete graph, this is governed by
the requirement that no node wants to cut a link. Hence, it implies that
the parameter space for the ratio b/(1− λ)θL is partitioned by{

max

{
p(2)

δ
,
p(1)

δ2

}
,max

{
p(3)

δ
,
p(2)

δ2

}
, ...,max

{
p(n)

δ
,
p(n− 1)

δ2

}
, ...

}
,

(82)
so that, depending on where the ratio falls, we can have sequences of n
chains, of n + 1 chains and so on. In contrast, in the smallest equilibrium,
n+ 1 chains only form when two extreme nodes in different n chains want
to activate a link. This induces the partition{

p(2)

δ2
,
p(3)

δ2
, ...,

p(n)

δ2
, ...

}
(83)

It is easy to verify that point 2. of Proposition 3 holds also in this
case. Indeed, since the statement requires the existence of an open set of
parameter values, it is sufficient to repeat the argument in the proof for all
δ sufficiently close to one. The same applies to point 3 of Proposition 4.

The largest and smallest equilibria within the class of regular
equilibria are characterized by collections of isolated cliques

We first show that, if in any regular equilibrium nodes have n − 1 active
links, then equilibria with isolated cliques where each node has n− 1 active
links must be stable. Consider then an equilibrium where nodes have n− 1
active links. If all links are active in equilibrium, then the result is proven
since there is a clique comprising all nodes. Suppose then that there are two
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nodes i and j with an inactive link. The increase in infection probability
when the link is activated cannot be larger than in the case where there is
no node to which both i and j have an active link (i.e. they have no common
neighbor). Then, since both i and j have n − 1 links, it is necessary (but
not suffcient) for stability that

bδn ≤ (1− λ)θ(1− φ)[1 + (1− φ)(n− 1)]L. (84)

Otherwise, i and j necessarily want to activate their link. However, from (9),
this implies that in a collection of cliques where all nodes have n− 1 active
links no node wants to activate an additional link. Consider now i’s incentive
not to cut a link to j. It must be that bδn−1 ≥ (1 − λ)θ(1 − φ)(1 − σij)L
where σij ∈ [0, 1] denotes the probability that j may infect at least one of
i’s neighbors with an active link to i. Necessarily, since the component need
not be totally connected, it must be that σij ≤ 1−φn−2, i.e. the probability
of being infected by j if all i’s neighbors had active links to j. As a result,
bδn−1 ≥ (1 − λ)θ(1 − φ)(1 − σij)L ≥ (1 − λ)θ(1 − φ)φn−2L which, again
from (9), implies that in a collection of isolated cliques where every node
has n− 1 active links no node wants to cut a link. As a result, a collection
of isolated cliques with n members must be stable. It is immediate to verify
that the same argument applies under NI and under SLOW. Endowed with
this result, let n and n be the minimum and maximum number of active
links nodes can have in any regular equilibrium, respectively. Then, sticking
to our convention that N is always divisible by n, there exists an equilibrium
with a collection of isolated cliques where every node has n ≤ n active links
and an equilibrium with a collection of isolated cliques where every node
has n ≥ n active links, which proves the claim.

In star structures, WFAST > WSLOW for δ sufficiently close to
one

Consider a star structure and note that the number of active links in the
component must be weakly larger under FAST than under SLOW. Let m
be the number of active nodes under FAST and s ≤ m, s ≥ 2, the number
of active nodes under SLOW. Note that, under FAST, each peripheral node
is indirectly linked to m− 2 other peripheral nodes and the hub has m− 1
active links. Total welfare is the sum of the benefits to the periphery and
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to the hub net of the sum of the costs,

WFAST = b
m−1∑
i=1

δi︸ ︷︷ ︸
hub’s

benefit

+ (m− 1)bδ︸ ︷︷ ︸
periphery’s

benefit

−

(1− φ)θ(1− λ) [1 + (1− φ)(m− 2)] (m− 1)L︸ ︷︷ ︸
periphery’s

cost

−

(1− φ)θ(1− λ)(m− 1)L︸ ︷︷ ︸
hub’s
cost

. (85)

The same under SLOW is

WSLOW = b
s−1∑
i=1

δi + (s− 1)bδ −

(1− φ)θ [1 + (1− λ)(1− φ)(s− 2)] (s− 1)L− (1− φ)θ(s− 1)L (86)

where we note that, as usual, a slow intervention does not protect peripheral
nodes when the hub is the initial carrier and never protects the hub. The
difference reduces to

WFAST −WSLOW = b
m−1∑
i=s

δi + (m− s)bδ −

(1− φ)θ (2[(1− λ)(m− 1)− (s− 1)] +

(1− λ)(1− φ)[(m− 2)(m− 2)− (s− 2)(s− 1)])L. (87)

However, from Lemma 1, for a component with m active links to be stable
under FAST it must be that

bδ ≥ (1− λ)θ(1− φ)[1 + (1− φ)(m− 1)]L (88)

Noting that WFAST −WSLOW is increasing in b, replace b in (87) with its
lower bound provided by (88) and let δ → 1 (so that

∑m−1
i=s δi → m − s).

Rearranging, we obtain

WFAST −WSLOW ≥ (1− φ)θ {λ(s− 1) +

(1− λ) [2(m− 1)(m− s)− (m− 2)(m− 2) + (s− 2)(s− 1)]}L .(89)

The term on the first line strictly positive. The term on the second line
is increasing in m and is equal to zero for m = s. As a result, it must be
non-negative for all m ≥ s. Hence, WFAST −WSLOW > 0.
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