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Abstract

We analyze the effects of simple stylized economic policy rules, or stabi-
lization principles, when fluctuations in economic activity are created endoge-
nously by self-fulfilling volatile expectations. We study a simple monetary
competitive model with intertemporally optimizing agents and a government.
We only depart from neoclassical orthodoxy by assuming that a cycle or a
sunspot equilibrium, not necessarily a steady state, could be the descrip-
tive dynamic rational expectations equilibrium. The government may then
well out of welfare concerns want to conduct systematic stabilization policy
through transfers, expenditure, and taxation even though this has distor-
tionary effects. We show that the policy rules that stabilize output in a
way that is best for welfare involve countercyclical elements in government
activity.
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1 Introduction

What are the implications for stabilization policies if economic fluctuations or busi-
ness cycles are to an important extent created endogenously by the economies’
equilibrium mechanisms, and are not solely reactions to exogenous shocks? We find
that, even under perfectly competitive conditions, the occurrence of endogenous
fluctuations due to self-fulfilling volatile expectations may give reasons based upon
welfare concerns for systematic government stabilization policy, and the policy rules
which best stabilize economic activity with respect to welfare involve a certain kind
of countercyclicallity in government activity.

We study the most standard and fully competitive dynamic model of expectations-
driven endogenous fluctuations. This happens to be the simple overlapping genera-
tions model with only labor as input in production, but by the argument of Wood-
ford (1986), the model has an equivalent interpretation with infinitely lived agents
and cash-in-advance constraints. The model involves a government which can tax
income proportionally and pay transfers to the old. However, (positive) real trans-
fers to the old, a variable to be denoted by b, and government demand for output,
work in exactly the same way as long as government and private demand for goods
are assumed to be perfect substitutes in the consumers’ utility functions (which
is a natural bench mark assumption). The variable b can therefore be interpreted
equally as real transfers or government demand.

We depart from neoclassical orthodoxy by assuming that a cycle or a sunspot
equilibrium could be the relevant rational expectations equilibrium describing how
the economy evolves over time.! As far as steady state is concerned the model is
such that neoclassical policy views are strongly supported; active government is
unambiguously bad. The essential departure from Keynesian modelling is that we
do not assume any price rigidities.

Government spending b is linked to the performance of the economy by policy

I The sufficient condition normally considered for the existence of endogenous fluctuations under
laissez faire in the simple OLG model is that the elasticity of labor supply with respect to the
intertemporal real wage measured at steady state is less than minus one half. Some find this
problematic. However, the purpose here is not to obtain plausible conditions for the existence of
expectations-driven endogenous fluctuations, but rather to demonstrate how certain intertemporal
effects of stabilization policies become of (increased) importance, should such fluctuations occur.
We may therefore as well start from the simplest possible model of expectations-driven endogenous
fluctuations.



rules meant to formalize realistic or frequently suggested stabilization principles.
We consider and axiomatize a simple class of policy rules where in each period b
depends homogeneously on the current and the past level of GNP. Government
spending is financed either by proportional income taxation or by inflationary tax-
ation (seigniorage). Two special cases are: ”b proportional to current GNP”, and
”b proportional to past GNP”. These are important because they are simple, man-
ageable and possibly implementable by automatic stabilizers. The first of these
two cases is equivalent to arranging spending such that, in the absence of income
taxation, a constant money growth rate results.

Our conclusions are that even under fully competitive conditions, the assump-
tion that expectations driven endogenous fluctuations could be relevant rational
expectations dynamic equilibria may well, on welfare grounds, motivate systematic
stabilization policies by the government. Moreover, despite the absence of price
rigidities to motivate it, the policy rules which stabilize economic activity in the
best way with respect to welfare entail a certain kind of ”countercyclicallity” in
government activity: government spending should be relatively low in periods up
to which output has increased by a relatively large amount.

The intuition for why countercyclical policy rules stabilize output most effec-
tively, and at the lowest welfare costs, is simple and related to certain intertemporal
effects of systematic stabilization policies. Assume that GNP increases by a rela-
tively large amount from one period to the next. If this is correctly foreseen from
the first period, and people know and believe in a countercyclical policy rule, then
they will expect relatively low transfers during the next period. If leisure and output
are normal goods (which is realistic), labor supply and output will increase in the
first period, and thus the increase in output from the first to the second period will
be reduced. If (relatively large) changes in output are reduced, output will become
more stable. Interestingly, Benassy (1998) finds that a similar intertemporal effect
is important for the stabilization of competitive fluctuations caused by exogenous
shocks, and Benassy also establishes support for countercyclical policy rules.

The present paper is related to contributions such as Grandmont (1986), Goenka
(1994), Sims (1994), and Woodford (1994), which also study the effects of fixed and
realistic policy rules on endogenous fluctuations, and it is closest related to the

first of these. There are, however, three main differences in assumptions between



Grandmont’s and our paper, which imply that we are led to radically different pol-
icy conclusions. First, Grandmont makes (implicit) assumptions on fundamentals
ensuring that the perfect foresight dynamic he derives has a traditional ”uni-modal”
shape, whereas we consider a set of assumptions also allowing other shapes. Second,
Grandmont studies constant money growth rules, whereas we consider a broader
class of policy rules containing constant money growth rules as special cases. Third,
Grandmont assumes zero substitution between private and public goods (govern-
ment demand does not enter into utility functions at all), whereas we assume perfect
substitution. The basic finding of Grandmont is that constant money growth rules
will stabilize the economy at steady state if the money growth rate is large enough.
Our results indicate that constant money growth rules are, at best, very poor stabi-
lization instruments. There is no formal contradiction between Grandmont’s results
and ours, but the broader assumptions we consider lead us to results from which
the policy implications that could be drawn are very different from those that could
be drawn from Grandmont’s analysis:

Our consideration of more different assumptions on fundamentals reveals that
constant money growth rules, although effective in stabilizing output under some
assumptions on fundamentals, are incapable of stabilizing output under other and
equally plausible assumptions.

Our consideration of a parametrized class of policy rules reveals which aspects
of policy rules make them effective with respect to stabilization. It turns out that
countercyclicallity in the sense explained above is essential. Constant money growth
rules are equivalent to ”spending proportional to current GNP”-rules, and hence
they are procyclical. In fact we find that constant money growth rules are just at
the boundary of the set of policy rules that can be stabilizing at all, and even when
they are in this set, they stabilize output in a worst possible way welfarewise.

Our assumption on the degree of substitution between private and government
demand gives us, contrary to Grandmont, that constant money growth rules, not
only for transfers, but also for government demand, are ineffective stabilization
instruments. This reveals that the assumed degree of substitution between private
and government demand is important for the intertemporal effects of systematic
stabilization policies working through government demand.

An important feature shared by Grandmont’s and our model is that it is simple



enough to give a one-dimensional, first order difference equation as perfect foresight
dynamic. This makes it possible to establish enough global properties to be able
to use global determinacy as criterion for stabilization. Other authors study more
complicated models yielding two-dimensional dynamic systems, e.g. Schmitt-Grohé
and Uribe (1997), and Guo and Lansing (1997), (1998). It is then difficult to
establish enough global properties of the dynamic system to be able to use global
determinacy as a stabilization criterion. These papers then use local determinacy: if
government policy can turn the steady state away from being a sink it is considered
to stabilize the economy. However, it is only in linear systems that local determinacy
is sufficient for the elimination of endogenous fluctuations, and linearity only follows
from special assumptions on fundamentals. Using local determinacy as stabilization
criterion is essentially the same as studying only a linear approximation of the
dynamic system around the steady state and is particularly questionable for the
two-dimensional case since with non-linearity a local property of the steady state
different from it being a sink can suffice for the existence of endogenous fluctuations,
see Grandmont, Pintus, and de Vilder (1998). Christiano and Harrison (1996) also
stress the importance of one-dimensional dynamics, and for the same reasons as we
do, but, like Guo and Lansing (1998), they study the effects of more sophisticated
policies involving, e.g., through progressiveness of taxation.

In Section 2 we describe the basics of the economic model and the class of policy
rules we consider. Section 3 derives the equilibrium dynamics, and Section 4 states
the results on the stabilizing and destabilizing effects of different policy rules. In
Section 5 we provide two illustrative examples concerning the particularly inter-
esting rules ” government spending proportional to current GNP” and ” government
spending proportional to past GNP”. Section 6 summarizes conclusions. Proofs of
propositions are given in Appendix A. Appendix B contains a technical result that

is of importance for our purposes, and may be of independent interest.

2 The Economy and the Policy Rules

We consider an overlapping generations model in discrete time. In each period the
commodities are labor input, produced output, and money. The money prices of

labor and output are w > 0 and p > 0 respectively, and labor and output markets



are perfectly competitive. Subscript ¢ is used for explicit reference to a period.

In each period a representative firm produces output y > 0 from labor input
[ > 0 under constant returns to scale, y = [.

There is in each period one young and one old consumer, and a consumer is
endowed with one unit of labor time in his youth. The von Neumann-Morgenstern
utility function of a consumer is u(c) 4+ v(e), where ¢ > 0 is output consumption in
the consumer’s old age, and e := 1 —n > 0 is leisure consumption in the youth; n
is labor supply when young.

The assumption that in the first period of a consumer’s life only leisure enters
utility, and in the second only consumption, implies an equivalence to a cash-in-
advance constrained economy with an infinitely-lived consumer: In the latter type
of model the consumer maximizes 33, (v(e;) + u(c;))/(1 + 0)"~" in each period ¢
subject to a budget constraint. If, in addition, there are binding cash-in-advance-
constraints, he or she can do no better than to maximize v(e;) + @(ciy1)/(1 + 6)
independently over each succession of two periods under the constraint that what
can be used for consumption in ¢t+1 is what was earned from work in ¢, see Woodford
(1986). For this alternative model interpretation our u(c) is a(c)/(1 + 0).

We impose standard assumptions on u and v: they are continuously differen-
tiable several times, u/(c) and v'(e) are strictly positive and go to infinity as ¢ and
e respectively go to zero, and u”(c) and v”(e) are strictly negative. We denote the
Arrow-Pratt measure of relative risk aversion in u by R(c) := —u"(c)e/u'(c) > 0,
and also define N(n) := —v"(1 — n)n/v'(1 —n) > 0. We assume that R(0) :=
lim._,o R(c), and N(0) both exist (are < c0), and that R(0) # 1.

Finally, there is a government that in each period decides on a real lump sum
transfer b given to the period’s old consumer, and on a proportional tax rate 7
by which the income of the period’s young consumer is taxed. Both b and 7 are
taken as parametric by the consumers. For the interpretation of our model with
an infinitely-lived agent, the cash-in-advance constraint should be assumed to work
such that in the current period the consumer can spend last period’s net of tax
income plus the transfer received in the current period.

The variable b can alternatively be interpreted as government demand for output
(or labor). If it is assumed that public and private goods are perfect substitutes, so

the utility function of a consumer is v(1 —n) +u(c+b), then the resulting dynamic



model will be identical to the one in which b is a transfer. This will be demonstrated
below.

Policy is conducted according to certain feedback rules linking in a systematic
way the value of the real transfer, or government demand, to present and past
values of the GNP (in equilibrium y summarizes everything of economic importance
in a period). The rules are meant to formalize possible stabilization principles.
Government spending is financed by either proportional taxation or seigniorage or
a mix of both. The exact financing does not matter since direct proportional and
inflationary taxation have the same effects.

The considered policy rules are meant to formalize realistic (or frequently sug-
gested), simple, and manageable stabilization principles. Therefore we confine at-
tention to rules of the form, by, = b(y1+1,¥:), and impose the further restrictions:

(i) The variable b should be (weakly) positive in all periods. For the interpreta-
tion of b as government demand this is required. For the interpretation as a transfer
there is in principle nothing wrong with negative values, but b < 0 means lump sum
taxation (of the old) together with subsidies (to the young) proportional to income,
the subsidies coming either directly or through negative inflation. Lump sum taxes
are seldom observed and variations in lump sum taxes are never seen as part of
stabilization policies.

(ii) At a constant GNP, the government behaves as if it taxes GNP by a certain
rate and balances the budget in each period. That is, we require b(y,y) = [y for
some 3 with 0 < § < 1. Indeed, to be a formalization of a stabilization principle
the rule should dictate "neutral government behavior” at a steady GNP. We think
it is most realistic to let neutral behavior correspond to fixed proportional taxation
and budget balance (rather than, e.g. a fixed spending that is independent of y).

(iii) At a varying GNP the stabilization effort should depend on the relative
variation in GNP. If two pairs (z,y) and (2,%') of current and past GNPs represent
the same degree of relative up or down swing in economic activity, z/y = 2'/y/,
then the government stabilization effort should be relatively the same in the two
situations, i.e. b(z,y)/x = b(2',y') /.

These requirements are fulfilled if and only if b is of the form b(y1,9:) =
Bd(yiv1, ), where 0 < 5 < 1, and ¢ is positive and homogeneous of degree one,

with ¢(1,1) = 1. We consider such functions because they are axiomatized by



the above requirements, that we find reasonable, but an independent reason is
that they suffice for revealing the intertemporal incentive effects of importance for
stabilization of endogenous fluctuations. It will give simple statements and proofs

of our propositions to specialize to,

b(yt+17 Z/t) = 593;33/37 (1)

where there are no a priori restrictions on the parameter .

Each policy rule of the form (1) contains a level (or resting) component given
by B, and a cyclical (or reactive) component given by «. This is illustrated by
the rewriting b(yi+1, Yt)/Yer1 = B(Yer1/y:) ™. The level component [ is the trans-
fers’ share in current output when output is constant, and the cyclical component
(ye41/ye) @ is the responsiveness of this share to changes in output, —a being the
elasticity of the transfers’ share with respect to the output growth factor. The
larger « is, the more negative will be the reaction in the transfers’ share to in-
creases in output, that is, the more countercyclical will the rule be. In particular,
if output evolves according to a two-period cycle with output levels h and [, where
h > [, and the transfer payed in periods with output h is denoted by b, etc., then
(by, — by)(h — 1) = k(1 — (h/1)>**71), where k > 0, so (b, — b;)(h — 1) is positive if
a < 1/2, and negative if & > 1/2. This means that along two-period cycles policy
rules of the considered form give procyclical transfers (in the usual sense) when
a < 1/2, and countercyclical when a > 1/2.

One reason to be interested in the class (1) of policy rules is that it contains
some important and frequently considered rules as special cases:

Transfers proportional to current GNP. The case a = 0, gives b(yi11, Y1) = BYi1-
Although simple, this is a feedback rule. As the economy’s activity level varies so
will the real value of the transfer in per capita terms (procyclically). The rule
is equivalent to setting the income tax rate constantly to ( and let transfers be
determined by budget balance in each period, and, in particular, it is equivalent to
arranging the sequence of transfers such that with no income taxation a constant
money growth rate results (as shown below). Constant money growth rules are often
advocated and were studied by Grandmont (1986) in connection with stabilization
of endogenous fluctuations. Grandmont (1986) found that a large enough 3 will

stabilize the economy at steady state.



Transfers proportional to past GNP. The case a = 1, gives b(yi1,y%:) = By
Note that if taxes come with a delay then this rule may be equivalent to setting
the income tax rate constantly at § and letting budget balance determine b, an
implementation most relevant for the model interpretation with a cash-in-advance
constraint and an infinitely-lived consumer. For the literal overlapping generations
interpretation, note that this rule rewards old consumers according to how much
they worked and contributed when young. Finally, this rule is closer to standard
Keynesian stabilization recommendations since government spending reacts coun-
tercyclically.

When a goes below zero or above one, the dependence of transfers on GNPs
becomes more complicated. As long as 0 < a < 1, the rules have the possible
simple implementation that an average (though geometrical) of the last two GNPs
is taxed and the revenue used for transfers.

In what follows it is assumed that the policy rule b(y;11,y:) used by the govern-
ment is known by the households who also have rational expectations with respect
to next period’s output price. Furthermore, the households are assumed to believe

in the relevant policy rule.

3 Dynamic Equilibrium

In equilibrium one must have w = p in all periods, and that any level of production
and employment is optimal for the firm.

Consider a young consumer whose expectation concerning the next period is
that with probability ¢; the output price will be p; and the transfer received will
be b;, where j = 1,...,r. A point expectation corresponds to r = 1. The consumer
chooses labor supply n, money holding m, and consumption ¢; in each of the r
future ”states”, to maximize expected utility v(1 —n) + >°; qju(c;), subject to the
budget constraints m = (1 — 7)wn, and ¢; = m/p; + b; for j = 1,...,r, where w
and 7 are the nominal wage rate and the tax rate in the consumer’s young age
respectively. The optimal choices for n and ¢; are uniquely given by the first order

condition,
V(1 —n)
(1 — T)w Z G (2)

p;




and the budget constraints,

o= (=l o= g
J

In the case of a point expectation (where p and b are expected), the optimality
conditions amount to v'(1 —n) = wu/(c¢), and ¢ = wn + b, where w := (1 — 7)w/p.
Solving for n and ¢ gives the labor supply curve n = n(w,b), and future demand
for produced goods ¢ = ¢(w,b). It is a consequence of our assumptions that leisure

and consumption are both strict normal goods, nj, < 0 and ¢}, > 0.2

3.1 Temporary Equilibrium

From (3), (1 — 7)w/p; = (¢; — b;)/n. Inserting this into (2) gives, nv'(1 —n) =
>; qi(c; — bj)u/(c;). Inserting the equilibrium conditions n = y and y; = ¢;, then
gives yv'(1 —y) = >, q;(y; — bj)u'(y;). Inserting finally the policy rule b; = b(y;,y)
yields,

/(1 —y) = iﬂf 1wy — by, )] (). (4)

This is the temporary equilibrium equation for the considered economy in terms of
production levels. If the young consumer expects output in the next period to be
y; with probability ¢;, j = 1,...,r, and knows and believes in the policy rule b(-, ),
then a y (between zero and one) must fulfill (4) in order to be an equilibrium output
of the current period.

All rational expectations dynamic equilibria studied below are defined from the
temporary equilibrium equation (4). The tax rates do not enter into this. Hence, for
a given policy rule for spending, the rational expectations equilibrium dynamics of
the considered economy is independent of how much income taxation vs. seignior-
age is used in financing government spending. Proportional income taxation and

inflationary taxation work and distort in exactly the same way.

2Labor supply is given by v/(1 — n) = wu/(wn + b). A larger b implies a lower right hand side,
and to recreate equality n must fall since this both decreases the left hand, and increases the right
hand, side, so nj, < 0. A similar exercise on v'(1 — (¢ — b)/w) = wu/(c) shows ¢}, > 0. For later
use, we derive the elasticity of labor supply wrt. w by log-differentiation,
! 1— R(wn + b)—==4

n N(n) + R(wn + b) oo




Consider the alternative interpretation of b as government demand. In this
case, the consumer would maximize v(1 —mn)+ >, gju(c; 4 b;) subject to the budget
constraints ¢; = (1 — T)}%jn, j =1,...;r7. The first order condition would be,

vl-n) c]+b)

(1—7’ Zq] D;

By use of the budget constraints, (1 — 7)w/p; = ¢;/n, one gets nv'(1 — n) =
>; giciu’(¢j + bj). In equilibrium, n = y and y; = ¢; + b;, and hence yv'(1 — y) =
> q;(y; — bj)u'(y;). Inserting a policy rule for government demand, b; = b(y;,v),
would give exactly (4). The two interpretations of b lead to the same equilibrium

condition which verifies the equivalence postulated in Section 2.

3.2 Perfect Foresight Dynamics and Steady State

The economy’s perfect foresight dynamics is obtained from (4) assuming that the
next period’s output is correctly foreseen from the current period in a deterministic
sense. Inserting y; = .41 for all j, and rewriting current output as y = y;, one

arrives at a first order, one-dimensional difference equation in y; and vy 1,

Yo' (1 =) = [Yer1 — O(Yer1, Ye) W (Yer1))- (5)

A dynamic perfect foresight equilibrium is a sequence (y;) of production levels

0 <y < 1, such that (5) is fulfilled for all ¢. A steady state is a particular case

where y, = y in all periods. For all the policy rules we consider, b(y,y) = By, and it

follows from (5) that a strictly positive, or monetary, steady state production level
y is given by,

vl —y)

u'(y)
Since the MRS on the left hand side goes from zero to infinity as y goes from zero

—1- 4. (6)

to one, there is for any § a unique monetary steady state y(3), and y(5) < 1. It
follows directly that y(() is strictly decreasing in (3, and that y(3) goes to zero as
[ goes to one.

If we define welfare at the steady state as the common utility of all generations,
W(B) == u(y(8)) +v(1 — y(B)), then W' = (v’ — v')yj, and from yj; < 0 and (6),
W' <0 for all 8> 0, and W' =0 for § = 0. This proves,

10



Proposition A. For all (3, there is a unique monetary steady state involving
production y((3), with 0 < y(8) < 1, and y(fB) is strictly decreasing in 3 and
y(B) — 0 as B — 1. Welfare at steady state W () is unambiguously decreasing in
0, and optimal policy for steady state is 3 = 0.

Proposition A is a simple version of a familiar neoclassical proposition: In the
absence of distributional reasons for transfers, one is left, at steady state, with the
pure distortional effect of the taxation, direct or inflationary, implied by giving the
transfers. Proposition A implies that government activity has to be motivated by
the steady state not being the appropriate descriptive equilibrium. Furthermore,
should endogenous fluctuations prevail (under laissez faire) and should one, by use
of a policy rule belonging to the considered class, manage to stabilize the economy
at steady state, then it is unambiguously to be preferred that this is done for as low
a value of 3 as possible, since 3 measures the degree of distortion at steady state.?

The left hand side of (5) increases from zero to infinity as y; goes from zero
to one. If @« > 0, or § = 0, then b is (weakly) increasing in y;, so the right hand
side will, for any given y;,1; > 0, decrease weakly from a strictly positive value as
y; increases from zero. This means that for every positive y;,1, there is a unique
y: between zero and one that solves (5), which thus everywhere implicitly defines
y: as a function f of ;1. From the Implicit Function Theorem, f is continuously
differentiable. So, for « > 0, or § = 0, the backward perfect foresight dynamic
Y = f(yes1) is well-defined globally. For o < 0 and 8 > 0 it is not. In that case
there are for y;.1 small enough several solutions in y; to (5), and for y;,; large
enough there are none. As just shown there is, however, a unique monetary steady
state y(3), and locally around y(3) the backward perfect foresight dynamic f is

again well-defined and continuously differentiable.*

31t could be argued that the right welfare measure at steady state is rather V(3) = u(y(3))/(1+
0) +v(1 —y(B)), where 6 > 0 is a time preference rate. In a free optimization one will then find
that optimal policy for steady state is some 8 < 0, which, in the absence of direct taxation, is
equivalent to a constant negative money growth rate, a so-called Friedman rule. If one only allows
B > 0, then also in this case 3 = 0 is optimal for steady state.

4From the Implicit Function Theorem, f is locally well-defined by (5) around steady state if
the derivative of y:v'(1 — v¢) — [ye41 — b(Ye11, )] v (ye11)) wrt. y; measured at steady state is
not zero. This derivative is v'(1 — y(8))(1 + N(y(8)) + aBu’(y(8)), which, for any given 3, is zero
only for one particular (non-generic) negative value of a.

11



3.3 Rational Expectations Fluctuations

A deterministic r-cycle is a collection of r different production levels 0 < g, ..., y, <
1 in the range where f is well-defined such that y; = f(y2), ...,y = f(y1). An r-
state stationary (Markov) sunspot equilibrium, SSE, consists of  production levels
0<y <--<y, <1,wherey, <v,, and r? transition probabilities Qij 25:1 gi; =1
for i = 1,...,r, where the matrix (g;;) is irreducible, such that, whenever the young
consumer expects that the output level y; will occur with probability ¢;; next period,
j =1,...,r, then the current temporary equilibrium output level according to (4) is

exactly y;, that is,
yv' (1 — i) = Z(h’j [y; — b(yz, ys)| ' (yy) for i =1,...,7. (7)
j=1

The well-known idea is that one can imagine that an irreducible Markov chain (a
sunspot) on states 1, ...,r, sending state i into state j with transition probability
gij, though exogenous to the economic system, may govern its performance. If
the agents know the transition probabilities and believe that in any period output
must be y; if the state is ¢, then output will indeed be governed by the sunspot
and fluctuate accordingly, and the agents will have no reason to revise their beliefs
since their expectations are probabilistically correct, i.e. rational. An r-cycle is a
particular, non-stochastic r-state SSE.

Deterministic cycles and SSE are our candidates for rational expectations dy-
namic equilibria exhibiting endogenous fluctuations.

Our results concerning stabilization of endogenous business cycles will rely on
some relationships between the perfect foresight dynamic f and the existence of
cycles and sunspot equilibria. It is well-known that if f is such that an r-cycle exists
then there is also a truly stochastic r-state SSE close to the cycle, see Guesnerie
and Woodford (1992). It is not generally true that the existence of a SSE implies
the existence of deterministic cycles, or, equivalently, that non-existence of cycles
implies non-existence of SSE. For our purposes it is, however, important to establish
such a connection. In Appendix B we prove a proposition stating some general
conditions under which the existence of a SSE implies the existence of a 2-period
cycle. The conditions are such that we will be able to conclude that the policy

rules which eliminate all cycles through establishing global stability according to f

12



of the monetary steady state, also eliminate all SSE.? By virtue of these and some
other well-known results it will suffice in what follows to study the perfect foresight
dynamic f. To be precise we will make use of the following standard ”dynamic
properties”:

Indeterminacy. If f is locally well-defined around steady state and the slope of f
at the steady state is below minus one or above one, then the steady state is locally
stable in the forward direction under perfect foresight, and the steady state is said to
be indeterminate. It is well known that indeterminacy implies the existence of SSE
arbitrarily close to the steady state, see Guesnerie and Woodford (1992), and for
the dynamics we consider, if f'(y(5)) < —1, there are also deterministic cycles. It is
an ”opening assumption” of this paper that indeterminacy is a sufficient condition
for a cycle or a sunspot equilibrium to be the relevant dynamic equilibrium (if it
were the steady state there would not be a stabilization problem). In favor of this
assumption is the fact that for plausible backward looking learning rules, a steady
state (or cycle) is locally unstable according to learning dynamics exactly when it is
stable according to forward perfect foresight dynamics, see e.g., Grandmont (1985),
Marcet and Sargent (1989), Evans and Honkapojha (1995).9

Determinacy. Assume that by appropriate use of one of the policy rules consid-
ered it can be obtained that the steady state y(3) becomes globally stable according
to f, implying that f is globally well-defined. Then any perfect foresight equilib-
rium sequence (y;), which is not y; = y(f) in all periods, explodes and ends up
involving production levels close to zero or above one. There can be no determin-
istic cycles (or chaotic trajectories) and, from Theorem B shown in Appendix B,
for the policy rules that we find indeed can make y(/3) globally stable according
to f, no SSE either. The steady state is then the only reasonable bounded and
continuously well-defined rational expectations equilibrium, and one says that the
steady state is (globally) determinate. Determinacy will be considered a sufficient

condition for stabilization at steady state.

®The method used in Appendix B to establish that existence of a SSE implies existence of a
2-period cycle is similar to the one used by Grandmont (1986). However, the dynamics arising
from our policy rules are not covered by the generality of Grandmont’s result. Therefore the
theorem in Appendix B generalizes Grandmont’s result and it may therefore be of independent
interest.

This "reversion of stability properties” result has been disputed by Grandmont (1998), and
we believe that its robustness is yet to be established.
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4 Stabilization

Inserting the considered specific functional form of policy rules into (5), gives,

Y (1 — ) = (Y1 — BYr Y)W (Y1), (8)

which defines y; = f(y:+1) at least locally around steady state y((3). For any x > 0,
at which f(z) is well-defined, the slope of f is obtained by implicit differentiation
of (8) written as f(x)v'(1 — f(z)) = [z — Bz'~*f(x)*| v/ (x). This gives,

fz) 1=B01—a)E) — (1- (L)) R(x)
T 1= B(1—a) ({2 4 (1 - B(L2)2) N(f(x)

T

f'(x) = (9)

Measuring f’ at steady state where z = f(x) = y(0) gives,

_1-B(-a)— (1- HREH)
1= A(1—a) + (1 HNE)

Assume § > 0. If also a > 0, then f is globally well-defined, and for any

f'((B)) (10)

Yr+1 > 0, the y; that solves (8) is below ytﬂ/ﬁl/o‘. Hence, as y;,1 goes to zero, so
must this y;, implying f(0) := lim, ¢ f(z) = 0. If & = 0, then f is still globally
well-defined, and (8) reads y,v'(1 — y) = (1 — B)yp1t/ (Yes1). As yri1 goes to zero,
so will the right hand side if and only if R(0) < 1.” Hence, if R(0) < 1, one still
has f(0) = 0, whereas if R(0) > 1, one has f(0) = 1.

Taken together, if «, 3 > 0 or if @« = 0 and R(0) < 1, the globally well-defined
backward dynamic f starts at zero, f(0) = 0, and stays everywhere below one,
f(z) < 1. If f ends at zero, f(co) = 0, it must have a number of critical points
(z¢, f(x°)) at which f'(z°) = 0. If it ends elsewhere it may or may not have critical
points. In any case, f has a shape such that if all critical points are below the
45°-line, i.e. fulfill f(z¢)/z¢ < 1, then y(() is globally stable according to f. This
excludes deterministic cycles, and since the general conditions of Proposition B in
Appendix B are satisfied when o > 0, there is no SSE either, and the steady state

is determinate. This argument is used to establish Proposition 1.

"Note that R(0) is the elasticity measure of how fast u/(y:41) goes to infinity as y:11 goes to
zero. Hence, if R(0) < 1, the product y;+1u'(yey1) goes to zero as yy11 goes to zero ete.

8Since Proposition 1 is on stabilization, one could naturally expect an underlying assumption
of indeterminacy of steady state under laissez faire, f'(y(0)) < —1 (> 1 is not possible). However,
f'(y(0)) < —1 is not strictly necessary for the existence of rational expectations endogenous
fluctuations, and Proposition 1 does not assume it.

14



Proposition 1. (Stabilization: sufficient conditions for policy rules to establish
determinacy).

(i) For any « > 0, there is a 3*(«) < 1, such that if the policy rule involves «
and  with 3 > (*(«), then the steady state y([3) is determinate and there are no
cycles or stationary sunspot equilibria.

(ii) If « =0 and R(0) < 1, there also exists a 3* < 1, such that 3 > (3" implies
determinacy of the steady state and non-existence of cycles and stationary sunspot
equilibria..

(ii) For any (3 > 0, there is an «*((3) > 0, such that if the policy rule involves «
and [ with a > o*(3), then the steady state y((3) is determinate and there are no

cycles or stationary sunspot equilibria.

Proposition 1 is our main result. For any strictly positive choice of the cyclical
component « of the policy rule, a sufficiently large level component § will stabilize
the economy at steady state, and for some assumptions on fundamentals the same
is true for &« = 0. It also says that for any strictly positive choice of the level
component [, in particular for (arbitrarily) small values, a large enough cyclical
component o will stabilize the economy at steady state.

These are sufficient conditions for stabilization. It is of particular interest to
know if a low value of 3 necessitates a high value of « for stabilization. It may
not, of course, if the economy does not have any business cycle problem at all. The
issue should therefore be addressed under an explicit assumption of the presence of
a stabilization problem. Therefore Proposition 2 assumes f'(y(0)) < —1. In this

case large values of « are indeed necessary for stabilization, given small values of [.

Proposition 2. (Stabilization: a necessary condition for policy rules to es-
tablish determinacy). Assume f'(y(0)) < —1. For all small enough 3 > 0, it is
necessary and sufficient for a policy rule to imply —1 < f'(y(8)) < 1, and therefore
necessary for determinacy of the steady state y((3), that « is greater than or equal

to a certain o**([3), where a**() goes to infinity as [3 goes to zero.

The two propositions above do not exclude that large enough values of 3 could
also stabilize the economy for negative values of «, or generally for & = 0. Neither
do they exclude that for some values of 3, negative and small enough values of «

could stabilize the economy. Proposition 3, however, rules out these possibilities.
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Proposition 3. (Destabilization: sufficient conditions for policy rules to imply
indeterminacy).

(i) If a <0, then f'(y(0B)) > 1 for all sufficiently large [3; hence the steady state
y(B) is indeterminate and stationary sunspot equilibria exist.

(ii) If o =0 and R(0) > 2+ N(0), then f'(y(5)) < —1 for all sufficiently large
(; hence, the steady state y(3) is indeterminate and both deterministic cycles and
stationary sunspot equilibria exist.

(iii) For any (3 > 0, then f'(y(5)) > 1 for all negative and sufficiently small
«; hence, the steady state y([3) is indeterminate and stationary sunspot equilibria

exist.

We proceed by raising a number of important remarks:

Elasticity and indeterminacy. It is well-known that for the sufficient condition
for indeterminacy under laissez faire, f'(y(0)) < —1, to be fulfilled it is required
that the elasticity of labor supply with respect to the real wage at steady state is
less than minus one half: Inserting into the €, of footnote 4, that at steady state

wn+b=1y,wn=(1- )y, and b = [y, one gets for the elasticity at steady state,
1—(1-B)R(y(B))
N(y(B) + (1= B)R(y(3))

From (10), f'(y(0)) < —1 <= R(0) > 2+ N(0), and it is easy to see that this
implies ¢,(0) < —1/2. Although not necessary, f'(y(0)) < —1 is kind of a ”sine qua

ew(f) =

non” condition for endogenous fluctuations under laissez faire, and it has often been
held against the theory of such fluctuations that f'(y(0)) < —1 can only be fulfilled
for unrealistic values of the elasticity of labor supply. Proposition 3 says that if
a <0, orif =0 and R(0) > 2+ N(0), a sufficient condition for indeterminacy,
fy(B)) < —1or f(y(B)) > 1, is fulfilled for all sufficiently large 3. As (3 goes to one,
£.(B) goes to 1/N(0) > 0, so for all large enough 3, one has both indeterminacy,
and g,(03) > 0. All that it is needed to overcome the unrealistic requirement on the
elasticity of labor supply is an inappropriate government policy, and this does not

have to be more peculiar than a constant money growth rate rule.”

Welfare. The above propositions are about output stabilization which should

9This way of overcoming the requirement of a (very) negatively sloped labor demand curve is
closely related to the ”imperfect competition and positive profits” way found in Jacobsen (2000).
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only be an aim for economic policy if output stabilization has good welfare impli-
cations. For the literal overlapping generations interpretation of our model, output
stabilization can never be generally Pareto improving. Along a two-period cycle the
generations who are young when output is low are fortunate, since they work little
while young and consume much when old. Stabilization can only give these gen-
erations lower utility. However, for that model interpretation it seems reasonable
to let also a concern of equity across generations enter into welfare considerations.
For the model interpretation with an infinitely-lived consumer and cash-in-advance
constraints, output stabilization is good because of the concavity of utility func-
tions, but at the same time it is bad because of the distortion of the steady state it
implies. For both model interpretations an economic policy that stabilizes output at
steady state can be considered to have good welfare implications if the steady state
is not too distorted by the policy. Therefore the above propositions, in combination
with Proposition A, have strong welfare implications. For any given o > 0, the
economy can be stabilized at the steady state y(f3), if § is large enough. This may
require a high value of 3, and therefore imply a large distortion of the steady state.
However, for any strictly positive value of 3, no matter how small, the economy
will be stabilized at the steady state y(3), if « is set sufficiently high. That is, one
can stabilize the economy at steady state for an arbitrarily small distortion 3, by
choosing a large enough . Our propositions point to output stabilization by policy
rules with low values of # and correspondingly high values of a: more elements of

countercyclicallity help to give stabilization with lower levels of distortion.

Countercycallity. The rules pointed to are countercyclical in the sense described
earlier. They will require a > 1/2 and, easily, values of « above one, for low enough
values of # (Proposition 2). The policy rules which are best in terms of welfare
are such that government activity is relatively low in periods up to which output
has increased by a relatively large amount. Although this is not exactly counter-
cyclicallity in the usual sense (relatively low government activity when output is
relatively high), such rules will often appear countercyclical and they certainly do

have a Keynesian flavor - but not for Keynesian reasons.

Intuition. No nominal or real rigidities have been assumed. So, why is it that
the policy rules we have called countercyclical are the most stabilizing? If a policy

can eliminate changes in GNP, it will have stabilized the economy. Assume that
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the economy evolves according to some cycle, and that output increases from the
current to the next period. The more countercyclical the policy rule is, the lower a
real transfer it will pay the next period, because the higher « is, the more negative
dependence on GNP increases the rule contains. Because goods are normal, a lower
value of the real transfer in the next period is exactly what it takes to make the
consumer work more in the current one, thus increasing output here and diminishing

the change in GNP from the current to the next period.

Related literature. Grandmont (1986) has assumptions with the same effect as
R(0) < 1 here and considers constant money growth rate rules. One of his results
is similar to Proposition 1(ii). In view of Proposition 2, policy rules with a = 0
are just at the boundary of the set of rules that can be stabilizing for large enough
values of 3, and even when they are in this set, they may well be the ones giving

output stabilization in the worst possible way welfarewise, requiring the largest [.

Simplicity and Credibility. Policy rules with values of a way above one and with
very low values of 3 stabilize in the best way. As already argued such rules are not
very simple. Furthermore, they may involve a credibility problem. At the steady
state y((3), at which the economy is stabilized, one will not see much government
activity, only the constant and low (y(3). The government may have problems
convincing the public that this is only because fluctuations do not presently occur,
and that should fluctuations occur the government would react strongly in accor-
dance with its high a. Simplicity and credibility considerations point to rules with
non-extreme values of o, say 0 < a < 1. We will therefore, for a specification of u
and v, consider the two particular cases @ = 0 and o = 1. The two resulting rules
are situated symmetrically around the ”acyclicallity point” a = 1/2, with one end
(v = 0) being the often suggested constant money growth rate rule, and both are
of equal structural simplicity. The examples will nicely illustrate the importance of

the cyclicallity of policy rules.
5 Transfers Proportional to Current or Past GNP

Consider the specifications,

—r ¥R

u(c) =6 where ¢ > 0,6 >0, R >0, (11)
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for which R(c) = Rc/(c+ ¢p), and N(n) = Rn/(1 —n). Thus, if ¢y > 0, one has
R(0) = 0 < 1, and when ¢y = 0, one has R(c) = R, and in particular R(0) >
2+ N(0), whenever R > 2.1

For this example we consider the policy rules ”transfers proportional to current
GNP”, b(yi41,y:) = By, and ”transfers proportional to past GNP”, b(y;11,v;) =
By, corresponding to o = 0 and a = 1 respectively.

First we let R = 4, ¢ = 0.06, and 6 = 0.006. This is a case where, even for
a = 0, a large enough (3 will be stabilizing. It is, in addition, a case that gives a
traditional ”hump-shaped”, or uni-modal, dynamic f with one critical point. For
each case of @ = 0 and a = 1, we iterate according to the relevant f starting at the
critical point. One is then led to the (deterministic) dynamic equilibrium which is
stable according to f (at most one is), and hence plausibly learning stable. This
is a two-period cycle under laissez faire, 5 = 0, and for both a = 0 and o = 1, it
remains as such for 3 up to the level that stabilizes the economy.

In Figure 1, where (i) is for a = 0, and (ii) is for @ = 1, the solidly drawn
curves show the common utility of all generations at steady state as a function
of 3; this curve is the same for = 0 and o = 1. In the model interpretation
with an infinitely lived agent the curve shows the steady state utility of this agent.
The *-dotted curves show, for & = 0 in Figure 1(i) and for o = 1 in Figure 1(ii),
the utilities of the fortunate and the unfortunate generations respectively, at the
stable two-period cycle as a function of 5. The fortunate generations are those who
are young when output is low and therefore work little, and old when output is
high and therefore consume much. In the alternative interpretation the utility of

the representative consumer along the two-period cycles would be more or less the

10This example does not fulfill all above requirements since ' does not go to infinity as ¢
goes to zero when ¢g > 0. However, when we consider the example we simply find equilibria
by computation and we do not need nice "boundary behavior”. The lack of an infinite marginal
utility at zero is no problem for the computations as long as (3 is below an appropriate upper limit,
which is satisfied in all numerical simulations below.

1Tt was said earlier in the paper that this is equivalent to a constant money growth rate rule. To
see this note that without income taxation the money stock must evolve as M; 1 —M; = pyy1bi41.
The growth rate d; 1 of the money stock from end of period ¢ to end of period ¢ +1 is thus dy1 =
De1biy1 /My <= My = pry1bey1/dir1. The second period budget constraint for the consumer
reads My = pey1(ceq41—bit1), where it is used that in equilibrium the amount of money held by the
consumer at the end of ¢ must be the economy’s entire money stock at the end of . By equalizing
the two expressions for M; we get by 1/diy1 = cer1—ber1, or bepq = (dey1/(1+dey1))yrs1, where
it was used that in equilibrium ¢;y1 = y41. Hence a rule of no income taxation and constant
money growth rate d is equivalent to our rule with 5 = d/(1 + d).
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average of the two dotted curves.

It follows from Figure 1 that for this example, which has been deviced such that
the policy rule with @ = 0 is indeed capable of stabilizing the economy, the sta-
bilization obtained by increasing 3 from zero has much better welfare implications

for a = 1, than for a = 0.

< Figure 1 here >

Figure 2 reports on the example (11), with R = 4 and ¢y = 0. Now R(0) >
2 + N(0), implying that for « = 0, increasing [ will not be stabilizing. Hence,
for a = 0, we assume 6 = 0.1, which implies that f’(y(0)) > —1, and the steady
state is stable according to f under laissez faire. For a = 1, we consider ¢ = 0.05,
which implies f'(y(0)) < —1, and under laissez faire it is a two-period cycle that is
stable according to f. Otherwise Figure 2 is like Figure 1, and shows, for various
values of (3, the dynamic equilibrium that is stable according to f, for & = 0 in (i),
and for « = 1 in (ii). For a = 0, increasing 3 first changes the stable equilibrium
from the steady state to a cycle, and from then on it implies increasing volatility of
utility. For @ = 1, one obtains stabilization by increasing 3, and the implications
for welfare are good.

These examples illustrate how constant money growth rate rules, or rules where
government activity is linked to current GNP (a = 0), are outperformed with re-
spect to stabilization, and the related welfare implications, by a class of rules which
are structurally as simple; namely rules where government activity is linked to GNP
with a certain delay (o = 1). The latter contains an element of countercyclicallity

which is important for stabilizing endogenous competitive fluctuations.

< Figure 2 here >

6 Conclusions

We have studied a simple monetary competitive model with intertemporally opti-

mizing agents. The model can be interpreted either as an overlapping generations
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model or as a model with infinitely lived agents and cash-in-advance constraints.
In any case there is a unique monetary steady state according to the model.

If this steady state could always be assumed to be the relevant rational expecta-
tions dynamic equilibrium, government activity would be, in the considered model,
unambiguously bad on welfare grounds. However, under some circumstances there
also exist under laissez faire other bounded and continuously well-defined rational
expectations equilibrium trajectories, i.e. deterministic cycles or sunspot equilibria.

If a cycle or sunspot equilibrium is the relevant rational expectations dynamic
equilibrium under laissez faire we are led, within the considered model, to two
(interdependent) main conclusions with respect to government stabilization policy.

The first conclusion is that government intervention may be well motivated
since it may stabilize economic activity in a way that has positive consequences
for welfare. It is the departure from the steady state to some kind of endogenous
fluctuation as the relevant equilibrium that leads to this conclusion. Even in the
presence of exogenous shocks, if it could be safely assumed that the economy was
always at - or close to and approaching - a competitive steady state (as in RBC
models), then it would be hard to justify government intervention for stabilization
Teasons.

The second conclusion derived from the model is that the best stabilization
principles - i.e. the policy rules that stabilize economic activity in a way that is
best for welfare - entail a certain kind of countercyclicallity in government activity;
government should provide relatively small transfers and /or small amounts of public
goods in periods up to which GNP has increased by a relatively large amount.

We take a modest view concerning the significance for actual stabilization poli-
cies of these model results. Insofar as fluctuations or cyclical movements in economic
activity can be viewed as (at least partly) created endogenously by volatile and self-
fulfilling expectations, some intertemporal effects of stabilization policies, which do
not usually gain so much attention, become important. It is a logical possibility
that these intertemporal effects work in such a way that good stabilization princi-
ples involve a kind of countercyclicallity in government activity that is reminiscent

of what is advocated by Keynesians.
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A Proofs

Proof of Proposition 1. First note that for all the stated conditions in Theorem
1 under which the steady state is determinate we have o > 0. It then follows from
Proposition B of Appendix B, that global stability of y(3) according to f (global
determinacy), which obviously must eliminate all cycles, also eliminates all SSE.

We are going to show that for the 3* () of (i), one can use maxzco 1 <

R(z)—1
R(z)—1+4a
1 if this is non-negative and zero otherwise. For the o*(() of (iii), one can use

1-p
B
positive value for it otherwise.

From (9), a critical point is given by 1—3(1—a)(£&)o— (1 - B(M)a) R(z) = 0.

x T

maxzeo1](R(x) — 1)) if this is strictly positive and an arbitrarily small strictly

This implies that at a critical point one must have R(z) > 1, whenever a > 0, and,

(M)a _ 1 R@)-1
x BR(x)—1+a

A critical point (x¢, f(z¢)) is below the 45°-degree line if f(z¢)/x¢ < 1, which has
to be fulfilled if 2¢ > 1, since f(z) < 1 for all z. The denominator above is strictly
positive at a critical point when o > 0, so for a > 0, f(z¢)/x° < 1 is equivalent to,
R(z°) —1

5> Ry —1+a

(12)

and to,
a>——(R(z°) —1). (13)

Now, if § > 3*(«), then in particular (12) is fulfilled for any critical point z¢ < 1,
implying that f(z¢)/z¢ < 1. This proves (i). If @ > a*((), then in particular (13)
is fulfilled for any critical point ¢ < 1, implying that f(z¢)/x¢ < 1. This proves
(ii).

For (ii) note that the perfect foresight dynamic (8) for a = 0 becomes y,v'(1 —
yt) = (1 = B)yer1¢ (Y1), so for B going to one the y; that solves it must go to zero
for any value of y;,1. This means that f(x) is pulled down arbitrarily close to the
z-axis. Further, from (9) a critical point is given by R(z) = 1 independently of f.
So, as 3 is increased all critical points (z°, f(z°)) move downwards along the same
value of z¢ with f(z¢) getting arbitrarily close to the z-axis, so eventually they all

go below the 45°-line. W
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Proof of Proposition 2. From (10) one sees that if the denominator of f'(y(3))
is negative (which it can be for a < 0), then f'(y(5)) > 1. So, to exclude f'(y(5)) >
1, one must set « such that the denominator is positive, for which o > 0 suffices. On
the other hand, for such an «, the necessary condition for avoiding indeterminacy,
f'(y(B)) > —1, is equivalent to,

sy - 12
From (10), f'(y(0)) < —1 implies R(0) — N(0) — 2 > 0, which means that for a

small enough (3, the parenthesis on the right hand side is positive, so an « fulfilling

(R(y(0)) = N(y(8)) - 2).

the inequality also fulfils & > 0. Finally, as 3 goes to zero, the required o**(3) goes
to infinity because the parenthesis goes to R(0) — N(0) —2 > 0, and (1 — )/ goes
to infinity. W

Proof of Proposition 3. (i) When a < 0, one sees from (10), that as 3 goes to
one, f'(y(0)) goes to a/a = 1, so both numerator and denominator become negative
for a large enough 3, but the numerator is numerically the largest, so f'(y((3)) goes
to one from above. Hence, for all sufficiently large 3, one has f'(y(3)) > 1, meaning
that the steady state is indeterminate and an SSE exists.

(ii)) Again from (10), if o = 0, the slope of f at steady state is f'(y(5)) =

1-R(y(8))
1+N(y(6))

goes to %ﬁ(%%, which is less than -1 exactly because R(0) > 2+N(0). Iflimg_;, f'(y(5)) <

—1, then from continuity also f’(y(8)) < —1 for all large enough . Hence y(0)

As [ goes to one, y(3) goes to zero (Proposition A), and hence f'(y(53))

is indeterminate, which suffices for the existence of SSE close to it. When f is
globally well-defined and known to stay below a ”ceiling”, f(z) < 1 for all z, then
f'(y(B)) < —1 also suffices for the existence of deterministic cycles.

(iii) For 8 > 0, when « becomes negative and sufficiently large numerically, both
the numerator and the denominator in (10) become negative with the numerator

numerically the largest, so f'(y(3)) > 1. &
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B Conditions for the Existence of SSE to Imply
the Existence of Deterministic Cycles

Inserting the specific form (1) of policy rules into the equations (7) that a SSE must

fulfill gives the equations,
yv' (L —y) =D i [yj — ﬁy}*ag/;’)} u'(y;) for i =1,...,7.
j=1

The left hand side can be called v;(y;), and if one on the right hand side uses

l—a, o

va(Yi, yj) = [yj — By~ s )} u'(y;), the equations become,

vi(y) = Zqijvg(yi,yj) fori=1,...,r. (14)

j=1
The backward perfect foresight dynamic f(z) is then given implicitly (as the solution
in z) by v1(2) = va(z, ). Under the assumptions made in this paper, vy (y;) is strictly
increasing, and when o > 0, vo(y;,y;) is either independent of y; (for o = 0), or
strictly decreasing in y; (for @ > 0). Furthermore, still for « > 0, the perfect
foresight dynamic f is globally well-defined and continuous (and differentiable),

stays below one, and with exactly one monetary steady state. This motivates,

Assumption 1. wv;(y;) is strictly increasing in y;, and va(y;,y;) is (weakly)

decreasing in ;.

Assumption 2. For every x > 0, there is a unique solution in z to vi(z) =
v9(2,2), and the backward perfect foresight dynamic f(z) = z thus defined is
continuous, f(x) < 1 for all z, and there is exactly one y > 0, that solves f(y) = v.

So, for all policy rules with o« > 0, these two assumptions are fulfilled for the
model considered in the main text of this paper. They are also the assumptions
underlying Proposition B below. This is why we have been able to conclude that
for policy rules with o > 0, if there are no deterministic cycles (as there cannot be
if the steady state y > 0 is globally stable according to f), then there are no SSE

either.

Theorem B. Let v; and vy be such that Assumptions 1 and 2 are fulfilled.
If there are y; < --- < y,, with y; < y,, and an irreducible matrix (g;;) of
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transition probabilities, such that (14) is fulfilled, then there are also y/,y" with
0 <y <y" <1, such that v = f(y") and vy = f(y'). That is, if there is a
stationary Markov sunspot equilibrium SSE, then there is also a two-period cycle,

or, if there is no two-period cycle, then there is no SSE either.

Proof.!? One can safely assume that all transition probabilities fulfill ¢;; > 0.'3
For each i = 1, ..., 7 define,
gt = argmin va(yi,y;),
je{l

r}

ooy

Yy, = arg jeI{IiE.i.)fT} va (Ys, Z/j)-

Since from (14), each vy (y;) is an average of the r values of vy(y;,y;), j = 1,...,7,
one must have vy (y;, y™®) < v1(y;) < vo(ys, y>) for i = 1,...,7. In particular for
1 =1andr,

oy, yi™™) < viyr) < oa(yn, y1°),

Vo (Yo, Y™ < 01 (Yr) < V2 (Y, Y).

Since vy is decreasing in its first argument we have: vy (y,., y™*) < vo(yp, y*) <

max min min

va(y1, Y1), and va(y1, Yi™*) = va(yr, Y1) = v2(yr, ). So, now using that vi(y:)
is strictly increasing in y;, we get,

min

o (Y, Y™) < 2y, Y™ < vi(yn) < v1(yr) < vy, Y°°) < va(yr, Y9,

Part of this is va(y1, y™) < va(y1, y"®), and since all transition probabilities gy,
are strictly positive, one gets v1(y1) > vo(y1, ¥™"). Similarly, v (y,) < va(Yr, y=).
We have thus established,

va(y1, yi) < vi(yr) < vilye) < -+ < oi(yr) < vy, Y). (15)

min

For one i, one has y; = y"™, and hence vy (y"™) > va(yr, yi™) > vo(yP™, yi™™),

where the latter follows since vy is decreasing in its first argument. Hence, vy (y"") >

12This proof extends the result of Grandmont (1986) from the case where v5 is independent of
y;, to the case where vy is weakly decreasing in y;.

13We appeal here to standard results. For dynamic systems as considered here, if there is a
deterministic cycle, that is, a completely non-stochastic SSE where for each 7, only one ¢;; is
greater than zero (equal to one), then there is also a fully stochastic SSE where all ¢;; are strictly
positive. By the same reasoning, if there is an SSE where for each 4, some, but not all, ¢;; are
strictly positive, then there is also a fully stochastic SSE, c¢f. Guesnerie and Woodford (1992).
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vo (Y0 i) but this implies that f(y") < ¢ (Remember that f(y") is the

min min

solution in z to v(2) = ve(z,yi™®). For z = y™" one gets "strictly larger than”.
The solution is then to be found strictly below 3", since v; is strictly increasing,
and vy is decreasing, in z). Similarly, for one i, one must have y; = y™*, so
v1(y"™) < va(yr, ™) < o2y, Y, implying f(y™) > g, So, we have
both f(y™n) < ymin and f(y™) > y™@* This implies, of course, that yit £ ymax

but also that,

max min

Y < n

Otherwise one would have f(yi") <yt < ymax < f(ymax)  which from the con-

T

tinuity and f < 1 parts of Assumption 2 would imply the existence of a monetary
steady state strictly between 3™ and y™*, and one strictly above y™*, contra-
dicting the uniqueness of monetary steady state part of Assumption 2.

Also from (15), one has directly that v1(y;) > v2(y1, yi®), which implies f(yPi") <

max

y1 (by the same reasoning as above), and similarly vi(y,) < va(y,, y2**), implying

max

=) > y,. Since also g < y™>, and " < y,, one has,

FyPm) <y and Y < f(yme).

Combining the two last displayed inequalities gives,

FYPm) <y < i < f(ymex).

Given that f is continuous and stays below the ”ceiling” one, this suffices for the
existence of a two period cycle: Note that the obtained inequality states that f
has a negative slope below minus one over an interval around the steady state, not
necessarily infinitesimally close to it. However, the kind of non-local negative slope
below minus one obtained suffices from a standard argument. If one constructs the
mirror image of f around the 45°-line then this has, under the obtained condition
and Assumption 2, to intersect f itself at two points 3 and y” different from the

steady state. These 3’ and y” define a two-period cycle. B
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Figure 1: Utility along the two-period cycle (R(0) < 1)
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FIGURE 1, R = 4, cg = .06, § = .006

29



Figure 2: Utility along the two-period cycle (R(0) > 1)
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FIGURE 2, R = 4, co = 0, and in (i) § = .1, and in (ii) § = .05
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