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Abstract

This paper examines growth forecasts of models that allow for cross-

country interactions and/or a time-varying variance plus feedback from volatil-

ity to growth. Allowing for these issues is done by augmenting an autore-

gressive model with cross-country weighted averages of growth and/or the

GARCH-M framework. The models also allow for structural breaks in the

mean and variance of growth. The obtained forecasts are then evaluated

using statistical criteria, i.e. point and density forecasts, and an economic

criterion, i.e. forecasting recessionary events. The results show that the two

components are important to obtain improved point and density forecasts,

but that forecasting recessionary events remains difficult.
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1 Introduction

Information on current and future economic activity is an important input in most

economic decisions, ranging from investment decisions to the formulation of mone-

tary policy. There is a large literature on how to obtain early estimates of economic

activity discussing a wide range of approaches. One of the most popular tools is the

use of bridge equations, which relate quarterly GDP growth with quarterly averages

of a selection of monthly indicators1. Some observations of the monthly indicators,

however, will not be available for a full quarter and so a quarterly average cannot

be calculated. This is due to a publication lag and the fact that some months of the

respective quarter lie in the future. Fortunately, these observations of the monthly

indicators can be estimated, but an obvious drawback is that an inadequate model

of the monthly indicators could increase the nowcast and forecast errors of the GDP

output growth estimates. Thus, besides an adequate bridge equation, the bridge

equation approach also requires a good forecasting model for the monthly indica-

tors.

Commonly used models to extrapolate the monthly series used in the bridge

equation approach is the random walk and the autoregressive model. Both these

models, however, have two important drawbacks. First, these models do not take

time-varying volatility into account. Time-varying volatility is potentially important

to obtain good forecasts as volatility changes over the business cycle. Moreover,

monthly indicators are generally more volatile than quarterly series. Monthly series

for industrial production growth, for example, which is a crucial indicator to obtain

good early estimates of GDP growth, is much more volatile than quarterly GDP

growth. Second, the random walk and autoregressive model ignore cross-country

1Another popular approach is a basic statistical model where GDP growth depends linearly
on its own lags. Mitchell (2009) shows that it is difficult to improve upon this type of model in
periods of stable growth, but that its performance in more volatile periods is poor. More advanced
methods are MIDAS models, factor models and dynamic factor models. See Banbura, Giannone,
Modugno, and Riechlin (2013) for a review of the main approaches to obtain early estimates of
economic activity.
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interactions. As countries are linked though trade and financial links, forecasts

could be improved by taking this into account.

In this paper, I investigate the forecast performance of models that take time-

varying volatility and/or cross-country interactions into account. Comparing the

forecasts obtained by a model that includes these two components and models where

one of the two components, or both, is switched off, allows us to judge the relative

importance of these components in forecasting performance.

A model that allows for time-varying volatility and cross-country interactions is

easily obtained by augmenting a univariate autoregressive model with two compo-

nents. First, I include the generalised autoregressive conditional heteroskedasticity

(GARCH) framework, developed by R. F. Engle (1982), to accounts for a time-

varying variance. In this framework, the variance of the residuals depends on past

residuals and lags of the variance. Thus, a large shock in the previous period raises

the volatility today. Second, I include cross-country weighted averages to accounts

for cross-country interactions. Using cross-country weighted averages to allow for

cross-country interactions is a technique developed in Pesaran, Schuermann, and

Weiner (2004) and Dées, Di Mauro, Pesaran, and Smith (2007) in the context of

vector autoregressive (VAR) modelling; the so-called Global VAR. It is also possible

to allow for structural breaks in the mean and variance of the dependent variable

and this is also done here.

In the context of forecast performance of bridge equations, an important monthly

indicator is industrial production growth. Therefore, I investigate the forecast per-

formance of the models in forecasting industrial production growth. As sample

of countries I use the G7, which is a group of countries with highly developed

economies2 and arguably the most connected.

In the case of modelling industrial production, there is also empirical evidence

that time-varying volatility and cross-country interactions are important. Trypsteen

2The G7 consist of Canada, France, Germany, Italy, Japan, the United Kingdom and the United
States.
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(2014) studies the importance of allowing for cross-country interactions in the re-

lationship between volatility and growth. To that end, he estimates a GARCH-

in-mean (GARCH-M) model, developed by R. Engle, Lilien, and Robins (1987) of

industrial production growth augmented with cross-country weighted averages of

growth to account for cross-country interactions. This model is the same as the one

discussed above, except that it also allows for volatility to affect the mean, which

in this case is industrial production growth. His results show that it is important

to allow for a time-varying variance and cross-country interactions when modelling

industrial production growth. Regarding the effect of volatility on industrial pro-

duction growth, he finds evidence for a statistically significant effect of volatility on

growth. It follows that, in the case of forecasting industrial production, allowing for

this can also be important. Therefore, instead of using the GARCH model, I will

use the GARCH-M model in the forecasting exercise.

The criteria used to evaluate the forecast performance of the various models

are both statistical and economic and the benchmark model to which all models

are compared to is the random walk model. As statistical criteria, I evaluate the

forecast performance using point and density forecasts. Density forecasts take the

complete distribution of the forecasts into account and so the spread of the density

changes with volatility. As to judging forecast performance using economic criteria,

I compare the ability of the various models to forecast recessionary events, which is

defined as two consecutive negative growth realisations.

Four conclusions can be drawn from the forecasting exercise. First, the model

without the GARCH-M framework and without the cross-country weighted averages

is generally outperformed by a model with one or both of these components in terms

of point and density forecasts. Second, the further in the future one wants to forecast,

the more important the GARCH-M component becomes. Third, the GARCH-M

framework is more important to obtain good density forecasts compared to good

point forecasts. Fourth, with respect to forecasting recessionary events in the G7,
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the GARCH-M framework and/or the cross-country interactions do not improve the

forecast performance much.

The paper is organised as follows. In Section 2, I describe the models used for

forecasting G7 industrial production growth and the break detection procedure for

the mean and variance of industrial production growth. In Section 3, I first describe

how I obtain the forecasts, what criteria I use to judge the forecast performance

and how to test if the forecast performance of some model is statistically better

compared to the random walk model. Then, I discuss the forecast performance of

the alternative models using the statistical and economic criteria. I also graphically

illustrate the effect of the GARCH-M framework and the cross-country weighted

averages on the forecasts of G7 industrial production growth. Section 4 concludes.

2 Modelling framework

The univariate GARCH-M model of industrial production (henceforth IP) growth

augmented with cross-country weighted averages of growth and shift dummies in

the mean and variance equation, denoted here as AR-Y∗-GARCH-M, is given by

∆yit = ci0 +
l∑

k=1

cikDMikt + λiσit+ (2.1)

s∑
k=0

βik∆y
∗
it−k +

p∑
k=1

φik∆yit−k + εit

σ2
it = αi0 +

f∑
k=1

αikDVikt + ηiε
2
it−1 + γiσ

2
it−1 (2.2)

where ∆yit is the growth rate for country i at time t, DMikt is a possible shift

dummy k in the conditional mean which is equal to 0 before the break date and

equal to 1 on and after the break date, σit is the conditional standard deviation

of growth, which is the measure of volatility, ∆y∗it−k are the cross-country weighted

averages of growth and εit is the error term.
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The cross-country weighted averages of growth are defined as

∆y∗it =
7∑
j=1

wij∆yjt,
7∑
j=1

wij = 1 and wii = 0, (2.3)

where I have chosen to measure wij by the average share of total trade of country i

with country j. Total trade is defined as the sum of exports and imports between

country i and the other countries. Note that the weight wij is assumed to be constant

over time, but Trypsteen (2014) estimates the AR-Y∗-GARCH-M model with and

without time-varying weights and shows that the estimates do not change much.

The conditional variance of country i at time t, σ2
it, depends on a constant αi0,

possible shift dummies, DVikt, which are equal to 0 before the break date and equal

to 1 on and after the break date, the squared lagged error term and a lag of the

variance. Note that (2.2) reduces to an ARCH(1) model if γi equals zero.

As usual, the conditional mean of the error term is assumed to be equal to 0, so

εit ∼ (0, σ2
it). Assuming that the cross-country weighted averages account for all the

cross-country interactions, it follows that the error term of each country only consist

of an idiosyncratic component and so the error term across countries is uncorrelated,

i.e. COV [εit, εjt] = E[εitεjt] = 0 for i 6= j.

The AR-Y∗-GARCH-M model contains three components, namely autoregressive

terms (AR), cross-country weighted averages (Y∗) and a GARCH-M framework

(GARCH-M). The other models that are used to obtain forecasts are nested to this

general model. To obtain these models one or more components of the AR-Y∗-

GARCH-M model is switched off. Comparing the forecasts obtained using these

models allows us to assess the relative importance of the GARCH-M framework

and the cross-country weighted averages of growth for forecasting output growth.

Imposing the following restrictions on the AR-Y∗-GARCH-M model in (2.2)-(2.3)

gives the nested models:
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- AR: Setting λi = βik = αi0 = αik = ηi = γi = 0 ∀ i and k.

- AR-Y∗: Setting λi = αi0 = αik = ηi = γi = 0 ∀ i and k.

- AR-GARCH-M: Setting βik = 0 ∀ i and k.

2.1 Break detection procedure

A well-documented property of post-war output growth data is the occurrence of

structural breaks in both the mean, as demonstrated by the literature on productiv-

ity slowdowns (see for example Nordhaus (2004)) and the variance, as demonstrated

by the literature on the great moderation (see for example Bernanke (2004)) and so

it is important to account for these. It is also important to account for structural

breaks from an econometric point of view. As Perron (1989) shows, structural breaks

biases the autoregressive parameters in the mean equation towards 1. In GARCH

model, it is also important to allow for breaks in the variance as ignoring structural

breaks here biases the autoregressive parameters in the variance equation towards 1

(see Lamoureux and Lastrapes (1990) and Hillebrand (2005)).

The number of breaks and the break dates, however, are unknown in practice

and so they have to be estimated using a statistical procedure. Once the potential

breaks are found, it is possible to create shift dummies and to include these in the

relevant model.

To find the number of breaks and the break dates for the IP growth rates of the

G7 countries, I use a procedure developed by Bai and Perron (2003, p.15-16). To find

breaks in the mean of a series xt, they recommend to first regress xt on a constant and

accounting for potential serial correlation via non-parametric adjustment3. Based

on this regression, the UDmax and WDmax test statistics are used to see if at least

one break is present. If the UDmax test statistic, the WDmax test statistic or both

3The non-parametric adjustment is to estimate the model using a quadratic spectral kernel
based HAC covariance estimation using prewhitened residuals. The kernel bandwidth is determined
automatically using the Andrews AR(1) method.
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are larger than the relevant critical value, then we can reject the null hypothesis of 0

breaks in favour of at least one break. If there is evidence of at least one break, then

the SupF (`+1|`) statistic, where we test the null hypothesis of `+1 breaks given `

breaks, is used sequentially to determine higher order breaks where the maximum

number of possible breaks is 545.

The approach to find breaks in the variance of a series xt, following Herrera and

Pesavento (2005) and Fang and Miller (2009), is to first regress xt on a constant

and on the mean break dummy or dummies found previously, saving the estimated

residuals and then using the UDmax, WDmax and SupF (`+1|`) statistics in the

same way as discussed above based on the regression of the absolute values of the

estimated residuals on a constant.

The AR-Y∗-GARCH-M and AR-Y∗ models discussed in Subsection ??, however,

allow for cross-country interactions and so the break detection procedure should also

allow for this. To that end, I do not apply the procedure directly on the IP growth

rates, but on the growth rates where the effects of cross-country interactions are

taken out. I find the filtered growth rates by regressing the output growth rate of

country i on a constant and cross-country weighted averages of growth, i.e.

∆yit = ci0 +
s∑

k=0

βik∆y
∗
it−k + ξit (2.4)

where ξit is the error term and the estimated residuals, ξ̂it, are the filtered IP growth

rates . The inclusion of the contemporaneous and the number of lagged cross-country

weighted averages is based on the Akaike Information Criterion (AIC) and I allow

for up to six lags. I then calculate the UDmax, WDmax and SupF (`+1|`) statis-

tics based on the regression of the filtered output growth rates, i.e. the estimated

4This procedure allows for serial correlation and different variances of the residuals across
regimes.

5Throughout the procedure I use a trimming of 0.15. As will be discussed later, I estimate the
models with a fixed sample window of 516 observations. Thus a trimming of 0.15 implies that each
segment has a minimum of 77 observations, i.e. 6.45 years.
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residuals of equation (2.4), ξ̂it, on a constant, i.e.

ξ̂it = αi0 + eit (2.5)

where eit is the error term. Note that the above procedure does not allow for

volatility to effect the growth rate and therefore it is possible for the procedure to

interpret a change in volatility as a break. It is, however, better to find too many

breaks here, and to include potentially insignificant break dummies in the models,

than to miss breaks that should be included.

To find breaks in the variance of the IP growth rate of country i, I first regress

∆yit on a constant, the mean break dummy or dummies found previously and the

cross-country weighted averages of growth to filter out the effects of cross-country

interactions, i.e.

∆yit = ci0 +
l∑

k=1

cikDM ikt +
s∑

k=0

βik∆y
∗
it−k + µit (2.6)

where µit is the error term6. Then, I regress the absolute values of the estimated

residuals of equation (2.6), µ̂it, on a constant, i.e.

|µ̂it|= αi0 + νit (2.7)

where νit is the error term and I calculate the UDmax, WDmax and SupF (`+1|`)

statistics based on this regression in order to find the number of breaks and the

break dates for the variance of output growth of country i.

6Here too, the inclusion of the contemporaneous and the number of lagged cross-country
weighted averages is based on the AIC and I allow for up to six lags
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3 Forecast performance of alternative models

3.1 Data

The IP data for the G7 is from the OECD’s Main Economic indicators (MEI)

dataset. Figure 1 plots the G7 IP growth rates over the period 1962:01–2013:057.

Over the full sample period, the monthly growth rate of industrial production for

the G7 are found to be stationary, serially correlated, conditional heteroscedastic

and not normally distributed8. The data used to obtain the average trade weights

used to calculate the cross-country weighted averages, wij in (2.3), is import and

export data from the IMF’s Direction of Trade Statistics.

3.2 Design of the out-of-sample forecast exercise and fore-

cast evaluation

All forecasts of IP growth are based on a regression exercise9 following a rolling

scheme, starting with the estimation period of 1962:01-2004:12 and extending until

all sample observations are exhausted. This implies that the estimation window is

equal to 516 observation. Also, as the largest forecast horizon, h, is 12 and I have

data up until 2013:05, this implies that the last rolling sample is 1969:06-2012:05

and so I have 90 forecasts. The trade weights used to calculate the cross-country

interactions are also updated. The updating, however, only happens yearly as the

data of the trade flows is yearly.

7The original data for France and Japan, however, has extreme observations and these are
replaced by the median growth rate of the original data over the full sample. The extreme obser-
vations are March–April 1963 for France due to a miner strike, May–July 1968 for France due to
the May ’68 upraising and March–June 2011 for Japan due to an earthquake.

8Table 5 in the appendix presents all the results of the formal tests. Table 6 in the appendix
presents the summary statistics of the output growth data over the full sample period.

9The models are estimated with maximum likelihood using the Marquardt optimization algo-
rithm. As with any iterative process, however, the algorithm could stop at a local maximum instead
of the global maximum. To counter this problem, all the models are estimated with various initial
values and choosing the initial value with the largest log likelihood. I use 10 different starting
values. In particular, I estimate the models with the estimates of the OLS regression for the mean
equation as starting values and various fractions of these OLS estimates. The fractions of the OLS
estimates are 0.9, 0.8, . . ., 0.1.
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Figure 1: Monthly growth rates of industrial production for the G7, 1961:02–
2013:05
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The estimates of the four models are then used to simulate 20000 potential future

output growth paths. I also simulate possible output growth paths using the random

walk (RW) model as this will be the benchmark model. This simulation exercise

gives the densities of the IP growth forecasts at horizon h. The mean of the density

forecasts of the simulated IP growth paths at horizon h are then the point forecasts

at horizon h.

The statistical criteria to evaluate the forecast performance of the models are

point and density forecasts. The loss function for a point forecast is the quadratic

loss function defined as L(yt+h, f
(i)
t ) = (yt+h− f (i)

t )2, where yt+h is the realisation of

IP growth at time t+h and f
(i)
t is the h step ahead point forecast of output growth of

model i made at time t, where i = AR, AR-GARCH-M, AR-Y∗ or AR-Y∗-GARCH-

M. The average of L(yt+h, f
(i)
t ) for all forecasts is called the mean squared error

(MSE) and the lower the better. The loss function for a density forecast is defined

as L(yt+h, f
(i)
t ) = logf

(i)
t (yt+h), where f

(i)
t is now the probability density function of

the forecast of model i made at time t. The average of L(yt+h, f
(i)
t ) for all forecasts

is called the log score and the lower the log score, the better the density forecasts.

This will always be a negative number as the logarithmic of a number in the unit

interval is smaller than 0.

To judge the forecast performance of the various models using point and density

forecasts, I apply the unconditional predictive ability test developed by Giacomini

and White (2006)10. The first step is to regress the difference of the loss func-

tion of model i, L
(i)
t+h(yt+h, f

(i)
t ), and the loss function of the benchmark model,

L
(b)
t+h(yt+h, f

(b)
t ), which in this case is the random walk model, on a constant, i.e.

10Other approaches to predictive ability testing are Diebold and Mariano (1995) and West (1996).
Giacomini and White (2006) argue that their tests are a complement to these approaches, but also
an extensions as their tests can be applied in all cases as Diebold and Mariano (1995) and West
(1996) and in many more. The tests of West (1996), for example, are not applicable on nested
models, whereas the Giacomini and White (2006) tests are. In addition, the Giacomini and White
(2006) tests take estimation uncertainty into account, whereas the tests of Diebold and Mariano
(1995) and West (1996) do not.
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∆L
(i)
t+h = µ+ εt+h, t = R, . . . , T − h. (3.1)

where ∆L
(i)
t+h = L

(i)
t+h(yt+h, f

(i)
t )− L(b)

t+h(yt+h, f
(b)
t ).

The second step is to test if the constant, µ, is statistically different from 0. To

account for the time series properties of εt+h and the dependence of ∆Lt+h in (3.1),

I apply heteroskedasticity and autocorrelation consistent standard errors. For both

the point and density forecasts, if µ is smaller than 0, then this implies that the

forecast performance of the model is better than the benchmark. Thus in both

cases we want to test the null hypothesis of H0 : µ = 0 against the alternative of

H1 : µ < 0. For the point forecasts, the model with the lowest MSE where we

can reject the relevant null hypothesis is chosen as the model with the best point

forecast performance. For the density forecasts, the model with the lowest log score

where we can reject the relevant null hypothesis is chosen as the model with the

best density forecast performance.

As to evaluate the forecast performance using economic criteria, I compare the

ability of the various models to forecast recessionary events where recession is defined

as two consecutive negative growth realisations. The recessionary event is predicted

to occur if the forecast probability exceeds 0.5. Comparing the forecasts of the event

with the actual data gives four possible outcomes. Table 1 presents all these possible

outcomes in a standard contingency table.

To judge the forecast performance of the various models, I calculate the hit rate

and the Kuipers score for each model i using the contingency table. The hit rate is

Table 1: Contingency table

Event occurred Event did not occur Total

Event is forecasted a (hit) b (false alarm) a+ b

Event is not forecasted c (miss) d (correct rejection) c+ d

Total a+ c b+ d
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defined as the ratio between the number of correctly forecasted recessions and the

total number of recessionary events, i.e. a/(a + c). The Kuipers score is defined as

the difference between the hit rate and the false alarm rate, where the false alarm

rate is the ratio between the number of falsely forecasted recessions and the total

number of non-recessionary events, i.e. b/(b+ d).

I also test if there is a relationship between outcome and prediction. To that

end perform two tests described in Pesaran and Timmermann (2009). The first

test is the ‘reduced rank regression’ test. This is a standard contingency table test

where the null hypothesis states that the model is no more successful in predicting

the event than would be achieved using the unconditional probabilities. The second

test is the ‘dynamically-augmented reduced rank regression’ test. This test takes

predictable runs in the data into account.

3.3 Model selection issues

In this subsection, I discuss the specification search to find the most parsimonious

models of the ones discussed in Subsection ?? and the various issues that complicate

this process. The specification search to find the most parsimonious model for the

AR and the AR-Y* model is relatively simple. In particular, I estimate the models

with up to six lags of the relevant lagged terms in the respective models. The model

that minimises the AIC is then picked as the best representation of the data. I also

check if there is no serial correlation left in the residuals and that the mean and

variance of the standardized residuals is equal to 0 and 1, respectively. As these two

models do not allow for a time-varying variance, the residuals are not conditional

homoscedastic.

Adding the GARCH-M model to the AR and/or AR-Y* model, however, compli-

cates the specification search. I apply a specification search in the same spirit as the

one discussed above, but need to take a few more issues into account. A first issue is

that the Hessian of the log-likelihood function of the GARCH-M model is not block

13



diagonal and so the mean and variance parameters are correlated. Therefore, all

parameters need to be estimated simultaneously. A second issue is that nonnormal

errors lead to inconsistent standard errors11. As for most G7 countries the output

growth rates are close to being t-distributed, I allow the error distribution to be the

t-distribution. I also check if the model that minimises the AIC is well specified. As

with the AR and AR-Y∗ model, I check if there is no serial correlation left in the

residuals and that the mean and variance of the standardized residuals is equal to 0

and 1, respectively. I now also check if the errors are conditional homoscedastic and

if the distribution of the errors corresponds to the one assumed in the estimation

process.

A final, but important, issue with GARCH models is that the Zero-Information-

Limit Condition (ZILC) can hold as highlighted by Nelson and Startz (2007). They

noted that in many econometric models the asymptotic variance of a parameter

estimate (say, θ̂) depends on the value of another structural parameter (say, υ) and

that for values of the structural parameter in a particular range the asymptotic

variance of the variable of interest is very large and the model is weakly identified.

More formally, Nelson and Startz (2007, p.49) argue that ZILC holds for an estimator

θ̂ if there is a value of υ, say υ0, such that limυ→υ0 Iθ̂ = 0, where Iθ̂ is the inverse

of the variance of θ̂. Nelson and Startz (2007) introduce ZILC as a way to identify

such models where the above leads to spurious inference.

Ma, Nelson, and Startz (2007) show that ZILC can hold for GARCH models.

They show that if the true ARCH effect, ηi in (2.2), is small, then the GARCH(1,1)

model is weakly identified. The effect of this is that the GARCH coefficient, γi

in (2.2), is biased upward and the corresponding standard error is too small. Thus

the results point to persistence of the conditional variance where in fact this is not

the case. Ma, Nelson, and Startz (2007, p16-17) also propose a procedure to detect

11Previous studies remedied this by estimating GARCH models with the normal distribution
but applying the consistent variance-covariance estimator developed by Bollerslev and Wooldridge
(1992).
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ZILC. To check for ZILC in the GARCH(1,1) model, the implied autocorrelation

function of the conditional variance from the GARCH(1,1) should be compared with

the one implied by an ARCH(q) model. If they differ a lot, then this is evidence that

ZILC holds. Alternatively, if the estimated conditional variance of the GARCH(1,1)

and an ARCH(q) models are very different, then this also gives evidence for ZILC.

Ma, Nelson, and Startz (2007) propose to model the variance as an ARCH model if

ZILC is detected and so in the case of ZILC, I replace equation (2.2) with

σ2
it = αi0 +

f∑
k=1

αikDVikt + ηiε
2
it−1. (3.2)

To sum up, for the AR-GARCH-M and the AR-Y∗-GARCH-M models, I pick

the well-specified model that minimses the AIC and where ZILC does not hold12.

3.4 Forecast performance using statistical criteria: Point

and density forecasts

Before discussing the forecast performance of the alternative models using statistical

and economic criteria, it is useful to illustrate the effect of the GARCH-M framework

and cross-country weighted averages of growth on the forecasts. As the GARCH-M

framework allows for a time-varying variance, the variance of the density forecasts

also changes over time and so a period of increased volatility should widen the

density forecasts. A model with cross-country interactions takes the effects of other

countries into account and so the dynamics captured by such a model should be

richer compared to a model that does not allow for these cross-country effects. I

will illustrate these effects with point and density forecasts around the time of the

bankruptcy of Lehman Brothers in September 2008, the fourth largest investment

bank in the United States at the time. This episode is a good vehicle to illustrate

12For some sample periods, the AR-GARCH-M and/or AR-Y∗-GARCH-M model picked by the
model selection procedure was misspecified and/or there was evidence for ZILC. If this was the
case, then I adjusted the model accordingly. Table 7 in the appendix documents these adjustments.
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these effects as the collapse lead to great volatility and spilled over to other countries.

Figure 2 illustrates the effect of allowing for a time-varying variance. It presents

the density forecasts of the standard AR model (Panel A) and of the AR model

augmented with the GARCH-M framework (Panel B) for the United States around

the time of the Lehman collapse13. The density forecasts presented in Figure 2

are the 1-step ahead forecast made in August, September and October of 2008.

The figure shows that for the AR model the width of the density forecast does not

change during the Lehman episode. For the AR-GARCH-M model, in contrast, the

widening of the density forecasts, due to the increased volatility, is apparent.

To illustrate the effect of allowing for cross-country interactions, it is useful to

compare the point forecasts of the AR model with the ones obtained from an AR

model augmented with the cross-country weighted averages. Figure 3 presents the

point forecasts of the AR (Panel A) and the AR-Y∗ model (Panel B) made on

February 2009, a few months after the Lehman collapse, up until 24 months in

the future for all the G7 countries. This shows that the point forecasts converge

to the long run growth rate predicted by the respective model, but that, for most

countries, it takes much more time for the AR-Y∗ than the AR model to reach that

point. Indeed, the inclusion of the cross-country weighted averages allows the model

to capture richer dynamics.

The above discussion illustrates the benefits of including the GARCH-M frame-

work and cross-country weighted averages of growth to a model that is used to

forecast G7 IP growth. In what follows I will formally investigate if these com-

ponents also help improve the forecast performance in terms of point and density

forecasts.

Table 2 shows the results of the point forecasts of the 1, 3 and 12-step ahead

horizon in panel A, B and C, respectively. The numbers in italics are the average

mean squared error (MSE) of the RW model. For the other models, the numbers

13The densities shown in Figure 2 are Kernel estimates of the true density forecasts.
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Figure 2: 1-step ahead density forecasts of the AR and the AR-GARCH-M model
made around the Lehman collapse for the United States
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Figure 3: h-step ahead point forecasts made on February 2009 of the AR (solid)
and the AR-Y∗ (dashed) model
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Table 2: Evaluation of point forecasts of IP growth

Panel A: MSE for 1-step ahead forecasts

RW AR
AR-

AR-Y∗
AR-Y∗-

GARCH-M GARCH-M

CAN 1.671 0.613∗∗∗ 0.612∗∗∗ 0.537∗∗∗ 0.532∗∗∗

FR 5.459 0.408∗∗∗ 0.454∗∗ 0.348∗∗∗ 0.345∗∗∗

GER 6.381 0.656 0.622∗ 0.560∗∗ 0.571∗∗

ITA 5.218 0.658 0.640∗ 0.476∗∗∗ 0.495∗∗∗

JAP 4.954 1.239 1.311 1.287 1.432
UK 1.958 0.548∗∗∗ 0.534∗∗∗ 0.475∗∗∗ 0.461∗∗∗

US 1.018 0.598∗∗ 0.589∗∗ 0.560∗∗ 0.509∗∗

Panel B: MSE for 3-step ahead forecasts

RW AR
AR-

AR-Y∗
AR-Y∗-

GARCH-M GARCH-M

CAN 1.465 0.662∗∗∗ 0.662∗∗∗ 0.597∗∗∗ 0.591∗∗∗

FR 3.751 0.598∗∗∗ 0.594∗∗∗ 0.644∗∗ 0.608∗∗∗

GER 4.992 0.673∗∗ 0.652∗∗ 0.698∗∗∗ 0.657∗∗∗

ITA 3.916 0.760 0.699∗∗ 0.740∗ 0.698∗∗

JAP 9.118 0.695∗∗ 0.601∗ 0.692∗ 0.607∗

UK 1.925 0.574∗∗∗ 0.567∗∗∗ 0.578∗∗∗ 0.565∗∗∗

US 0.951 0.668∗∗∗ 0.676∗∗∗ 0.675∗∗∗ 0.638∗∗∗

Panel C: MSE for 12-step ahead forecasts

RW AR
AR-

AR-Y∗
AR-Y∗-

GARCH-M GARCH-M

CAN 2.377 0.461∗∗∗ 0.453∗∗∗ 0.491∗∗∗ 0.459∗∗∗

FR 4.913 0.428∗∗∗ 0.428∗∗∗ 0.450∗∗∗ 0.439∗∗∗

GER 7.447 0.440∗∗∗ 0.439∗∗∗ 0.468∗∗∗ 0.459∗∗∗

ITA 6.822 0.440∗∗∗ 0.419∗∗∗ 0.443∗∗∗ 0.429∗∗∗

JAP 12.520 0.443∗∗∗ 0.429∗∗ 0.455∗∗ 0.442∗∗

UK 2.226 0.502∗∗∗ 0.495∗∗∗ 0.511∗∗∗ 0.498∗∗∗

US 1.669 0.444∗∗ 0.432∗∗ 0.481∗∗ 0.456∗∗

Notes: - For the RW, the numbers represent the average mean
squared error. For the other models, the numbers repre-
sent the ratio of their average MSE relative to the average
MSE of the RW. The bold numbers are the lowest relative
average MSE for each country.

- ∗, ∗∗ and ∗ ∗ ∗ denote that the forecasts are statistically
better than that from the RW model at the 10%, 5% and
1%, respectively, using the Giacomini and White (2006)
test of equal forecast performance and the quadratic loss
function.
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represent the ratio of their MSE relative to the MSE of the RW model. Thus, a ratio

less than 1 implies that the forecast performance of the model is better than the

RW model. The *, ** and *** denote if the improvement in forecast performance

of a particular model compared to the RW is statistically significant at the 10%, 5%

and 1% level according to the unconditional Giacomini and White (2006) test. The

model with the lowest ratio and that is statistically better than the RW model is

the best model in terms of MSE. The ratio of these models are in bold.

The results for the 1-period ahead point forecasts of IP growth in panel A show

that the ratio is less than 1 for all models and countries, except for Japan. For

Japan, no model is better than the RW model as the ratio is always larger than 1.

The table also shows that for all countries except Japan the model with the best

forecast performance include the cross-country weighted averages. For Germany and

Italy, the AR-Y∗ model is the best one. Adding the GARCH-M framework to the

AR-Y∗ improves the forecast performance further in four countries, namely Canada,

France, the United Kingdom and the United States. The unconditional Giacomini

and White (2006) test shows that the forecast performance of these best models is

also statistically better than the RW model at the 5% significance level.

For the 3-period ahead point forecasts, the ratio’s of all models are lower than 1

for all countries. Compared to the results concerning the best models for the 1-period

ahead forecasts, for the 3-period ahead forecasts the GARCH-M framework becomes

more important and the cross-country weighted averages become less important.

Now, for all countries the best model includes the GARCH-M framework. Adding

the cross-country weighted averages of growth to the AR-GARCH-M model improves

the forecast performance further for Canada, Italy, the United Kingdom and the

United States. The unconditional Giacomini and White (2006) test shows that the

improvement in forecast performance of these best models is statistically better than

the RW model at conventional levels.

The results for the 12-period ahead forecast, shown in panel C, show that cross-
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country interactions are now unimportant. For all countries, the AR-GARCH-M

model provides the best output growth point forecasts. The forecast performance

of these best models is also statistically better than the RW model at the 5% level

according to the unconditional Giacomini and White (2006) test.

Table 3 shows the results of forecast performance using density forecasts. Panel

A, B and C show the results for the 1, 3 and 12-step ahead forecasts, respectively.

The numbers in italics are the average log score of the RW model. The numbers

for the other models are the difference between the log score of the RW model and

the log score of the model, scaled by the log score of the RW model. Thus, positive

numbers imply that the model outperforms the RW model. The *, ** and ***

denote that the forecast performance of the model is statistically better than the

RW model at the 10%, 5% and 1% level according to the unconditional Giacomini

and White (2006) test. The best forecasting model is the model with the highest

ratio for each country and where the forecast performance is statistically better than

the RW model. The ratio’s of these models are in bold.

The results for the 1-period ahead density forecasts show that the scaled ratio is

positive for all models and for all countries. The best models include the GARCH-M

framework for all countries, except for Canada where the best model is the AR-

Y∗. Adding cross-country weighted averages to the AR-GARCH-M model improves

the forecasting performance further for Japan, the United Kingdom and the United

States. The forecast performance of these best models is also statistically better than

the RW model at the 1% level according to the unconditional Giacomini and White

(2006) test. Comparing the best models for the 1-period ahead density forecasts with

the best models for the 1-period ahead point forecasts, shows that the GARCH-M

framework in more prevalent for the density forecasts. For only four countries the

best models for the 1-step ahead point forecasts include the GARCH-M framework,

whereas for the 1-step ahead density forecasts this framework is included for six

countries.
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Table 3: Evaluation of density forecasts of IP growth

Panel A: Log score for 1-step ahead forecasts

RW AR
AR-

AR-Y∗
AR-Y∗-

GARCH-M GARCH-M

CAN -2.796 0.390∗∗∗ 0.355∗∗∗ 0.415∗∗∗ 0.385∗∗∗

FR -3.015 0.382∗∗∗ 0.429∗∗∗ 0.408∗∗∗ 0.408∗∗∗

GER -2.913 0.348∗∗∗ 0.475∗∗∗ 0.371∗∗∗ 0.463∗∗∗

ITA -2.721 0.322∗∗∗ 0.385∗∗∗ 0.366∗∗∗ 0.385∗∗∗

JAP -2.940 0.334∗∗∗ 0.407∗∗∗ 0.334∗∗∗ 0.415∗∗∗

UK -2.714 0.388∗∗∗ 0.414∗∗∗ 0.403∗∗∗ 0.437∗∗∗

US -2.790 0.403∗∗∗ 0.436∗∗∗ 0.418∗∗∗ 0.448∗∗∗

Panel B: Log score for 3-step ahead forecasts

RW AR
AR-

AR-Y∗
AR-Y∗-

GARCH-M GARCH-M

CAN -2.576 0.341∗∗∗ 0.325∗∗∗ 0.368∗∗∗ 0.347∗∗∗

FR -2.658 0.308∗∗∗ 0.360∗∗∗ 0.326∗∗∗ 0.330∗∗∗

GER -2.620 0.300∗∗∗ 0.470∗∗∗ 0.319∗∗∗ 0.473∗∗∗

ITA -2.556 0.305∗∗∗ 0.384∗∗∗ 0.323∗∗∗ 0.370∗∗∗

JAP -2.710 0.269∗∗∗ 0.376∗∗∗ 0.282∗∗∗ 0.374∗∗∗

UK -2.582 0.357∗∗∗ 0.411∗∗∗ 0.365∗∗∗ 0.416∗∗∗

US -2.631 0.368∗∗∗ 0.415∗∗∗ 0.380∗∗∗ 0.442∗∗∗

Panel C: Log score for 12-step ahead forecasts

RW AR
AR-

AR-Y∗
AR-Y∗-

GARCH-M GARCH-M

CAN -2.577 0.303∗∗∗ 0.327∗∗∗ 0.361∗∗∗ 0.345∗∗∗

FR -2.600 0.284∗∗∗ 0.372∗∗∗ 0.309∗∗∗ 0.351∗∗∗

GER -2.576 0.220∗∗∗ 0.464∗∗∗ 0.257∗∗∗ 0.468∗∗∗

ITA -2.566 0.297∗∗∗ 0.391∗∗∗ 0.315∗∗∗ 0.389∗∗∗

JAP -2.684 0.162∗∗∗ 0.382∗∗∗ 0.201∗∗∗ 0.382∗∗∗

UK -2.553 0.334∗∗∗ 0.434∗∗∗ 0.343∗∗∗ 0.426∗∗∗

US -2.586 0.349∗∗∗ 0.392∗∗∗ 0.370∗∗∗ 0.413∗∗∗

Notes: - For the RW, the numbers represent the average log score.
For the other models, the numbers represent the difference
between the average log scores of the RW and the average
log score of the other model the scaled by the average log
score of the RW. The bold numbers are the highest scaled
difference for each country.

- ∗, ∗∗ and ∗ ∗ ∗ denote that the forecasts are statistically
better than that from the RW model at the 10%, 5% and
1%, respectively, using the Giacomini and White (2006)
test of equal forecast performance.
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The scaled ratio’s for the 3-step and 12-step ahead density forecasts are also

positive for all models and for all countries. Comparing the best models for the

3-step and 12-step ahead density forecasts with the best models for the 1-step ahead

density forecasts shows that these do not change much. For Canada, France, Italy

and the United States the best model is the same for all three forecast horizons. The

best model for Germany is now the AR-Y∗-GARCH-M model compared to the AR-

GARCH-M for the 1-step ahead density forecasts. Japan and the United Kingdom

make the switch in the opposite direction. The unconditional Giacomini and White

(2006) test shows that the forecast performance of the best models for the 3-step

and 12-step ahead density forecast is also statistically better than the RW model at

the 1% level.

3.5 Forecast performance using an economic criterion: Fore-

casting recessionary events

Table 4 shows the results of the models’ performance of forecasting recessionary

events. Panel A presents the percentage of actual occurrences of two consecutive

negative growth realisations and the hit rates and panel B presents the Kuipers

score together with the outcome of the reduced rank regression and the dynamically-

augmented reduced rank regression tests.

Panel A shows that the recessionary event was the least frequent in Germany

with 11% of the time, whereas Canada has the highest occurrence of 28%. Panel A

also shows that the model with the highest hit rate, in bold, is the RW model for

all countries

The hit rate, however, does not take the number of times a model falsely predicts

the event into account. Panel B, therefore, presents the Kuiper score, which is

defined as the difference between the hit rate and the false alarm rate. The bold

numbers are the highest Kuipers score per country. This shows that the Kuipers

scores for the RW model are much lower than the hit rates, implying that the
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Table 4: Evaluation of probability forecasts: Forecasting recessionary events

Panel A: Actual probability and hit rate

Actual RW AR
AR-

AR-Y∗
AR-Y∗-

GARCH-M GARCH-M

CAN 0.28% 0.44 0.12 0.12 0.20 0.20
FR 0.21% 0.37 0.00 0.00 0.21 0.16
GER 0.11% 0.40 0.00 0.00 0.00 0.00
ITA 0.18% 0.63 0.00 0.00 0.13 0.13
JAP 0.12% 0.36 0.18 0.09 0.18 0.18
UK 0.24% 0.41 0.00 0.00 0.05 0.05
US 0.20% 0.61 0.39 0.44 0.33 0.39

Panel B: Kuipers Score

RW AR
AR-

AR-Y∗
AR-Y∗-

GARCH-M GARCH-M

CAN 0.15 0.07 0.07 0.20 0.18
(-,-) (-,-) (-,-) (***,**) (***,-)

FR -0.01 -0.04 0.00 0.18 0.13
(-,-) (-,-) (-,-) (***,-) (**,-)

GER 0.15 -0.03 -0.03 -0.03 -0.03
(-,-) (-,-) (-,-) (-,-) (-,-)

ITA 0.41 -0.03 0.00 0.08 0.08
(***,-) (-,-) (-,-) (-,-) (-,-)

JAP 0.15 0.14 0.05 0.14 0.14
(-,-) (*,*) (-,-) (*,-) (*,-)

UK 0.09 0.00 0.00 0.02 0.00
(-,-) (-,-) (-,-) (-,-) (-,-)

US 0.46 0.35 0.40 0.32 0.38
(***,-) (***,-) (***,-) (***,-) (***,**)

Notes: - In panel B, the outcome of the reduced rank regression and the
dynamically-augmented reduced rank regression test are respec-
tively presented in the round brackets. ‘-’ denotes that we cannot
reject the null hypothesis at the 10% level and *,** and *** de-
note that we can reject the null hypothesis at the 10%, 5% and
1% level, respectively.
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RW model has a high false alarm rate. In terms of Kuipers score, the RW model,

however, still is the best model for Germany, Italy, Japan, the United Kingdom and

the United States. For Canada and France the AR-Y∗ model is the best model.

The brackets under the Kuipers scores give the outcome of the reduced rank re-

gression and the dynamically-augmented reduced rank regression tests, respectively.

As discussed above, the null hypothesis of these tests is that there is no relation-

ship between outcome and prediction. The reduced rank regression test assumes

that there is no autocorrelation in the data, whereas the dynamically-augmented

reduced rank regression test does take this into account. ‘-’ denotes that we cannot

reject the null hypothesis at the 10% level and *,** and *** denote that we can

reject the null hypothesis at the 10%, 5% and 1% level, respectively.

According to the reduced rank regression test, we can reject the null hypothesis

of no relationship between outcome and prediction for the models with the highest

Kuipers score which is not the RW model for Canada and France at the 1% level.

Using the dynamically-augmented reduced rank regression test we can reject the

null hypothesis for Canada at the 5% level.

4 Conclusion

This paper examined the importance of allowing for a time-varying variance, feed-

back from the conditional standard deviation to growth and cross-country interac-

tion for forecasting G7 IP growth by evaluating forecasts of the AR-GARCH-M-Y∗,

which incorporates all components, and nested versions of it where one of these

components, or both, is switched off. The forecast performance of various models

was done using statistical and economic criteria. The statistical criteria were point

and density forecasts and the economic criterion was the ability of the models to

forecast recessionary events.

As shown in the paper, there are important benefits to including the GARCH-
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M framework and cross-country weighted averages of growth to a model used to

forecast G7 output growth. The benefit of the GARCH-M framework is apparent

when considering density forecasts. As the volatility of IP growth is time-varying,

the density forecast widens with higher volatility. The inclusion of the cross-country

weighted averages of growth allows the model to capture a richer dynamic structure

compared to a model without these averages.

The forecasts exercise shows that the model without the GARCH-M framework

and without the cross-country weighted averages is generally outperformed by a

model with one or both of these components. Also, the further in the future one

wants to forecast, the more important the GARCH-M component becomes. The

forecast exercise also shows that the GARCH-M framework is more important to

obtain good density forecasts compared to good point forecasts. Finally, including

the GARCH-M framework and/or the cross-country weighted averages of growth to

the forecast model does not improve the forecast performance of recessionary events

in the G7 by much.
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A Appendix A

Table 5: Unit root, distributional, serial correlation and conditional heteroskedas-
ticity test results for the monthly growth rates of industrial production
for the period 1961:02–2013:05

Panel A: Unit root test

CAN FR GER ITA JAP UK US

ERS DF-GLS -8.25 -7.69 -2.45 -8.03 -4.02 -3.08 -6.59
C.V. at 5% -1.94 -1.94 -1.94 -1.94 -1.94 -1.94 -1.94

Panel B: Distribution

CAN FR GER ITA JAP UK US

Skewness -0.133 0.129 0.058 0.197 -0.856 0.026 -0.899

Kurtosis 3.496 4.391 9.431 10.704 7.538 12.882 7.357

Jarque-Bera 8.28 52.34 1082.62 1556.96 615.55 2555.16 581.39
[0.0159] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

Panel C: Tests for serial correlation and conditional heteroscedasticity

CAN FR GER ITA JAP UK US

Q(3) 48.23 59.65 67.52 49.14 92.04 22.04 170.51
[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

Q(9) 81.39 100.63 76.37 89.99 117.89 35.94 250.32
[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

Q2(3) 14.49 25.11 87.63 109.95 377.60 109.25 128.05
[0.0020] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

Q2(9) 27.68 66.56 89.46 138.60 399.19 113.75 140.66
[0.0010] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

ARCH(3) 12.36 23.11 104.95 104.45 235.24 114.04 96.84
[0.0063] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

ARCH(9) 21.33 48.49 105.51 114.38 241.40 118.48 100.05
[0.0113] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

Notes: - p-values are in square brackets.

- The unit root rest is the Elliott, Rothenberg, and Stock (1996) test. This test
has more power than the original augmented Dickey-Fuller unit root test. This
test has also another advantage. When a break is present in the data, the
Dickey-Fuller test is biased towards non-rejection of a unit root (Perron, 1989).
The ERS DF-GLS unit root test, in contrast, is asymptotically robust to level
breaks.

- Ljung-Box Q-statistics at lag p for the data, Q(p), to test for serial correlation.

- Ljung-Box Q-statistics at lag p for the squared data, Q2(p), to test for conditional
heteroscedasticity.

- ARCH LM test at lag p, ARCH(p), to test for conditional heteroscedasticity
(R. F. Engle, 1982) .
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Table 6: Summary statistics of the monthly growth rates of industrial production
for the G7 (in %), 1961:02–2013:05

N Median Mean Sta. Dev. Min Max

CAN 628 0.19 0.24 1.10 -3.76 4.13

FR 628 0.04 0.14 1.35 -4.70 5.66

GER 628 0.23 0.20 1.75 -9.46 12.31

ITA 628 0.18 0.18 2.16 -14.78 13.51

JAP 628 0.38 0.34 1.54 -8.38 6.60

UK 628 0.10 0.09 1.36 -7.88 9.73

US 628 0.29 0.24 0.76 -4.21 3.09
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Table 7: Adjustments to model selection procedure of the rolling estimations

Panel A: AR-GARCH-M

� France

For estimation 60 there is evidence for ZILC in the GARCH model picked
by the model selection. I set the variance model to ARCH.

� Italy

For estimation 57-58, 62 and 65-69 there is evidence for ZILC in the
GARCH model picked by the model selection. I set the variance model to
ARCH. The same estimations, however, suffer now from serial correlation.
To eliminate the serial correlation for these estimations, I set the number
of autoregressive lags to six.

� Japan

For estimation 48-52, 54-82, 85-87 and 89-90 there is conditional het-
eroskedasticity in the ARCH model picked by the model selection. I set
the variance equation to GARCH. Estimation 48, however, then suffers
from ZILC. So I set estimation 48 back to the ARCH model. These ad-
justments, however, do not eliminate the conditional heteroskedasticity
for estimations 48-52 and 55-77, 79 and 81.

� United States

For estimation 51 and 58 there is conditional heteroskedasticity in the
ARCH model picked by the model selection. I set the variance equation
to GARCH.
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Table 7: Continued

Panel B: AR-Y∗-GARCH-M

� France

For estimation 42, 46-48, 48-69 there is evidence for ZILC in the GARCH
model picked by the model selection. For these estimations I set the
variance model to ARCH.

� Italy

For estimation 83-84 and 87 there is evidence of serial correlation. To
eliminate the serial correlation, I set the number of autoregressive and
cross-country weighted average lags to six for these estimations.

� Japan

For estimation 34-35 and 37 there is evidence of ZILC and for estimation
49-52 and 56-86 there was evidence of conditional heteroskedasticity. For
the estimations where ZILC holds I set the variance to ARCH and for
the estimations where there was still conditional heteroskedasticity in the
errors, I set the variance model to GARCH. Estimation 49-52 and 56-86,
however, still suffer from conditional heteroskedasticity.
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