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Abstract

R&D is procyclical and a crucial driver of growth. Evidence indicates that innova-

tion activity varies widely across firms. Is there heterogeneity in innovation cyclicality?

Does innovation heterogeneity matter for business cycle propagation? We provide em-

pirical evidence that more productive firms are less procyclical in innovation. We

develop a model replicating this observation, with selection as the driver of hetero-

geneous innovation cyclicality. We then examine how heterogeneous innovation and

growth influence business cycle propagation. Dynamics of firm entry and exit, coupled

with heterogeneous cyclicality, significantly amplify TFP shock propagation. Business

cycle fluctuations give substantial welfare losses, with firm heterogeneity contributing

significantly.
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1 Introduction

There is a long tradition in macroeconomics of studying endogenous growth and business

cycles separately. However, events such as the financial crisis of 2009 and the recent pandemic

have raised concerns that severe cyclical downturns may have persistent negative effects

through their impact on long-run growth. Indeed, many countries have failed to revert back

to their original growth paths following the Great Recession (Ball, 2014; Blanchard, 2015)1.

Innovation and firm heterogeneity play an important role in shaping long-run growth patterns

and the aggregate effects of macroeconomic shocks (Klette and Kortum, 2004; Acemoglu et

al., 2018b; Sedláček and Sterk, 2017; Ates and Saffie, 2018). What is the role of innovation

and heterogeneous firms for the transmission mechanisms and propagation of business cycle

fluctuations?

To address this question, we develop a model of endogenous growth and business cycles

featuring heterogeneous firms. Firms pay a sunk entry cost to draw a prototype efficiency

from the support of the distribution of incumbent firms’ productivity to produce a new va-

riety of goods. To turn that prototype efficiency into effective productivity, produce and

become incumbent firms they need to successfully innovate. Once a firm becomes an incum-

bent it keeps innovating to improve its productivity and survive on the market. A stochastic

fixed operating cost introduces a selection mechanism, causing firms to exit the market if

the cost becomes prohibitively high, relative to their productivity and hence profitability.

Knowledge spillovers sustain long-run growth driven by innovation from both incumbents

and entrants, while short-run fluctuations are generated by aggregate, mean-reverting pro-

ductivity shocks.

Calibrating the model to match salient firm-level and aggregate statistics of the US econ-

omy, we analyze the role of innovation and firm heterogeneity in shaping the propagation

of business cycle shocks. Besides the well-known, and empirically grounded, prediction that

innovation is procyclical2, the model offers a novel prediction that innovation is more pro-

cyclical for smaller, less productive, less profitable, firms. This is a key feature of our theory,

which highlights the importance of introducing firm heterogeneity in models of business cy-

cles and growth. To validate this prediction we empirically test it using Compustat data,

which indeed reveal that R&D spending is more procyclical for smaller, less profitable firms.

1The observation that recoveries may not always be robust enough to return GDP to its pre-crisis trend
extends beyond this particular crisis. Empirical evidence abundantly shows that GDP fluctuations are
persistent, with their effects lingering for years after the initial shock. See Cerra et al. (2023) for a recent
survey.

2Empirical evidence on the procyclicality of aggregate R&D can be found in Griliches (1990); Comin and
Gertler (2006); Barlevy (2007); Ouyang (2011); Aghion et al. (2012) among others.

2



The sources of aggregate R&D cyclicality and its heterogeneity across firms in our econ-

omy can be traced to several key factors. Our model, like most endogenous growth models,

features intertemporal knowledge spillovers: when a firm innovates, it produces new ideas

that future firms can build upon, creating a positive externality. This leads firms to underin-

vest in innovation from a societal perspective and introduces a present-bias in innovation. An

innovating firm, aware that due to knowledge spillovers, subsequent innovations will slowly

reduce its market shares to replace it, prioritizes short-term profitability over long-term ben-

efits. As a result, entrepreneurs become shortsighted and more sensitive to short-term profit

fluctuations. Selection mechanisms drive the relatively higher innovation cyclicality of less

productive firms. The risk of exit is greater for these firms, prompting them to respond more

aggressively to profit fluctuations caused by cyclical shocks. This dynamic explains why less

productive firms exhibit higher innovation cyclicality in the face of economic fluctuations.

Counterfactual analysis reveals that heterogeneity in innovation among both incumbents

and entrants substantially contributes to the transmission of TFP shocks. We perform two

counterfactuals that sequentially shut down the key dimensions related to firm heterogeneity.

First, we impose common innovation levels and cyclicality across firms, effectively eliminating

selection. While entry and exit still occur, the innovation success probability no longer

depends on firms’ productivity. The second counterfactual shuts down endogenous entry

and exit, ensuring that the mass of firms and the survival probability do not respond to

shocks. Our findings indicate that both layers of heterogeneity lead to greater volatility and

amplification of shocks. A 10% drop in GDP, roughly corresponding to the one produced

by the COVID shock, generates a persistent recession. Importantly, even twenty years

after the shock hits, GDP in our baseline economy remains 4% below what it would have

been under trend (steady-state) growth. Firm heterogeneity accounts for approximately

1/4 of this difference. In our framework, procyclical entry and countercyclical exit of less

productive or younger firms can potentially mitigate the impact of technology shocks, akin to

the “cleansing effects” of recessions described by Caballero and Hammour (1994). However,

our novel insight is that these firms also exhibit the most procyclical innovation behavior,

which amplifies rather than dampens the effects of business cycles.

Intuitively, in the first counterfactual, firm entry and exit respond to the shock, affecting

the mass of firms and reallocating market shares among them. This reallocation occurs

across firms with identical innovation levels and cyclicality, unlike in the baseline model

where these are heterogeneous. In our baseline economy, a boom increases the mass of less

productive and younger firms, which are more procyclical. This reallocation amplifies the

size and persistence of business cycle fluctuations. When entry and exit do not respond to
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the shock, as in the second counterfactual, its propagation is further weakened, as there is

no reallocation at all.

In his seminal work, Lucas (1987) demonstrated that the cost of economic fluctuations

is negligible in most standard business cycle models, amounting to less than 0.1% of an-

nual consumption. Endogenous productivity growth typically increases these costs. What

is the role of firm heterogeneity in shaping the cost of economic fluctuations? As in Bar-

levy (2004), we find that endogenous growth substantially raises the costs of business cycle

fluctuations. Importantly, the presence of firm-level heterogeneity in our endogenous growth

model exacerbates such business cycle costs by an additional 15%.

Literature review. The paper is related to several lines of research in the literature.

First, our work is related to the recent literature that bridges endogenous growth and the

business cycle approaches to macroeconomic analysis.3 A key challenge that all models

linking business cycle and endogenous growth have to face is to reproduce the pro-cyclicality

of innovation observed in the data. The theoretical underpinning of pro-cyclical innovation

is also fundamental in shaping the role of growth and in particular of technical change for the

propagation and persistence of short-run fluctuations. Aghion et al. (2010) introduce credit

constraints to offset the opportunity cost channel linking innovation and business cycle. A

negative productivity shock reduces current cash flow, which in turn reduces firm capacity

to borrow to finance investment improving productivity in the future.4

Another explanation for the pro-cyclicality of R&D is endogenous labor supply (Fatas,

2000). If labor supply is pro-cyclical, R&D will be pro-cyclical as well, since firms will be

reluctant to divert already scarce resources away from production. Pro-cyclicality of R&D

can also occur if innovation is produced with goods, not labor. During booms, when more

goods are produced, there are more resources available for R&D. Aghion and Saint-Paul

(1998) and Comin and Gertler (2006) follow this route.

As in Barlevy (2007), our model posits that the pro-cyclicality of R&D stems from the

heavy dependence of R&D incentives on the short-run profits of innovating firms. This

dependence dominates the “opportunity cost” channel, which suggests that firms should

innovate more during downturns because the foregone output and sales are lower (Aghion

and Saint-Paul, 1998; Aghion et al., 2010). Barlevy (2007) shows that if production fixed

costs are large, profits are strongly pro-cyclical, and so is R&D. Specifically, free entry

3See Fatas (2000), Barlevy (2004, 2007), Comin and Gertler (2006), Aghion et al. (2009, 2010, 2014),
Nuno (2011), Anzoategui et al. (forthcoming), Bianchi et al. (2019), Benigno and Fornaro (2018), Vinci and
Licandro (2020),Cozzi et al. (2021) and Fornaro and Wolf (2023), among others.

4A similar argument is presented in Stiglitz (1994), where imperfections in financial markets serve as the
crucial link between business cycle fluctuations, innovation and growth.
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requires that for innovation incentives to be larger during booms, profits must be more

pro-cyclical than the cost of R&D.

Firm heterogeneity amplifies the pro-cyclical forces in our model, as fixed costs imply

that low-productivity firms are more sensitive to profit fluctuations due to their higher

likelihood of exit. Moreover, if marginal firms engage in some R&D, their exit reduces the

aggregate innovation effort. Thus, firm heterogeneity adds new channels that strengthen the

pro-cyclicality of innovation, thereby enhancing the propagation and persistence of short-run

fluctuations.

Our paper is also related to the strand of literature which investigates the role of het-

erogeneous firms in aggregate fluctuations (see e.g. Caballero and Hammour, 1994; Ghironi

and Melitz, 2005; Ottaviano, 2012; Moscarini and Postel-Vinay, 2012; Lee and Mukoyama,

2015; Boucekkine et al., 1997, 2005). While existing studies primarily focus on differences

across firms in terms of job creation, exit and entry of heterogeonous producers we pay par-

ticular attention to heterogeneity in their innovative efforts. Ottaviano (2012) introduces

heterogeneity into a standard business cycle model with entry and exit to analyze the effect

of technology shocks. The model generates a pattern of procyclical entry and countercyclical

exit that dampens the overall effect of technology shocks on aggregate output and welfare,

as new entrants and exiting firms are generally less efficient than established firms. Bilbiie

et al. (2012) perform a similar exercise but abstracting from firm heterogeneity and find

that entry and exit can substantially enhance the propagation of business cycles. Ottaviano

(2012) concludes that using representative firms models may lead to overstate the role of

procyclical entry and exit as a propagation mechanism of technology shocks.

There is neither innovation nor long-run growth in the economies analyzed in the stud-

ies discussed above. We depart from them by introducing innovation-driven growth and,

more importantly, by assessing the importance of heterogeneity in the innovation response

to business cycle fluctuations of both entrants and incumbent firms.5 Differently from Ot-

taviano (2012) we find that entry and exit of heterogeneous innovators magnifies the effects

of technology shocks on output and welfare. Thus this suggests that the results in Bilbiie et

al. (2012) can still hold in economies with heterogeneous firms if we introduce within-firm,

innovation-driven productivity dynamics. Intuitively, while procyclical entry and counter-

cyclical exit can potentially dampen the propagation of fluctuations as they involve less

productive (and younger) firms, these firms also feature the most procyclical innovation

5As such, our paper is related to Ates and Saffie (2018) and Schmitz (2021) who study the heterogeneous
response of firms’ innovation to financial crises and Sedláček (2020) who study the impact of faster growth on
uncertainty. In contrast to these papers, we highlight the differences in cyclical behavior of firms’ innovation
and its role for overall aggregate fluctuations and growth.
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which has opposite effect.

Finally, we make contact with the literature on the welfare cost of business cycle. Lu-

cas (1987) sets up the framework through which to evaluate the welfare costs of business

cycle fluctuations and concluded that – relative to the benefits of even small changes in an

economy’s growth rate – they are very small. Following Lucas’ analysis, there have been

numerous attempts at developing models in which business cycles were costly (see Lucas,

2003, for a summary). One line of work has considered preferences which make fluctuations

more painful (e.g. Tallarini, 2000). Other papers have focused on individual heterogeneity

in the exposure to business cycles (e.g. Krusell et al., 2009; Krebs, 2007). Another strand

of literature has put forward the notion that business cycles may in fact change aggregate

growth, thereby having larger impact on welfare (e.g. Krebs, 2003; Barlevy, 2004). Our paper

is closely related to this approach as it links business cycle fluctuations to aggregate growth.

We contribute by showing that firm heterogeneity plays a crucial role in the quantitative

impact of business cycles on growth and welfare.

The rest of the paper is structured as follows. The next section introduces the baseline

model. Section 3 describes the parametrization. Section 4 provides the main quantitative

analysis of the baseline and analyze the implication of heterogeneous innovation for the cost

of business cycle. Section 5 concludes.

2 Model

In this section, we describe our theoretical model. To ease the exposition, we use upper-case

letters for aggregates and lower-case letters for firm-level variables.

2.1 Environment

The model is in discrete time t ∈ {0, 1, 2, ...} and has three types of agents — intermediate

goods firms, a representative household and final goods producer.

Household. The representative household inelastically supplies labor, N , to intermediate

goods producers and chooses consumption, C, and asset holdings, A, to maximize life-time
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utility

max
{Ct,At+1}

E0

∞∑
t=0

βt
C1−σ
t

1− σ
(1)

where E is an expectations operator, β ∈ [0, 1] is the discount factor and σ is the coefficient

of relative risk aversion. The household makes its choices subject to the following budget

constraint constraint

PtCt + At+1 = WtN + (1 +Rt)At (2)

where Pt is the aggregate price index, Wt is the wage rate and Rt is the return on assets.

Final Goods Firms. We assume that the final goods firm combines intermediate goods

according to the following production function

Yt =

(∫
j∈Ωt

yt(j)
η−1
η dj

) η
η−1

(3)

where yt(j) denotes the quantity of intermediate good j at time t, Ωt is both the measure

and set of incumbent intermediate firms and η > 1 is the elasticity of substitution between

varieties. These final goods producers are assumed perfectly competitive, taking the CPI Pt

as given.

Incumbent Intermediate Goods Firms. Each variety is produced with the objective

of maximizing the expected present value of dividends to the firm’s equityholders using

production function

yt(j) = Ztqt(j)nt(j), (4)

where nt(j) denotes labor resources utilized, qt(j) is endogenous firm-level productivity and

Zt is exogenous aggregate total factor productivity. The latter is assumed to evolve according

to

log(Zt) = ρZ log(Zt−1) + ϵZ,t (5)
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where ϵZ,t ∼ N(0, σ2
Z,t) is a stochastic shock. In contrast, the evolution of firm-level produc-

tivity qt(j) is endogenous, driven by firms’ investment into research and development (R&D).

In particular, we assume that using st(j) units of the final good delivers an xt(j) ∈ [0, 1]

probability of innovation according to

st(j) = γq̂t(j)
η−1xt(j)

ψ (6)

where γ > 0 is the inverse of the efficiency of R&D, ψ > 1 is a curvature parameter making

the R&D cost function convex, q̂t(j) = qt(j)/Qt is normalized firm-level productivity with

Qt being the average productivity index defined as

Qt =

(
1

Ωt

∫
j∈Ωt

qt(j)
η−1dj

) 1
η−1

. (7)

Notice that η − 1 > 0 measures two things at the same time. Firstly, the negative effect of

firm-specific productivity on firm-specific R&D efficiency. Secondly, the the positive knowl-

edge spillovers from average productivity. Firms with a firm-specific productivity below

average are more efficient in R&D than the average firm. Notice also that parameter η

governs the degree of R&D heterogeneity between incumbent firms.

Using the definition of (7), we define the endogenous growth rate of the economy as

Gt = Qt/Qt−1 − 1 (to elaborated on later). In the event of a successful innovation, the

firm’s idiosyncratic productivity improves by a factor of λ > 0 in the next period. If innova-

tion efforts fail, firms’ productivity levels remain unchanged. Therefore, idiosyncratic firm

productivity evolves according to

qt+1(j) =

{
qt(j)(1 + λ) with probability xt(j)

qt(j) with probability 1− xt(j).
(8)

Incumbent firms need to pay fixed costs, ϕ in order to stay in operation. We assume that

fixed costs are stochastic, distributed independently and identically over time and across

firms according to a distribution F (ϕ). Finally, to obtain a realistic firm-size distribution,

similarly to Sedláček (2020), we assume that firms realize deterministic efficiency gains,

through learning-by-doing as they age. Specifically, we assume firms of age group at ∈
{1, 2, .., nA}, experience exogenous efficiency gains proportional to their own employment

level nt(j). Efficiency gains reduce the labor cost Wtnt(j) by Qtψant(j).
6 A firm of age

group at < nA moves to the next age group in the following period at+1 = at + 1 with

6As shown below, this assumption ensures that the firm’s wage bill will for the period be (Wt−Qtψa)nt(j).
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probability ζa. Firms in age group nA remain there unless exiting the industry. We also

allow for an exogenous probability of firm exit, which varies with age group, denoted by δa.

Entrant Intermediate Goods Firms. Entrants incur sunk cost ce > 0 at establish-

ment in t. Subsequently, they develop a prototype variety, whose idiosyncratic productivity

qe,t is drawn from a normal distribution truncated in the support of the incumbents’ produc-

tivity with parameters µe for position and σe for dispersion. We denote this distribution as

ωe,t(qe,t), where index t indicates that this support is changing over time. After drawing their

prototype productivity, entrants make an R&D investment choice, using similar technology

to incumbents

se,t(j) = γeq̂e,t(j)
η−1xe,t(j)

ψ (9)

where se,t denotes their final goods input at time t, γe is productivity of their innovation

technology, q̂e,t = qe,t/Qt is their prototype relative productivity and xe,t ∈ [0, 1] is their

probability of successful innovation. We assume that these potential entrants must success-

fully innovate upon their prototype in order to become incumbents at time t + 1. In such

event, they commence operations at t + 1 with productivity of (1 + λ)qe,t, in the first age

group. Should they fail to successfully innovate (with probability 1 − xe,t), they exit the

industry and their prototypes become obsolete. We denote the mass of potential entrants

(prior to the outcome of their innovation being realized) by Mt.

Timing. We summarize the period t timing for incumbents and entrants. The period t

timing for incumbent intermediate firms is

1. Draw iid fixed cost shock ϕt and make endogenous exit choice.

2. Conditional on remaining, make optimal static choice of nt and produce with technol-

ogy (4).

3. Make optimal inter-temporal R&D choice st, xt and distribute dividends to households.

4. Draw age group and death shocks.

5. Conditional on survival, draw innovation success shock from distribution Bernoulli(xt)

and move to time t+ 1.

Then for new entrants at time t, the timing is

i. Pay sunk cost cE and draw prototype productivity level.
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ii. Make optimal choice of R&D investment se,t and xe,t.

iii. Draw innovation success shock from Bernoulli(xe,t).

iv. If successful in innovating, at time t + 1, proceed to Step 1 of the incumbent timing

above. Otherwise, exit.

2.2 Equilibrium

Here we detail the optimal choices of agents, given the setup in Section 2.1. We take the

final good to be the numéraire, meaning that Pt = 1 ∀t.

Household. The household’s optimal savings decision results in the Euler equation

1 = βEt

[
(1 +Rt+1)

(
Ct+1

Ct

)−σ
]
, (10)

from which we define the stochastic discount factor (SDF) Λt = β (Ct+1/Ct)
−σ to use in the

intermediate firms’ problem.

Final Goods Firm. The final goods firm chooses its purchase of each variety to maxi-

mize its profits, subject to aggregation technology (3), giving variety-level demand

yt(j) = pj(t)
−ηYt, (11)

as well as the aggregate price index aggregate price index

Pt =

(∫
j∈Ωt

pt(j)
1−ηdj

) 1
1−η

. (12)

Incumbent Intermediate Goods Firms. The firms’ state vector is comprised of their

idiosyncratic relative productivity and age, as well as aggregate TFP. From now onwards, we

replace variety-level notation with a firm’s state; also dropping time subscripts and adopting

the convention that variables with ′ superscripts are for time t+ 1. The firms’ state is thus

represented as (q̂, a, Z). The firms’ recursive formulation at the beginning of the period,
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conditional on remaining in operation, is given as

v(q̂, a, Z) = max
{p,n,x}

π(q̂, a, Z) + EΛ′
[
xṽ

(
q̂(1 + λ)

1 +G
, a′, Z ′

)
+ (1− x)ṽ

(
q̂

1 +G
, a′, Z ′

)]
(13)

subject to

π(q̂, a, Z) = pŷ − (Ŵ − ψa)n− s (14)

ṽ(q̂′, a′, Z ′) =

∫
ϕ

max [v(q̂′, a′, Z ′)− ϕ, 0] dF (ϕ) (15)

and the form of the SDF in (10), the demand curve (11), innovation production function (6),

production function (4) and TFP process (5). Equation (13) states that firms choose their

price, employment and R&D investment to maximize the sum of period profits and expected

continuation value.7 See that the expectation operator takes account of the aggregate TFP

process, as well as the idiosyncratic ageing shock for next period’s a′ and the exogenous death

shock. Equation (14) gives profits in their de-trended form, where ŷ and Ŵ are firm-level

output and wages, relative to aggregate Q. Equation (15) accounts for firms’ endogenous

exit choices, where they choose to receive their continuation value less than the burden of

fixed costs. The resulting optimal decisions are then given by

p(q̂, a, Z) =
η

η − 1

Ŵ − ψa
Zq̂

, (16)

n(q̂, a, Z) =
ŷ

q̂
, (17)

ϕ̃(q̂, a, Z) =ṽ(q̂, a, Z), (18)

x(q̂, a, Z) =

EΛ′
{
ṽ
(
q̂(1+λ)
1+G

, a′, Z ′
)
− ṽ

(
q̂

1+G
, a′, Z ′

)}
γψq̂η−1


1

ψ−1

. (19)

The above optimality conditions show that firms choose prices as a constant markup over

marginal costs (16), which relies on age-dependent efficiency. They employ workers in order

to satisfy the demand constraint (17). Firms shut-down when their expected value falls

below a cutoff operational cost, which depends on their state ϕ̃(q̂, a, Z), as given by (18).8

7Notice that we express everything as a function of the firm’s detrended productivity. As such the future
period’s productivity argument declines at the rate of productivity growth in the case of innovative failure,
giving q̂/(1 +G), while jumping at the step size to give q̂(1 + λ)/(1 +G) in the case of success.

8Using this definition, we can express the value function (15) as ṽ(q̂′, a′, Z ′) =

F (ϕ̃(q̂′, a′, Z ′))
[
v(q̂′, a′, Z ′)− E[ϕ|ϕ < ϕ̃(q̂′, a′, Z ′)]

]
.
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They lastly choose R&D investment to balance the marginal cost and benefits of innovating

(19). The latter is given precisely by the difference in firm value conditional on innovating

and not, as in the numerator of (19).

Entrant Intermediate Goods Firms. Entrants make a choice of R&D investment, con-

ditional on their prototype draw, to maximize conditional value

ve(q̂e, Z) = max
{xe}

−se + EΛ′xeṽ

(
q̂e(1 + λ)

1 +G
, 1, Z ′

)
(20)

where the expression for the continuation value comes from that of an incumbent in the first

age group in (15). Entrants maximize (20) subject to innovation production function (9),

yielding FOC

xe =

E
Λ′ṽ

(
q̂e(1+λ)
1+G

, 1, Z ′
)

q̂η−1
e ψγe


1

ψ−1

. (21)

Comparing the right-hand side of (21) with that of the incumbents (19) highlights the as-

sumption regarding the survival of entrants with respect to innovation. Entrants must in-

novate to survive, hence their marginal benefit of investment is the absolute firm value

of successful innovation ṽ (q̂e(1 + λ)/1 +G, 1, Z ′), rather than the increment in the case of

incumbents ṽ (q̂(1 + λ)/1 +G, a′, Z ′)− ṽ (q̂/1 +G, a′, Z ′). We assume that a free entry con-

dition holds in steady state, specifically ∆ = 0 where ∆ =
∫
q̂e
ve(q̂e, 1)dωt,e(q̂e)−WcE, which

determines the deterministic steady state entry mass M̄ and WcE is spending on the sunk

entry cost in terms of labor. However, along the transition after a TFP shock, we instead

allow a for a more general equation to determine the entry mass

M = M̄ exp(χ∆) (22)

where χ ≥ 0 is a parameter governing the elasticity of entry with respect to firm value. This

parameter allows us to control the strength of the entry response to an aggregate TFP shock.

Note that when χ = 0, entry remains fixed at its steady state value along the transition;

instead when χ→ ∞, free entry holds at every instant.

Equilibrium Definition. Here we give an abridged version of the equilibrium definition.

More details are deferred to Appendix A.2. A stochastic stationary equilibrium is such that

1. All agents are optimizing (households, final goods firms, intermediate goods firms).
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2. All markets are clearing. For final goods

C + S + Φ−Ψ = Y (23)

where S is R&D expenditure by both incumbents and potential entrants, Φ represents

aggregate fixed operating costs, Ψ are aggregate age-related efficiency gains and Y is

as in (3). Labor market clearing is given by

E + L = N (24)

where E =McE represents aggregate entry costs, L is aggregate variable labor demand

and N is the fixed endowment of labor from the household.

3. There exists a cross-sectional measure of firms over states, which evolves endogenously.

Denote this measure of firms over relative productivity q̂, over age groups a, with

aggregate state Z by ω(q̂, a, Z). Given that new entrants start in the first age group,

we need to consider it separately from those age groups that follow. The cross-section’s

law of motion for a > 1 is given by

ω′(q̂, a, Z ′) = (1− ζa)(1− δa)

∫ ϕ̃(q̂,a,Z′)

x

(
1 +G

1 + λ
q̂, a, Z

)
ω

(
1 +G

1 + λ
q̂, a, Z

)
dF (ϕ)

+ (1− ζa)(1− δa)

∫ ϕ̃(q,a,Z′) (
1− x

(
(1 +G)q̂, a, Z

))
ω
(
(1 +G)q̂, a, Z

)
dF (ϕ)

+ ζa−1(1− δa−1)

∫ ϕ̃(q̂,a,Z′)

x

(
1 +G

1 + λ
q̂, a− 1, Z

)
ω

(
1 +G

1 + λ
q̂, a− 1, Z

)
dF (ϕ)

+ ζa−1(1− δa−1)

∫ ϕ̃(q,a,Z′) (
1− x

(
(1 +G)q̂, a− 1, Z

))
ω
(
(1 +G)q̂, a− 1, Z

)
dF (ϕ)

(25)

where note that ζa = 0 for the highest age group a = nA. The first term on the

right-side of (25) captures incumbent firms who are successful in innovating and who

remain in age grouping a. Such firms move upwards in their relative productivity at

net rate of λ, while also drifting downwards at the growth rate of Q(t). The second

term captures incumbents who are unsuccessful in innovating, who again remain in

age group a. The third and fourth terms pertain to incumbents who age, moving up

to group a from a− 1, who are successful and unsuccessful in innovating, respectively.
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The first age group, a = 1, also accounts for new entrants, as specified below

ω′(q̂, a, Z ′) = (1− ζa)(1− δa)

∫ ϕ̃(q̂,a,Z′)

x

(
1 +G

1 + λ
q̂, a, Z

)
ω

(
1 +G

1 + λ
q̂, a, Z

)
dF (ϕ)

+ (1− ζa)(1− δa)

∫ ϕ̃(q,a,Z′) (
1− x

(
(1 +G)q̂, a, Z

))
ω
(
(1 +G)q̂, a, Z

)
dF (ϕ)

+M

∫ ϕ̃(q̂,1,Z′)

xe

(
1 +G

1 + λ
q̂, Z

)
ωe

(
1 +G

1 + λ
q̂

)
dF (ϕ). (26)

The first and second terms in (26) are for incumbents who remain in the first age

grouping, who were successful and unsuccessful in innovating, respectively. The final

term represents new entrants — recall such firms only become active incumbents if

they successfully innovate over their prototype draw.

4. The mass of entrants is pinned down by (22).

5. The equilibrium growth rate is determined by G′ = Q′/Q− 1 where Q is given by (7).

See Appendix A.1 for the full expression of this object. We present the definition of the

growth rate below for a special case of the model with one single age grouping (nA = 1),

no exogenous exit (δ1 = 0) and in the deterministic steady state (Z = Z ′ = 1).9

Ω′(1 +G′)η−1 =

∫
q̂

∫ ϕ̃(q̂(1+λ)/(1+G′))

[q̂(1 + λ)]η−1 x (q̂)ω (q̂) dF (ϕ)dq̂

+

∫
q̂

∫ ϕ̃(q̂/(1+G′))

q̂η−1 [1− x (q̂)]ω (q̂) dF (ϕ)dq̂

+M

∫
q̂e

∫ ϕ̃(q̂e(1+λ)/(1+G′))

q̂e(1 + λ)xe (q̂e)ωe (q̂e) dF (ϕ)dq̂e. (27)

The first two terms of (27) pertain to incumbent firms, while the last relates to en-

trants. An incumbent firm can successfully innovate (first set of integrals); its relative

productivity will rise to q̂(1 + λ)/(1 + G′), which forms the basis of its exit choice

ϕ̃(q̂(1 + λ)/(1 + G′)), given the model timing. These firms innovate successfully with

probability x(q̂) and their measure is given by ω(q̂). The second term relates to incum-

bent firms that are unsuccessful in innovating. This happens with probability [1−x(q̂)],
while their exit cutoff is based-on their relative productivity, which drifts downwards

relative to the average, ϕ̃(q̂/(1 + G′)). New entrants only contribute to growth when

9Note that, in this special case, we simplify the notation by dropping age and TFP indexing from the
state space.
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Table 1: Parameter values

Parameter Value Source/Target

Discount factor β 0.96 Annual interest rate 4%
Coefficient of relative risk aversion σ 1.00 Logarithmic preferences
TFP persistence ρZ 0.78 Sedláček and Sterk (2017)
Innovation function curvature ψ 2.00 Hall et al. (2001); Bloom et al. (2002)

TFP volatility σZ 0.02 Real GDP volatility
Fixed cost mean µϕ -2.62 Overall exit rate
Fixed cost variance σϕ 1.69 Entrant exit rate
Elasticity of substitution η 2.05 Profits/GDP ratio
Innovation step size λ 0.04 Growth rate
Incumbent innovation productivity γ 0.95 Aggregate R&D to GDP
Entrant prototype mean µe 0.00 Normalisation
Entrant prototype variance σe 0.08 Mean prod. entrants/incumbents
Entrant innovation productivity γe 1.05 Entrant contribution to growth
Elasticity of entry χ 200.0 All positive R&D response
Exogenous death rate a = 1 δ1 0.07 Exit rate firms aged 1–5
Exogenous death rate a = 2 δ2 0.01 Exit rate firms aged 6–10
Exogenous death rate a = 3 δ3 0.00 Normalisation
Efficiency gains a = 1 ψ1 -0.46 Normalisation
Efficiency gains a = 2 ψ2 -0.21 Size premium age 6–10 versus 1–5
Efficiency gains a = 3 ψ3 0.00 Size premium age 11+ versus 1–5

they are successful in innovating, where their double integral takes similar form to

successful incumbents; their contribution is weighted by their measure M .

3 Calibration

In this section, we detail the parameter values used in our quantitative analysis. We calibrate

the deterministic steady state of the model to reproduce data facts for the U.S. economy.

We defer the description of the solution methods to Appendix B. All parameter values are

listed in Table 1.

Standard Choices. The following parameters are set to “standard” values in the lit-

erature. In particular, we set the discount factor, β, to 0.96 reflecting a roughly 4 percent

interest rate at the annual frequency of our model. We assume logarithmic preferences with

σ = 1. We take the persistence of the TFP process from Sedláček and Sterk (2017). Lastly,

we assume that R&D costs are quadratic in the innovation rate, conforming with estimates
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Table 2: Moments

Moment Data Model Source

Volatility of real GDP 0.02 0.02 BEA
Volatility of consumption∗ 0.02 0.02 BEA
Volatility of R&D∗ 0.03 0.04 BEA
Overall Exit rate 0.11 0.11 BDS
Entrant exit rate 0.24 0.11 BDS
Profits/GDP ratio 0.12 0.14 BEA
Productivity growth 0.82 0.62 BLS
Aggregate R&D to GDP 0.04 0.06 BEA
Mean prod. entrants/incumbents 1.02 1.04 Foster et al. (2006)
Entrant contribution to growth 0.39 0.32 Pancost and Yeh (2022)
Exit rate firms age 1–5 0.16 0.17 BDS
Exit rate firms age 6–10 0.08 0.09 BDS
Size premium firms age 6–10 1.51 1.45 BDS
Size premium fimrs age 11+ 2.06 2.02 BDS

Note: moments targeted, unless denoted with ∗. All numbers are prior to multiplication by 100, except for
the average productivity growth: this is presented as a percentage after x100.

in the data (see e.g. Hall et al., 2001; Bloom et al., 2002).

Indirect Inference. The remaining parameters are set using an indirect inference

approach along the lines of Acemoglu et al. (2018a). In particular, we compute selected

model-generated moments and compare them to their respective counterparts in the data

by minimizing

min
∑
u

(
model(u)− data(u)

data(u)

)2

,

where u indicates a given moment. While in general, all parameters affect the model’s perfor-

mance, in what follows we discuss them in relation to moments in the data to which they are

most closely linked. In computing our empirical moments, we rely on data spanning 1987–

2019. The selected moments and their empirical and model-implied values are presented in

Table 2.

Three parameters are closely related to firm-level, and therefore aggregate, growth: in-

novation step size, λ and R&D efficiencies, γ for incumbents and γe for entrants. To pa-

rameterize these, we match the observed 0.82% average growth rate of TFP taken from the

Bureau of Labor Statistics (BLS), 4% total R&D expenditures to GDP from the Bureau of

Economic Analysis (BEA) and the overall contribution of entrants to growth of around 40%,
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taken from Pancost and Yeh (2022).10

The distribution of operational costs governs firms’ exit patterns. Towards this end, we

assume that the distribution is log-normal with mean and variance given by µϕ and σ2
ϕ,

respectively. We set these parameters such that our model matches the observed 10.9%

average firm exit rate from the Business Dynamics Statistics of the Census Bureau and the

23.7% exit rate for new entrants.

The volatility of aggregate productivity shocks is set so that our model matches the

standard deviation of real GDP at business cycle frequencies in the data. Entrants’ produc-

tivity is assumed to be drawn from a log-normal distribution with mean normalized to 0 and

standard deviation, σe, targets the average relative productivity of entrants to incumbents

of 1.02 reported in Foster, Haltiwanger and Krizan (2006). We target the overall profit to

GDP ratio to pin-down the elasticity of substitution across varieties η, given that this pa-

rameter maps into the markup of firms set in the model. Profits in our model include R&D

expenditures, so we combine the BEA pre-tax profit share of income with the R&D to GDP

ratio to obtain a data target of 12.8% in our period of analysis. We set the elasticity of entry

iteratively along the transition, to ensure that all incumbent firms’ R&D responds positively

on impact to a business cycle shock.11

We parameterize the firm age-size distribution such that there are three age groupings.

Firms that are young (age 1–5 in the data), medium (age 6–10 in the data) and old (age

11+ in the data). To match the transitions across groupings young to medium and medium

to old, we set the exogenous ageing probabilities, ζ1 and ζ2, to be 1/5, meaning firms take

5 years to age on average, (via a geometric distribution). We adjust the exogenous death

probabilities across age groups to match their corresponding exit rates in the data. Given

old firms have the lowest exit rate in the data, we normalize their exogenous death rate to

zero. We target the relative sizes, in terms of employees, of medium and old firms to young.

Here we normalize the exogenous efficiency gains to zero for old firms, giving negative values

of the exogenous gains for young and medium-aged firms as in Sedláček (2020).

Table 2 shows that the model provides a good match of the empirical targets related to

growth and firm heterogeneity. It also matches quite well the volatility of aggregate variables

in relation to business cycles. We specifically look at that of real GDP, consumption and

aggregate R&D spending. In generating these moments in the data, we take the natural loga-

rithm of the corresponding time series and then de-trend using the HP filter with a smoothing

10Our model analogue of this contribution involves computing a counterfactual growth rate, where the
entrants that become incumbents do so without experiencing a step increment over their prototype draw.

11This parameter translates the R&D impact responses of incumbents vertically. For more details, see
Appendix E.
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parameter of 100. The model performs well in matching all three volatility statistics, despite

those for consumption and R&D being untargeted in the calibration exercise.

4 Quantitative analysis

In this section we present our main results. We begin by documenting properties in relation

to firm heterogeneity — for both the steady state and along the transition. We then move

on to its growth implications.

4.1 Firm Heterogeneity

We begin describing the extent of firm heterogeneity in our model. We do so by first concen-

trating on the stationary steady state and then analyzing how behavior over the cross-section

of firms varies over the business cycle.

Steady state innovation and survival rates. Figure 1 highlights the extent of firm

heterogeneity in our model. In particular, it shows firm profits, innovation rates, survival

probabilities and the mass of firms as a function of (relative) firm-level productivity. In

addition, it also explicitly depicts the values for young, medium and old incumbent firms.

Due to innovation, the support of the equilibrium distribution is moving to the right.

As a result, old incumbents are on average less productive than medium age incumbents,

which are less productive on average than young incumbents. This can be observed in

Figure 1d. Moreover, since old firms are more efficient in production, conditional on their

relative productivity q̂, they make larger profits as shown in Figure 1c. This has the direct

implication that they have a higher survival probability and more incentives to undertake

R&D as shown in Figures 1a and 1b, respectively.

As can be seen from the figure, our framework displays significant firm heterogeneity in

terms of profits, with those of the most productive firms being around three times higher

than those of the least. These, in turn, imply large differences in survival rates with young

incumbent firms with low productivity having a 25 percent chance of shutting down, while

old incumbents with high productivity facing less than a 5 percent chance of exit. That said,

the mass of firms in these extremes is relatively low since unproductive firms get selected-out

and highly productive firms are simply rare, as we can seen in Figure (1d). Importantly,

innovation rates increase with productivity — we will return to this point when discussing
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Figure 1: Incumbent heterogeneity in the steady state

aggregate dynamics. Appendix C depicts more properties of the incumbent distribution

(Figure 5) and the entrant distribution over prototypes (Figure 6).

Cyclicality of innovation rates. Having shown that innovation rates differ across firms

in the stationary steady state, we now turn to analyzing their cyclical behavior. In particular,

we study the effect of a one standard deviation TFP shock on the impact responses, (i.e. the

first period of their impulse response functions), of firm R&D spending over the cross-section

of profits and productivities.12

Figures 2a and 2b show these responses of incumbent and entrant firms in the model

in percentage deviations from steady state. There are two important angles to consider in

12We show how innovation cyclicaliity varies across firms differing in profits and profitability for complete-
ness. Although, as shown in figure 1d more productive firms and also more profitable, so cyclicality varies
similarly across the two firm characteristics.
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this regard. The first is that, within an age grouping, these impact responses are declining

monotonically with profits and productivity. The second is that the response profiles of

firms are moving downwards as they move through their lifecycle and up the age groupings.

Conditional on their type (profits/productivity), firms become less pro-cyclical as they age.

One can think of older firms as being more profitable in our parameterization, given that

they experience efficiency gains ψa that become larger as they mature.

(a) Function of profits
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Figure 2: Impact responses of firm-level R&D spending from positive TFP shock. All re-
sponses are presented as percentage deviations from steady state (prior to multiplication by
100).

An intuitive explanation for this finding is that more productive firms are sufficiently far

from the exit cutoff so that swings in their cash flows are less likely to threaten their future

existence and incentive to grow. We will expand on this intuition in our analysis of the

key mechanisms at play in the model, but before that we show that the model’s theoretical

prediction can be found in the data.

Empirical validation of cross-sectional innovation cyclicality. We now test our key

prediction in the data. In particular, we take firm-level information from Compustat and

industry-level output data from the Bureau of Economic Analysis (BEA). We construct a

balanced-panel of firms over the period 1987–2019, with data at a yearly frequency.13 Firms

are placed into four groups based-on their profitability, relative to others in their industry;

rankings are based on firms’ real pretax income.14 Given that firms can move around in the

13Given the requirement that the panel be balanced, we classify industries at the 2 digit level. We remove
observations for firms in industries with fewer than ten firms reported over the sample period.

14We use the direct measure of profitability in Compustat, variable pi, and BEA inflation data. As a
robustness, we also rank firms based-on profitability ratios: Compustat variables pi/sale. The inferences
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profitability distribution over time, we construct groupings based on a preliminary regression

of the form

vijt = κ1i + κ2j + κ3t + eijt (28)

where vijt is firm i’s (in industry j) real profits at time t, κ1i is a firm i fixed effect, κ2j is

a fixed effect for industry j to which firm i belongs, κ3t is a time fixed effect and eijt is a

residual. Object κ1i gives an estimate of a firm’s average lifetime profitability; we place firms

into quartiles based on their estimates of κ1i, relative to other firms in their industry. The

main regression is then of the form

rijt = α0 + α1yjt +
4∑

k=2

αk2gik +
4∑

k=2

αk3gikyjt + ϵijt (29)

where rijt is firm i’s (in sector j) growth in real R&D expenditures at time t, yjt is their

industry’s gross real output growth and gik is an indicator for the firm being in quartile

k ∈ {2, 3, 4} for κ1i. We consider various combinations of time and industry fixed effects.15

Objects α0, α1, {αk2}4k=2, {αk3}4k=2 are parameters to be estimated; those of interest are α1 and

{αk3}4k=2. Parameter α1 gives the cyclicality of firms in the lowest grouping for profitability,

while {αk3}4k=2 are interaction terms of indicators for being in higher groupings with industry

output growth. Regression results are given in Table 3.

Firms overall tend to be procyclical, with the magnitude of the relationship decreasing

with the profitability quartile. One can infer the average cyclicality of a firm in quartile

k ∈ {2, 3, 4} by taking the sum α1+α
k
3. For all specifications, there are statistically significant

differences across the four groupings. The least profitable firms are strongly procyclical

(α1), while the most profitable are close to acyclical in all specifications (α1 + α4
3). This

regularity that more profitable firms are less pro-cyclical validates the key prediction of our

model shown previously in Figure 2a. Having instilled confidence in the model’s capacity to

replicate salient features of the data on innovation heterogeneity, we now seek to explore the

mechanisms that generate these predictions.

Economic mechanism: the role of selection. To shed more light on the role of selection

in shaping the innovation cyclicality of firms, we first need to understand what drives R&D

cyclicality in our economy. In our model, as in many endogenous growth models, innovation

are similar; we defer these results to Appendix D. This appendix also gives more details regarding the data
cleaning process.

15We also consider firm-level fixed effects; the results are robust to their inclusion.
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Table 3: Empirical validation regression results

Coefficient
Real output growth (α1) 2.283∗∗∗ 2.093∗∗∗ 2.282∗∗∗ 2.012∗∗∗

(0.280) (0.311) (0.282) (0.297)
2nd quartile interaction (α2

3) -1.670∗∗∗ -1.667∗∗ -1.667∗∗ -1.666∗∗

(0.452) (0.451) (0.452) (0.452)
3rd quartile interaction (α3

3) -1.710∗∗∗ -1.708∗∗∗ -1.720∗∗ -1.719∗∗

(0.376) (0.376) (0.371) (0.370)
4th quartile interaction (α4

3) -1.733∗∗∗ -1.737∗∗ -1.733∗∗ -1.734∗∗

(0.364) (0.359) (0.364) (0.356)
N 7,413 7,413 7,413 7,413
Time fixed effects (Y/N) N Y N Y
Industry fixed effects (Y/N) N N Y Y

Note: quartile groupings are done using κ1i from regression (28). Table notation corresponds to regression
equation (29). Standard errors are in parentheses. Superscripts ∗, ∗∗ and ∗∗∗ denote significance at the
10%, 5% and 1% confidence levels, respectively. N denotes number of observations. Dependent variable is
firm-level real R&D growth.

generates intertemporal knowledge spillovers. When a firm innovates, it creates new ideas

that future firms can use as a foundation for their own innovations. This positive externality

results in firms underinvesting in innovation from a societal perspective. Additionally, it

introduces a present bias in innovation: an innovating firm, aware that knowledge spillovers

will allow other firms to eventually replace it, places less emphasis on long-term benefits

compared to short-term gains. Consequently, entrepreneurs become shortsighted and highly

responsive to short-term profit fluctuations. Barlevy (2007) elegantly illustrates this source

of innovation cyclicality within a standard Schumpeterian growth model. Since innovation

costs, such as wages, are procyclical, innovation itself becomes procyclical only if profit

fluctuations exceed those of the costs. Barlevy (2007) demonstrates that high fixed costs

result in significant profit fluctuations and identifies a threshold level of fixed operating costs

that makes innovation procyclical.

Our model differs from the standard Schumpeterian growth model along three key di-

mensions. First, both incumbents and entrants innovate.16 Secondly, firms must incur a

sunk entry cost before engaging in innovation. Thirdly, significant firm heterogeneity ex-

ists, with firms varying in their equilibrium innovation rates and facing selection. All three

factors play crucial roles in shaping the cyclical patterns of innovation at both aggregate

and firm levels. Incumbent firms can secure future benefits by continuously innovating,

16In the standard Schumpeterian model only entrants innovate, due to the Arrow replacement effect
(Aghion and Howitt, 1992; Grossman and Helpman, 1991) .
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allowing them to survive and capitalize on investments made during downturns when condi-

tions improve. Additionally, the cyclical nature of new entrants can potentially offset that

of incumbents through a general equilibrium effect: procyclical entry increases the cost of

innovation, thereby discouraging incumbents from boosting their innovation efforts during

economic booms. Finally different firms could respond differently to shocks.

To illustrate the key mechanisms driving heterogeneity in innovation cyclicality in a

simple and transparent way we consider versions of our model with varying magnitudes of

the fixed cost.17 In particular, we start with a low value of the distribution’s mean, µϕ0

and increase the parameter to higher values µϕ1 > µϕ0 and µϕ2 > µϕ1. Figure 3a gives

the analogue of Figure 2b for these three different values of µϕ. Figure 3b is a version of

3a zooming on a shorter productivity interval that makes some results more transparent.

Figure 3c gives the survival probabilities over the same cross-section of relative productivites

for each configuration.

The first two values of µϕ are insufficient to induce any degree of endogenous exit in

the model: the survival probability is one, across the entire set of relative productivities.

Nonetheless, a progressively higher cost burden for firms squeezes their level of profits. This

translates into a progressively larger response of firms to the business cycle shock. The

responses remain uniform for all firms, but rise monotonically, as shown clearly in figure 3b.

This aligns with the key finding in Barlevy (2007), which states that an increase in

fixed operating costs makes firms’ responses to a TFP shock more procyclical. Our analysis

demonstrates that this holds true even in our more complex model, where innovation by

incumbent firms leads to less shortsighted R&D decisions. In our model, though, firm het-

erogeneity adds a new margin of innovation cyclicality operating via selection. Intuitively,

we can express the Bellman equation in (15) as

ṽ(q̂′, a′, Z ′) = F (ϕ̃(q̂′, a′, Z ′))
[
v(q̂′, a′, Z ′)− E[ϕ|ϕ < ϕ̃(q̂′, a′, Z ′)]

]
(30)

which suggests that firms’ continuation value is the product of the probability of survival

F (ϕ̃(q̂′, a′, Z ′)) and the next period value conditional on surviving. In the economic envi-

ronment of Barlevy (2007), in which firms are symmetric and fixed costs are deterministic,

the probability of survival along the business cycle is one for all firms and the continuation

value driving firms’ innovation decision is driven by the cyclicality of R&D costs and benefits

(profits). Larger fixed production costs lead to stronger profit cyclicality and stronger R&D

17To better highlight the mechanism, we take a simplified version of the model with a single age grouping
nA = 1. More details on the parameterization can be seen from Appendix E, where we also use this simplified
calibration for additional exercises.
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cyclicality. We find a similar result in our richer model when the fixed cost is low enough to

allow all firms to survive.
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Figure 3: Fixed cost and selection

Eventually when the fixed cost mean crosses a threshold, endogenous exit is triggered

for firms with relative productivity around a little below 1, as shown in figure 3c. This then

leads to non-uniform responses of R&D on impact to the TFP shock. The response profile

in figures 3a and 3b inherits a non-linear shape from the survival probability profile, where

firms with low relative productivity are the most pro-cyclical, similarly to what we saw in

figure 2a. This exercise illustrates in a transparent way the role of selection in shaping the

differential responses of firms’ innovation to business cycles. The survival probability is now

one only for the most productive firms and affects the continuation value in (30), the more

so the less productive the firms are. The risk of exit is higher for less productive firms which

therefore respond more aggressively to the fluctuations in profits brought about by cyclical

shocks.
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Taking stock. The model generates significant heterogeneity in innovation rates and in

innovation cyclicality across firms. While heterogeneity in firms’ innovation rates is well-

known, the differences in cyclicality is a novel prediction of our model. We provide new

empirical evidence to support this theoretical prediction. Selection is the key driver of the

stronger cyclicality of innovation for less productive firms predicted by the model.

4.2 Aggregate Growth

Having described the cyclical properties of our model, we now turn to its growth implications.

Once again, we strive to quantify the impact of our main new elements – firm heterogeneity

and firm selection. We do so by considering various counterfactual exercises in which we

gradually shut-down our novel features.

Counterfactuals: heterogeneity in innovation rates and firm selection. As Fig-

ure 1b shows, there is substantial variation in innovation rates both within and across age

groupings. For instance, the highest innovation probability is around 6 times larger than

the smallest. To identify the effect of this feature, we conduct a counterfactual, referred to

as CFS, where we impose two common innovation levels across firms — one for incumbents

and another for entrants instead of using the first order conditions (19) and (21). We cali-

brate these two common levels to hold the growth rate and entrant contribution to growth

the same as in the baseline.18 Along the transition, we then impose a common fluctuation

across firms of each respective type, equal to the baseline’s innovation fluctuation of an old

incumbent and an entrant with q̂ = 1.

Next, to isolate the role of entry and exit, we conduct a second counterfactual referred

to as CFSMF , where we also hold the entry mass M and exit probabilities F (ϕ̃) constant,

on top of CFS. That is all margins of innovation heterogeneity - levels, fluctuations, entry

and exit - are all fixed in CFSMF .

Results. Figure 4a presents the growth rate in percentage points, after a positive 1 stan-

dard deviation TFP shock, for the baseline as well as CFS and CFSMF . Notice substantial

differences in the growth trajectories across the scenarios. More layers of heterogeneity typ-

ically lead to larger propagation of the shock. All three scenarios spike between 5–10 years,

18Note that, although untargeted, output volatility along the transition is roughly the same as in the
baseline. More details relating to the computation of the counterfactual steady state are deferred to Step 12
of Appendix B.1.
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Figure 4: Counterfactual results. Percentages are prior to multiplication by 100.

with the baseline realizing a maximum of 0.665%. Removing heterogeneity in R&D levels

lowers the peak to 0.655%, while also removing entry/exit drops it further to 0.640%.

Insights regarding these differences follow from re-allocations amongst the firm cross-

section. Within each age grouping, a rise in the mass of the least productive firms ensues

on impact and the periods immediately subsequent to the shock, coupled with a contraction

of those of the most productive. Similarly, we see a rise in the mass of young firms, at the

expense of medium and old. These re-allocations move in favor of firms that exhibit higher

innovation rate cyclicality, as shown in Figure 2a. The culmination of this is an amplification

of cyclicality in the growth rate in the baseline, relative to CFS.

The intuition is relatively similar when inferring the effect of entry and exit. The measure

of entrants surges on impact in the baseline, shifting mass towards young firms. We remove

this effect when moving from CFS to CFSMF , abolishing this movement of resources from

incumbents to entrants. Since entrants are the most pro-cyclical in their innovative responses

to the shock (again see Figure 2a), this yields a weaker short-run growth effect. Hence, our

model predicts procyclical entry and, symmetrically for a negative shock, countercyclical

exit of less productive and younger firms, which could potentially weaken the propagation of

technology shocks (as in e.g. Caballero and Hammour, 1994; Ottaviano, 2012). But, these

firms are also the most procyclical in the innovation efforts which produces the opposite

effect. In our framework and parametrization, differences in innovation cyclicality are the

dominant force leading to a positive overall impact of firm heterogeneity on the propagation

of technology shocks.

As a final simulation exercise, we implement a large negative shock to the economy and

trace-out the time path followed by GDP; the results are shown in Figure 4b. In these
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Table 4: Differences in average productivity

1 year 10 Years 20 Years

Baseline difference from trend -0.09 -2.13 -2.91
Heterogeneity effect -0.04 -1.05 -0.73
Decomposition

S heterogeneity 23.27 25.53 46.44
MF heterogeneity 76.73 74.47 53.56

Note: simulations with average productivity to 12 percent negative TFP shock at time 0. First line shows
percentage deviation of baseline Q(t) from trend growth (CFEX). Simulation starts with Q(0) = 1 and rolls
average productivity forwards using Q(t) = Q(t−1) exp(G(t−1)) for t ≥ 1. Second line measures differences
between baseline and CFSMF Q(t) levels at cutoff time period, as a percentage of the CFSMF Q(t) level.
Decomposition of S heterogeneity then gives differences in Q(t) predictions of CFS-CFSMF as fraction of
overall difference. MF difference is residual. All numbers are percentages after multiplication by 100.

simulations, we administer a one time negative shock to TFP of 12%. We choose this shock

size so that the baseline simulation realizes an impact drop in real GDP of around 10%, in

order to mimic the magnitude of losses experienced in the onset of the COVID-19 pandemic.

In this figure, we depict the time paths followed by the baseline, CFS and CFSMF , in

addition to another counterfactual, labeled as CFEX , in which we have trend growth. That

is, the latter counterfactual sees a variable time path given the shock’s effect on stationarized

output, while growth simply continues at the steady state rate.

Figure 4b has the simulation starting at 1, where all scenarios then see a drop to around

0.9 at the shock’s impact. This figure highlights that endogenous growth and our novel

features of heterogeneity have a quantitatively significant impact on key aggregates of the

economy. The overall effect of endogenous growth (baseline v.s. CFEX) on GDP is around

4% after 20 years, that is, GDP is still 4% below what it would have been under trend

(steady-state) growth. Firm heterogeneity accounts for roughly one percentage point of this

difference (baseline v.s. CFSMF ). Consequently, entry and exit, along with the heterogeneous

innovation response of firms, explain approximately 1/4th of the shock’s persistence after 20

years.

We then perform a decomposition of the trajectory of the average productivity variable

Q(t) after the large negative shock in Table 4. Average productivity is still 2% lower than

with trend growth ten years after the shock and almost 3% lower 20 years after. This

indicates that the impact of a large TFP shock on productivity in our endogenous growth

environment is very persistent. Heterogeneity gives average productivity that is around

1% lower after the ten year mark, while dropping slightly to 0.73% after 20 years. Both
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elements of heterogeneity play a meaningful role in shaping this difference, with innovation

heterogeneity explaining around 1/4 up to around 10 years, but rising in prominence to

around 1/2 subsequently.

4.3 Costs of Business Cycles Revisited

As a final step in our analysis, we revisit the classic question of costs of business cycles. Fol-

lowing Lucas (1987) and in line with the existing literature, we adopt the standard methodol-

ogy of estimating the welfare costs of business cycles. In particular, we compare our baseline

economy to a hypothetical one in which business cycles are eliminated — our deterministic

steady state. To quantify the welfare impact, we compute the fraction of per-period con-

sumption, ζ, which agents in our model would be willing to give up in order to remain in

the deterministic steady state as opposed to the stochastic steady state with business cycles.

This welfare loss measure, ζ, is computed from:∑
t

βtU(Ct) =
∑
t

βtU(C∗
t (1− ζ)),

where an asterisk indicates the deterministic steady state.

In other words, we compute the net present value of utility in our baseline model with

and without aggregate shocks. The value ζ that makes households indifferent between one

and the other is the welfare cost of business cycles. In these calculations, we consider several

alternative specifications of our model. First, the baseline in which growth is endogenous, it

reacts to business cycles and firm heterogeneity plays an important role. Second, CFSMF ,

where recall we shut-down heterogeneity in innovation as well as holding entry and exit fixed

along the cycle. Finally, we also consider a model with exogenous growth. To generate these

numbers, we simulate 25 time series of 200 Monte Carlo TFP shocks, solving for firm choices

and the implied cross-section, then averaging across the welfare numbers that follow.

Our findings indicate that business cycle fluctuations lead to significant economic losses,

with households willing to sacrifice approximately 3% of their annual consumption to avoid

these fluctuations. Without heterogeneity, that is abstracting from entry and exit and het-

erogeneity in innovation, the cost of business cycle is instead 2.6%, which is 15% lower than

in our baseline model.

These costs are several orders of magnitude larger than the 0.1% found by Lucas (1987,

2003). Barlevy (2004) show that endogenous growth can lead to even larger costs of fluctu-

ations than those we find, with 7-8% of annual consumption. But his exercise keeps average
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investment fixed in the fluctuating economy, so that the baseline model and the counterfac-

tual economy have the same initial consumption. While in our model, as in previous models

that have calculated the cost of business cycle in endogenous growth models, fluctuations

affect investment in innovation and initial consumption. With this calculation, it is noto-

riously harder to obtain large welfare costs of fluctuations.19 Not only is the overall cost

of fluctuations quite large, considering the conservative methodology used to compute it,

more importantly, the new channel of welfare losses that we identify of firm heterogeneity,

provides a non-negligible contribution.

5 Conclusion

Our study underscores the importance of integrating growth and business cycle dynamics,

particularly in light of recent crises such as the late 2000s global financial meltdown and

the COVID-19 pandemic. By developing a model that combines endogenous growth with

business cycle fluctuations and heterogeneous firms, we reveal critical insights into the role

of innovation and firm heterogeneity. Our findings indicate that innovation is inherently

procyclical, especially for smaller, less productive, and less profitable firms, a novel predic-

tion supported by empirical evidence from Compustat data. This heightened procyclicality

among these firms is driven by their present-bias in innovation and greater sensitivity to

short-term profit fluctuations due to exit risks during economic downturns.

Our counterfactual analyses demonstrate that firm heterogeneity significantly amplifies

the transmission of total factor productivity (TFP) shocks. When firm innovation levels

and cyclicality are equalized, or when endogenous entry and exit are removed, the model

shows reduced volatility and diminished shock amplification. In contrast, the baseline model,

which incorporates firm heterogeneity, indicates that a 10% GDP drop, akin to the COVID-

19 shock, results in GDP remaining 4% below long-run trend twenty years later, with firm

heterogeneity accounting for a quarter of this persistent gap. Procyclical entry and coun-

tercyclical exit of less productive firms, while potentially mitigating technology shocks, also

contribute to greater business cycle amplification through their procyclical innovation be-

havior.

Our results challenge the traditional view posited by Lucas (1987), which suggested

that the costs of economic fluctuations are minimal. We find that the inclusion of firm

19If eliminating fluctuations increases investment in growth-enhancing activities, the economy will indeed
grow faster. But since such investment takes resources away from consumption, average initial consumption
will fall, and the benefits of eliminating fluctuations will be smaller (e.g Epaulard and Pommeret, 2003).

29



heterogeneity raises the estimated costs of business cycles to approximately 3% of annual

consumption, significantly higher than Lucas’s estimate of less than 0.1%. Excluding firm

heterogeneity reduces this cost to 2.6%, highlighting the substantial role that firm diversity

plays in exacerbating the welfare costs of business cycles.

In conclusion, our study highlights the critical need to consider firm heterogeneity in

models of economic growth and business cycles. This approach provides a more nuanced

understanding of the propagation mechanisms of macroeconomic shocks and highlights the

significant welfare implications of cyclical fluctuations, driven by the diverse responses of

firms.

One fruitful area for future research is the role of policy interventions in mitigating

the adverse effects of business cycle fluctuations on long-term growth (see e.g. Benigno and

Fornaro, 2018; Fornaro andWolf, 2023). Investigating the effectiveness of fiscal and monetary

policies in supporting innovation and firm survival during economic downturns could inform

more nuanced policy designs.
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, Toshihiko Mukoyama, Ayşegül Şahin, and Anthony A. Smith, “Revisiting the

welfare effects of eliminating business cycles,” Review of Economic Dynamics, 2009, 12

(3), 393–404.

Lee, Yoonsoo and Toshihiko Mukoyama, “Entry and Exit of Manufacturing Plants

over the Business Cycle,” European Economic Review, 2015, 77, 20–27.

Lucas, Robert, “Macroeconomic Priorities,” American Economic Review, 2003, 93 (1),

1–14.

Lucas, Robert E. Jr., Models of Business Cycle, New York: Basil Blackwell, 1987.

Moscarini, Giuseppe and Fabien Postel-Vinay, “The Contribution of Large and Small

Employers to Job Creation in Times of High and Low Unemployment,” American Eco-

nomic Review, 2012, 102 (6), 2509–2539.

Nuno, Galo, “Optimal Research and Development and the Cost of Business Cycles,” Jour-

nal of Economic Growth, 2011, 16, 257–283.

Olivier, Eugenio Cerruti Summers Lawrence Blanchard, “Inflation and Activ-

ity—Two Explorations and Their Monetary Policy Implications,” NBER Working Paper,

2015, (21726).

Ottaviano, Gianmarco I. P., “Firm Heterogeneity, Endogenous Entry, and the Business

Cycle,” NBER International Seminar on Macroeconomics, 2012, 8 (1), 57–86.

Ouyang, Min, “On the Cyclically ofR&D,” Review of Economics and Statistics, 2011, 93,

542–533.

Pancost, N Aaron and Chen Yeh, “Decomposing Aggregate Productivity,” Technical

Report 2022.

Schmitz, Tom, “Endogenous Growth, Firm Heterogeneity and the Long-run Impact of

Financial Crises,” European Economic Review, 2021, 132 (2).

33



Sedláček, Petr, “Creative destruction and uncertainty,” Journal of the European Economic

Association, 2020, 18 (4), 1814–1843.
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A Equilibrium Definition

In this appendix we detail the formal expressions for the equilibrium growth rate and full

sequence equilibrium definition.

A.1 Growth Rate

We define the growth rate of the average quality level in the economy, drawing on the cross-

sectional measure law of motion (25)–(26). We denote the growth rate as G′ = Q′/Q − 1.

From the definition of Q in (7), the net growth rate is defined in variety-level notation as

(1 +G′)η−1 =
1

Ω′

∫
j∈Ω′

(
q′

Q

)η−1

dj. (31)
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Leveraging the definition of the cross-section (25)–(26) in (31), we expresses the growth rate

in terms of state variables as

Ω′(1 +G′)η−1 =
∑

a∈{1,2,...,nA−1}

ζa(1− δa)

∫
q̂

∫ ϕ̃(q̂(1+λ)/(1+G′),a+1,Z′)

[q̂(1 + λ)]η−1 x (q̂, a, Z)ω (q̂, a, Z) dF (ϕ)dq̂

+
∑

a∈{1,2,...,nA−1}

ζa(1− δa)

∫
q̂

∫ ϕ̃(q̂/(1+G′),a+1,Z′)

q̂η−1 [1− x (q̂, a, Z)]ω (q̂, a, Z) dF (ϕ)dq̂

+
∑

a∈{1,2,...,nA−1}

(1− ζa)(1− δa)

∫
q̂

∫ ϕ̃(q̂(1+λ)/(1+G′),a,Z′)

[q̂(1 + λ)]η−1 x (q̂, a, Z)ω (q̂, a, Z) dF (ϕ)dq̂

+
∑

a∈{1,2,...,nA−1}

(1− ζa)(1− δa)

∫
q̂

∫ ϕ̃(q̂/(1+G′),a,Z′)

q̂η−1 [1− x (q̂, a, Z)]ω (q̂, a, Z) dF (ϕ)dq̂

+ (1− δnA)

∫
q̂

∫ ϕ̃(q̂(1+λ)/(1+G′),na,Z′)

[q̂(1 + λ)]η−1 x (q̂, na, Z)ω (q̂, na, Z) dF (ϕ)dq̂

+ (1− δnA)

∫
q̂

∫ ϕ̃(q̂/(1+G′),na,Z′)

q̂η−1 [1− x (q̂, na, Z)]ω (q̂, na, Z) dF (ϕ)dq̂

+M

∫
q̂e

∫ ϕ̃(q̂e(1+λ)/(1+G′),1,Z′)

q̂e(1 + λ)xe (q̂e, Z)ωe (q̂e) dF (ϕ)dq̂e. (32)

Expression (32) considers all possible relative quality levels at time t in the first of each of

the double integrals. Firms then move up or down from their starting points, based-on their

choices of x and xe and the corresponding measures of firms. Note that we need to consider

age groups below the top category separately from those below, as well as entrants, who

arrive in the lowest age group.

A.2 Stochastic Stationary Equilibrium Definition

A stochastic stationary equilibrium is an infinite sequence of aggregate objects

{Ĉt, At+1, Ŵt, Rt, Ŷt,Λt,Mt,Ωt, Zt, Gt}∞t=0,

firm-level incumbent variables

{{k(q̂t, at, Zt), v(q̂t, at, Zt), ṽ(q̂t, at, Zt), ϕ̃(q̂t, at, Zt), x(q̂t, at, Zt), s(q̂t, at, Zt), ω(q̂t, at, Zt)}(q̂t,at,Zt)}∞t=0
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and entrant variables

{{ve(q̂e,t, Zt), xe(q̂e,t, Zt), se(q̂e,t, Zt)}(q̂e,t,Zt)}∞t=0

such that the following conditions hold

1. The households make their optimal consumption-savings choice with Ŵt and Rt taken

as given, to yield Euler equation (10),

2. The stochastic discount factor Λt is defined from the household’s solution (10),

3. The aggregate TFP process Zt evolves as in (5),

4. The value functions vt(q̂t, at, Zt) in (13) and ṽt(q̂t, at, Zt) in (15) solve the firm’s opti-

misation problem, with optimal static control vector

k(q̂t, Zt) = {p(q̂t, Zt), n(q̂t, Zt), ŷ(q̂t, Zt)}

of prices, employment and de-trended output, exit threshold ϕ̃(q̂t, Zt) in (18) and in-

novation probability x(q̂t, Zt) in (19),

5. The value function ve(q̂e,t, Zt) in (20) solves the entrant’s problem, with optimal inno-

vation probability xe(q̂e,t, Zt) in (21),

6. The measure of entrants is determined by (22).

7. The cross-sectional measure of firms evolves over time as in (25)–(26),

8. Markets clear consistent with firm decisions, the endogenous cross-sectional measure

and aggregate conditions given by (23) and (24).

9. The endogenous growth rate is given in (32).

B Computational Algorithms

In this appendix, we detail the solution of the deterministic steady state and transition after

a shock, in turn.
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B.1 Deterministic Steady State

The following describes the computation of the calibrated steady state. Given it is determin-

istic, we omit time subscripts. Note the distinguishing characteristic here is that aggregate

TFP is fixed Z = 1.

1. Create a grid for relative productivity levels q̂ around the average Q.

2. Fix certain aggregates: this reduces the iterative complexity of the problem. Specifi-

cally, we fix the de-trended wage Ŵ = 1 as well as de-trended aggregate output Ŷ = 1.

To make these aggregates consistent with our equilibrium definition in Appendix A.2,

we treat the sunk cost of entry ce and the overall firm mass Ω as free parameters.

Recall also that the aggregate price index is the numéraire in our model, as such we

also set P = 1.

3. Solve for the static choices in vector k(q̂, a, 1) of intermediate goods producing incum-

bents consistent with Step 2, as well as their model-implied expressions in (16), (17)

and the de-trended version of (11).

4. Solve the incumbent intermediate producing firms’ Bellman equation (13) using value

function iteration. This uses the static controls from Step 3 as an input. This step

yields their policy functions for R&D x(q̂, a, 1), s(q̂, a, 1), cutoff fixed cost ϕ̃(q̂, a, 1),

expected fixed costs, probability of exit and value functions v(q̂, a, 1), ṽ(q̂, a, 1). Note

that we extrapolate the value function beyond the top grid point, so that firms getting

close to the maximum q̂ still have an incentive to innovate, as in the model.

5. Solve the entrant’s problem using the value function ṽ(q̂, 1, 1) found in Step 4 as an

input and the expressions given in (20) and (21). This yields their optimal R&D choices

xe(q̂, 1), se(q̂, 1) as well as the entrant value conditional on prototype ve(q̂, 1).

6. Find the sunk cost of entry consistent with the free entry condition, the object ve(q̂, 1)

found in Step 4 and the assumption that Ŵ = 1 from Step 2, ce = E[ve(q̂, 1)].

7. Find the stationary endogenous cross-section of firms across age and relative produc-

tivity. Do this by firstly assuming a unit measure of firms (distribution). Then writing

equations (25)–(26) in matrix notation

ωt = Γtωt−1 +Mtωe,t (33)
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where ωt a vector of the distribution of firms across the state space, Γt is an endogenous

Markov transition matrix, consistent with the equilibrium objects found in Steps 3–

5, Mt is still the measure of entrants and ωe,t is the initial distribution of prototype

productivities. We can then find the stationary invariant distribution through inverting

(33) as w̃ = M̃(I−Γ)−1ωe where I is the identity matrix, ω̃ is the stationary distribution

and M̃ is the measure of entrants that normalizes the overall firm measure sum to unity.

8. Find the variable averages, across all intermediate producing firms, that are consistent

with the distribution from Step 7 and optimal controls from Steps 3–5.

9. Find the measure of entrants that is consistent with the assumption that Ŷ = 1 from

Step 1 using the average de-trended output from Step 8 and stationary distribution

from Step 7, leveraging the linearity of the latter. This also then implies the cross-

sectional measure of incumbents across the state space.

10. Compute the aggregate variables consistent with Step 9. Find the aggregate labor

demand from intermediate goods firms, ND. Set the inelastic labor supply of the

household equal to this object N = ND. Treat this as a parameter for the transition

simulations.

11. Find the aggregate growth rate as described in Appendix A.1 and contribution from

entrants.

12. Find endogenous objects relating to the steady state of the counterfactuals CFS and

CFSMF . Impose a common x̄ and x̄e for incumbents and entrants, respectively. Use a

solver to find these objects to match the same growth rate and entrant contribution to

growth found in Step 11. The counterfactual steady state uses the same static k(q̂, a, 1)

and exit choices ϕ̃(q̂, a, 1) of incumbents that are found in Steps 3–4 of the baseline

steady state computations. We then impose that x(q̂, a, 1) = x̄ and xe(q̂, 1) = x̄e ∀q̂, a.
Then taking these policy functions, we compute the invariant distribution as in Step

7. When finding the mass of firms, we impose that the measure of entrants in the

counterfactual steady state is the same as in the baseline; the overall measure is then

implied.

B.2 Transition After TFP Shock

To solve for the dynamic equilibrium, we build on Sedláček (2020), but extend the method-

ology to allow for endogenous growth. In particular, we use first-order perturbation around
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the stationary steady state (including the steady state life-cycle patterns of firms). The

first-order approximated solutions, denoted by hats, have the following form:

ĥt+1 =h+Θ(ĥt − h),

d̂t+1 =d+Π(ĥt − h).

where Θ and Π are matrices containing the coefficients obtained from the approximation,

ĥt contains deviations of state variables and d̂t is a vector containing deviations of non-

predetermined variables. The perturbation procedure is standard and carried out in one

step.

An advantage of perturbation methods is that the computational speed is relatively high

and many state variables can be handled.20 An important prerequisite for perturbations to

be accurate, however, is that deviations from the steady-state are not too large.

For firm dynamics models like the one in this paper it may seem problematic because

differences in employment levels across firms may be very large. The solution method adopted

here, however, overcomes this problem since the steady state we perturb around contains

the entire life-cycle profiles of firms. These growth paths, captured by the constants in the

above equations, are themselves non-linear functions of firms’s productivity.

Hence, the fact that most newborn firms starts off much below their eventual sizes does

not involve large accuracy losses since the same is true for the steady-state sizes of newborn

firms. Similarly, the fact that the equilibrium features various firm types with very different

optimal sizes does not reduce accuracy since we perturb around the growth path for each

individual firm type.

C Additional Figures on Steady State Heterogeneity

Figure 5 depicts additional properties of the incumbent firm distribution, while Figure 6

displays properties of the entrant distribution, conditional on their prototype draw.

20Computational time is significantly lower when compared with global methods for dealing with aggregate
shocks such as Krusell and Smith (1998) and after MIT policy shocks such as Spencer (2022).
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Figure 5: Additional figures on incumbent heterogeneity in the steady state
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Figure 6: Entrant heterogeneity in the steady state
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D Data Appendix

Table 5 presents results for the empirical regressions with ranking based on profitability

ratios, rather than real profits. We follow the below procedure to generate the regression

coefficients given in Table 3 in the text, as well as Table 5.

1. Load CPI data from FRED series CPIAUCSL. Take the average CPI across all months

within a given year to find a yearly measure. Use 1987 as the base year for deflating.

2. Load Compustat Annual data. Extract calendar years and merge with the CPI data

from Step 1.

3. Only study U.S. firms: drop those without a listed foreign incorporation code (fic) or

headquarters code (loc). Only keep firms whose entries of these two indicators are the

USA.

4. Drop observations with old industrial codes (indfmt == ”FS”).

5. Drop observations that are in non-USD currencies (curcd != ”USD”).

6. Drop observations outside the range of years considered.

7. Drop firms that have double-reporting of data for a given fiscal year.

8. Drop if firms have double-reporting over calendar years.

9. Drop firms that change their reporting month over the sample.

10. Define the real growth rate of a firm using its reported income statement item xrd, in

conjunction with CPI data created in Step 1.

11. Extract 2 digit NAICS codes from firms. Drop firms whose industry changes over the

sample.

12. Download and merge with industry-level gross output data from the BEA. Deflate

using CPI information from Step 1.

13. Impose a balanced panel for firms for all years under consideration.

14. Drop all firms in an industry if there are fewer than 10 reported in total.

15. Generate firm lifetime profitability estimate using fixed effects as in (28) with Stata

function xtreg. Output the firm fixed effect. Pretax income (pi) divided by sales (sale)

is the variable used for sorting (vijt).
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Table 5: Empirical validation regression results: profitability ratio robustness

Coefficient
Real output growth (α1) 2.460∗∗∗ 2.212∗∗∗ 2.484∗∗∗ 2.200∗∗∗

(0.271) (0.295) (0.258) (0.275)
2nd quartile interaction (α2

3) -1.850∗∗ -1.844∗∗ -1.881∗∗ -1.876∗∗

(0.434) (0.436) (0.412) (0.415)
3rd quartile interaction (α3

3) -1.986∗∗∗ -1.978∗∗ -2.017∗∗∗ -2.009∗∗∗

(0.366) (0.368) (0.345) (0.345)
4th quartile interaction (α4

3) -2.031∗∗∗ -2.032∗∗ -2.065∗∗∗ -2.064∗∗∗

(0.377) (0.373) (0.353) (0.349)
N 7,413 7,413 7,413 7,413
Time fixed effects (Y/N) N Y N Y
Industry fixed effects (Y/N) N N Y Y

Note: rankings instead based on profitability ratios with Compustat variables pi/sale. Quartile groupings
are done using κ1i from regression (28). Table notation corresponds to regression equation (29). Standard
errors are in parentheses. Superscripts ∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5% and 1% confidence
levels, respectively. N denotes number of observations. Dependent variable is firm-level real R&D growth.

16. Generate groupings (quartiles) of the fixed effects estimated in Step 15 by industry.

17. Give firms labels, based on how their fixed effect estimated in Step 15 places relative

to the cutoffs estimated in Step 16.

18. Run the regressions presented in Table 3.

E Single Age Grouping Calibration and the Role of

Entry

The parameterization in this appendix takes a simplified calibration with only one single age

grouping (nA = 1). The parameter values used are given in Table 6 with the corresponding

moments in Table 7. We calibrate this version of the model to contain purely exogenous

exit, for the purposes of the exposition, leveraging small variance σϕ and relatively low fixed

cost mean µϕ, such that there is no endogenous exit. We therefore calibrate 7 parameters to

7 data targets. All other relevant parameters remain the same as in the baseline.

Now using this simplified calibration, we explore the role of the elasticity of entry χ

on the impact responses of incumbents’ R&D. We start with the assumption of free entry,

represented through χ of ∞. We then gradually reduce this parameter, until the point of
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Table 6: Parameter values

Parameter Value Source/Target

Discount factor β 0.96 Annual interest rate 4%
Coefficient of relative risk aversion σ 1.00 Logarithmic preferences
TFP persistence ρZ 0.78 Sedláček and Sterk (2017)
Innovation function curvature ψ 2.00 Hall et al. (2001); Bloom et al. (2002)
Entrant prototype mean µe 0.00 Normalisation/baseline
Elasticity of entry χ 15.0 Baseline

TFP volatility σZ 0.02 Real GDP volatility
Elasticity of substitution η 4.43 Profits/GDP ratio
Innovation step size λ 0.05 Growth rate
Incumbent innovation productivity γ 2.07 Aggregate R&D to GDP
Entrant prototype variance σe 0.07 Mean prod. entrants/incumbents
Entrant innovation productivity γe 4.30 Entrant contribution to growth
Exogenous death rate δ 0.11 Exit rate

a zero elasticity, at which point entry is non-responsive to changes in value after a shock.

Figure 7a shows the cross-section of responses to a one standard deviation TFP shock, while

Figure 7b gives the trajectory of the measure of entrants.
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Figure 7: Entry elasticity

As the elasticity becomes lower, the responses of R&D become more pro-cyclical. The

intuition being that incumbents seek to expand their innovative efforts during a boom, but

entry is a competing process in terms of utilization of resources. When this entry process

is restricted, there is more capacity for incumbent firms to increase their R&D. As such,

changing this parameter translates the R&D responses of firms up or down.
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Table 7: Targeted moments

Moment Data Model Source

Volatility of real GDP 0.02 0.02 BEA
Overall Exit rate 0.11 0.11 BDS
Profits/GDP ratio 0.12 0.14 BEA
Productivity growth 0.82 0.82 BLS
Aggregate R&D to GDP 0.04 0.08 BEA
Mean prod. entrants/incumbents 1.02 1.01 Foster et al. (2006)
Entrant contribution to growth 0.39 0.39 Pancost and Yeh (2022)

Note: all moments are targeted. All numbers are prior to multiplication by 100, except for the average
productivity growth: this is presented as a percentage after x100.

A more detailed intuition of the mechanism at work is the following. As we saw, entry

is highly procyclical and leads to general equilibrium effects that crowd-out incumbents’ re-

sponse to shocks. The entry process requires labor through the sunk entry cost and units

of final goods used in the innovation process. If entry is very elastic and therefore very

procyclical, wages will also be very procyclical thereby taming the procyclical response of

incumbents who experience stronger increases in costs during booms and stronger reductions

in recessions. Moreover, if entry is strongly procyclical more final goods are demanded for

entrants’ innovation during booms, thereby squeezing resources for innovation by incum-

bents. This leads to higher marginal utility of consumption and so lowers investment by

incumbents via the stochastic discount factor.
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