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Abstract

Tt is shown that an abrupt change in the innovation variance of an integrated
process can generate spurious rejections of the unit root null hypothesis in
routine applications of Dickey-Fuller tests. We develop and investigate
a modified test statistic whose limiting null distribution is invariant to the
location and magnitude of a change in innovation variance, and is applicable
when the change-point is unknown.



1 Introduction

A few authors have analysed the possibility of breaks in the variance of a time
series. For example, Wichern, Miller and Hsu (1976) considered maximum
likelihood estimation of an unknown break point in the variance of a first
order autoregression, while Hsu (1977) proposed tests for the existence of
a break, at an unknown point in time, in the variance of a sequence of
independent normal random variables. Incldn (1993) used Bayesian methods
to detect multiple breaks in variance in a time series. However, relatively
little attention has been paid to the possibility of a break in the innovation
variance of an integrated process, and to the impact of such a break on
testing the null hypothesis of a unit autoregressive root. An exception is
Hamori and Tokihisa (1997). These authors considered Dickey-Fuller tests
based only on the regression with no constant and trend, concentrating on
the case of an increase in innovation variance, reporting a moderate tendency
to spuriously reject the unit root hypothesis.

The no constant, no trend model is of very limited practical value, as
it implies that, under the alternative hypothesis of trend stationarity, the
generating process is known to have mean zero. Unfortunately, the results
reported by Hamori and Tokihisa for the simple model turn out to be un-
reliable predictors, both qualitatively and quantitatively, of what is found
when either a constant or a linear trend is incorporated into the Dickey-
Fuller regression. In Section 2 of the paper, we analyze the former case in
detail and provide simulation evidence of very similar conclusions for the
latter. In short, we find quite severe spurious rejections of the unit root
null hypothesis when there is a relatively early decrease in the innovation
variance. !

Having demonstrated the phenomenon of spurious rejections by Dickey-
Fuller tests in the presence of an innovation variance shift, a result which
complements the analysis of a trend shift in Leybourne, Mills and Newbold
(1998), the remainder of the paper is devoted to the development of modified
Dickey-Fuller tests that allow for a possible change in innovation variance at
an unknown point in time. Section 3 of the paper discusses the estimation
of the break when one occurs, while Section 4 derives a modified Dickey-
Fuller test as an adaptation of a feasible generalised least squares approach.
Our test statistic is shown to have an asymptotic null distribution that is
invariant to both the location and extent of the break, or indeed to whether

'In a footnote, Hamori and Tokihisa appear to suggest, on theoretical grounds, that for
their simple model a decrease in variance will lead to under-rejection of the null hypothesis.
In fact, in simulations, not reported here, of that model based on series of 100 observations,
we were unable to confirm that prediction, finding instead a modest tendency to over-
reject, particularly for relatively early breaks. Again, however, the phenomenon is far less
severe for the simple model than occurs for the more widely used models discussed in
Section 2.



or not there is a break. We assess the finite sample size and power of the
new test through simulation experiments.

To this point the analysis is concentrated on the driftless random walk
DGP

Y = Yt—1 + €, t=1,..,T, (1)
& = oy (2)

where 7, is distributed as ITD(0,1) and o7 is defined by

07 = o%l[t < ToT) + 0301t > ToT). (3)

Thus there is a break in the variance of the innovation process &; at time
70T, the variance changing from O'%O to O'%O. The appropriate Dickey-Fuller
test is then based on a fitted first order autoregression, with constant term.
In Section 5 it is shown that the test of Section 4 can be extended to allow
for additional serial correlation through the incorporation of lagged changes
in the regression, and also for the incorporation of a linear trend, though of
course in the latter case different critical values are required.

2 Spurious Rejections in Dickey-Fuller Tests

In this section we analyse the behaviour of the t—ratio variant of the Dickey-
Fuller test when applied to time series generated by (1)-(3), and based on
a fitted first order autoregression. The asymptotic null distribution of the
statistic will be derived for the case where the Dickey-Fuller regression in-
cludes a constant but no trend. That limiting distribution, which involves
both the break fraction 7g and the ratio of the innovation standard devia-
tions o90/010, leads to a prediction that the test will spuriously reject the
unit root null hypothesis when there is an abrupt decrease in innovation vari-
ance, most seriously so when the break is relatively early. That prediction is
confirmed by simulation evidence which indicates that the problem is poten-
tially quite severe. Parallel simulations for the case where the Dickey-Fuller
regression includes a linear trend yield very similar results.

2.1 Asymptotic Distribution of The Dickey-Fuller Statistic

The t—ratio variant of Dickey-Fuller statistic, with constant term included,
is based on the fitted OLS regression

Y=+ pyi—1+e
and is given by
(-1
te =~ - (4)
© e — )2
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where

The following theorem, proved in the Appendix, gives the asymptotic dis-
tribution of ¢, under the DGP (1)-(3).

Theorem 1 Under the DGP (1)-(3),

N 1 A(50,7‘0)
¢ {To+ (1 - 7'0)5(2)}1/2 B(60,70)/?2

(5)

t

where 50 = 0'20/0'10,
AGo,m0) = (WP =1} = (6~ D5 W(1)? = W(ro)? — (1 - 7o)}
~8o(So ~ VW (ro) (W (1) — W(ro)}
1 1
- /0 W (r)dr + (60 — 1){ / W(r)dr — (1= 7o) W (r0))]
W (1) + (o ~ W) ~ W(ro)}]

and
B(6o,m0) = AIW(T)er—i-((S%—l) /

—260(60 — 1)W (7o) /

T

1
W (r)%dr
1 W (r)dr + (60 — 1)(1 — 70)W (10)?

1 1
- /0 W (r)dr + (80 — 1){ / W (r)dr — (1 — o)W (7o) }2.
7o
Here W(r) is a standard Brownian motion process.

The limit distribution for ¢, in (5) is a rather complicated function of
the break fraction 79 and ratio of standard deviations §g, and is not readily
interpreted. However, some insight into the effects of a variance break can
be obtained by computing the expectations of the terms A and B. Straight-
forward algebra shows that

(Ao, m0)}) = 5{ro(ro—2) — (1~ 70)%),
B(B(o,70)} = 5{rd(3~2m0)+&}(2ro +1)(1 - 70)%}.

Thus, as a very rough approximation, we have

_ 1 E{A(b0,70)}
Blte) ~ {ro+ (1 —70)65}1/2 E{B(b0,70)}!/ )
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The function on the right hand side of (6) does not simplify further, so in
Figure 1 we graph the value of the function against the break fraction 7, for
various values of the standard deviation ratio dg. In the case where g = 1.0
there is, of course, no change in variance, and hence the function takes a
constant value over Tg, equal to —1.225. For §y < 1.0, however, this function
is, everywhere in 7¢, more negative than for §p = 1.0, and monotonically
80 as g decreases. This effect is most striking for the smaller values of &g
when the break point 7 is relatively early. In terms of the broad behaviour
of the Dickey-Fuller statistic ¢, of (4) itself, on the basis of Figure 1, we
might expect a decrease in variance under the unit root null to cause the
statistic to take a more negative value than would be the case otherwise,
and thus lead to the test rejecting the null spuriously when conventional test
critical values are applied. The extent to which this happens is investigated
by Monte Carlo simulation is the following subsection. In the case where
8o > 1.0 the function in (6) takes values greater than —1.225 everywhere
in 79, but the difference is much less pronounced than for the case when
6o < 1.0. This suggests that an increase in variance is very unlikely to lead
to severe spurious rejections.

2.2 Monte Carlo Simulation

We conducted simulation experiments for the break in variance DGP (1)-(3)
for series of T' = 100 observations, with 7, generated as standard normal.
For 7¢ ranging from 0.01 to 0.99 in steps of 0.01, and §y < 1.0 taking
the same values as used to generate Figure 1, the empirical size of ¢, at
the nominal 5%-level was calculated. Each simulation was based on 40,000
replications. The results are shown in Figure 2. Precisely as predicted from
our mean approximations, severe spurious rejections occur for low values of
To- By way of a check on the generality of this phenomenon, using the same
generating model, we also simulated the empirical size of the Dickey-Fuller
statistic when a linear trend term as well as constant is included in the fitted
OLS regression. The results are shown in Figure 3, where the Dickey-Fuller
statistic is denoted ¢;. The pattern of spurious rejections is seen to be very
similar, both qualitatively and quantitatively, to that of the ¢. statistic in
Figure 2. For both these tests we conducted additional simulations for the
case where §g > 1.0, but we do not report the results as nowhere were the
empirical sizes of the tests found to differ substantially from the nominal 5%-
level. Again, this is something we might have predicted from the behaviour
of the mean approximation, although contrary to that prediction there is a
range of 7¢ values in which there is a small tendency for the test to over-
reject.



3 Break Estimation

In view of the spurious rejection problem uncovered in the previous section,
we now seek a modified Dickey-Fuller test valid in the presence of a possible
break in innovation variance. We first consider the estimation of a break
point 79 assuming that we observe &, and then we relax this assumption
later. The basic idea is to transform the structural break in the variance of
g; into the structural break in the mean of a well-behaved random variable.
For such a transformation, the following assumption is imposed.
Assumption 1. 0 < 02 < 0o where o2 = var{log(n?)}.

2 =
Now define

Y, = log(e})
= {log(oto) +log(n)}1[t < 70T + {log(03) + log(;)}1[t > 70T

and
p(t) = paollt < 70T + pinol[t > 70T
with

po = E{log(n})}+log(ody),
oo = Eflog(n?)} +log(o3).

Then, the log-transformed variable Y; follows the process:
Yi = u(t) + Xe )

where X; = log(n?) — E{log(n?)} and X; is distributed IID(0,02). Thus,
Y; is a stationary process with a break in its mean at an unknown time 7T,
the mean changing form g,y to pog. While the problem of testing a break
at an unknown point has received considerable attention in the literature,
rather less attention has been paid to the problem of estimating the unknown
break point: procedures that have been proposed and analysed include the
MLE method (Picard (1985), Bhattacharya (1987), Fu and Curnow (1990)),
the LS method (Bai (1993), Bai and Perron (1998)), the LAD method (Bai
(1995)) and the QMLE method (Bai, Lumsdaine and Stock (1998)). For the
process in (7), the LS method (Bai (1993), Bai and Perron (1998)) can be
directly applied. The LS break estimator is defined by the solution to the
LS minimization problem:

7 € argmin Q(7),
T

T T
Q(r) = le{Yt — (M) + D V- ()}’

7T+1



where
T
w(r) = @I)7" >y,
1

T
po(r) = {1-nNTH ' 3 Y

7T+1

It can be shown that the above LS minimization is equivalent to the following
maximization problem:

7 € argmax |V(7)|,
T

V() = {1 =n)}{m(r) - m(n)}.

Once we obtain the break estimator 7 in this way, the variance estimators
are defined by

7T
= Ty,
1

T
65 = {(1-DTY ' > €.

TT+1

The following lemma shows the consistency of these estimators and estab-
lishes the convergence rate of the break estimator.

Lemma 1 Suppose that Assumption 1 holds and 79 € (0,1). Under the
DGP(1)-(3),

T(# — 7o) = Op(X5"),
&1 — 0%0 = op(1),
65— ‘730 = op(1)
where Ao = log(o20/010)-
The T—consistency result T(# —7¢) = Op(Ag2) is typical for most break
point estimators. In the general case where e; is not observable, we use the

residuals from the regression y; = & + py:—1 + €. Then, the break estimator
is defined by:

?

V() = {7 =)} (1) = bo(7)}

T € argmaX‘V(T)
T



where

() = (7)Y ¥,

1

T
fo(r) = {A-7T} ' Y%

T7T+1

and Y; = log(e}). The variance estimators are then defined by

7T
61 = (FT)7 ) e,
1

T
65 = {Q=-1TY' Y
#T+1
The following lemma shows that the difference between the two objective
functions (one based on &; and the other based on e;) tends to vanish in
probability for a fixed 7.

Lemma 2 Suppose that Assumption 1 holds. Under the DGP (1)-(3),
V(r) = V(7)] = 0p(1)
for a fized T € (0,1).

Alternatively, the MLE method by Bhattacharya (1987) can be used to
obtain the ML estimators for 0%y, 0%, and ¢ assuming that &; is normally
distributed. Given that the normality assumption on &; is very restrictive,
Bai, Lumsdaine and Stock (1998) proposed the QMLE method for estima-
tion of a break point in which the underlying distribution is not necessarily
normal. It can be shown that both the MLE and QMLE methods deliver the
same rate of convergence as in lemma 1. While the QMLE method is theoret-
ically appealing, the log-transformation method has substantial numerical
advantages in practical implementation. Given the encouraging theoretical
results of lemmas 1 and 2, and the motivation to keep the methodology as
straightforward as possible to encourage practical use, in the next section we
will assess through simulation experiments the performance of a modified
Dickey-Fuller test in which break estimation through the log-transformation
method is incorporated.



4 Tests based on GLS

We now turn to a modification of the Dickey-Fuller test. Perhaps a natural
approach is through feasible generalised least squares. However, we begin by
showing that, even if the break date and two innovation variances are known,
GLS generates a test statistic whose limiting null distribution depends on
nuisance parameters. We next show how the procedure can be amended to
avoid this problem. Finally, a feasible procedure, employing the estimators
of Section 3 is proposed and assessed.

4.1 Standard GLS

In this subsection we demonstrate that a direct application of the standard
GLS does not deliver a desirable solution even when we know all the nuisance
parameters o19,099 and 79. This is because the asymptotic distribution of
the t—statistic from the standard GLS regression still depends on &g, the
ratio of the two standard deviations, and the break point 9. The application
of standard GLS results from

oY = oY1+ one t=1,..,70T,
0'2_01yt = 02_01yt—1 + Jg_olat t=19T+1,..,T
which can be rewritten as
G =%a+mn t=1..T

where

g = oryellt < 70T] + g9 yel[t > ToT], ®)
Y1 = Jl_olyt_ll[t < 7oT] + 02_01yt_11[t > 1oT].
The ¢—statistic is based on the GLS regression
Ut = &g + pcyi-1 + et
and is given by
(b — 1)

Ge{X i1 —9)2}~1/?

T Yo = g)m
66{T2 (i1 — )2}/
where 7 is the sample mean of {¢;} and 6% = T~ 3.7, eZ,. The following

lemma shows the dependence of the agsymptotic null distribution of f. on
bop and Tg.




Lemma 3 Under the DGP (1)-(3),

where
Ac(0,m0) = (1/2{W(1)* =1} — 85" (60 — YW (10){W (1) — W(70)}
1
_{ A W (r)dr — 83 (60 — 1)(1 — 70)W (70)}W (1)

and

1 1
Ba(60,70) — /0 W (r)2dr — 265 (60 — 1)W (7o) /0 W(r)dr
+(552(50 — 1)2(1 — To)W(T0)2

1
—{ /0 W (r)dr — 65 (60 — 1)(1 — 70)W(70)}2.

Here W (r) is a standard Brownian motion process.

Once we express §; and g; in the form

Gt = wllt < 7T+ {wy — 85 (80 — Vwror L[t > 70T,
9 = wl[t < 7T) + {w; — 65 (80 — Vwror }1[t > 70T

where w; = Yt_; n;, the proof of the lemma is quite straightforward and
is omitted. The dependence of the asymptotic distribution of ¢, on &g is
caused by the presence of the term §y 1(60 — 1w,y in the second regime.
This term does not change with ¢ and is not be removed by including a
constant in the GLS regression (i.e. by subtracting the sample mean based
on the whole sample) because it appears only in the second regime. This
observation leads us to propose a modification of the standard GLS approach
in which we compute two sub-sample means and subtract the corresponding
sub-sample mean from the GLS-transformed variable.

4.2 Modified GLS

Based on the previous subsection, we propose a new method, Modified GLS
(MGLS) to derive a test statistic whose asymptotic null distribution is free
of all nuisance parameters (019,020 and 7¢). This procedure is based on the
assumption that we know the true values of the nuisance parameters. Once
we develop a relevant statistic, we will replace the parameters with their
consistent estimators. We define

Y = (G — )1t < 70T + (G — Go)) 1]t > 70T

10



where §; is defined in (8) and

70T
gy = (D) G,
1

T
Joy = {1-10)T}" > 4
ToT+1

The regression of ¢; on ¢;—1 (without a constant) is given by
Gt = PpYe—1 + e

and the t—statistic by

(ar = 1)
6-M(thr:2 Jp 1)~/
T 55T GG + T ST r 100
(T2 P T 3 + T2 97) Y/

where 62, =T '3 L, e2,,. Note that we can express ¥; as

t cm

:ljt = (’U)t — ’11_)(1))]_[t < TOT] + (’U)t - ’lf)(g))].[t > TOT]
where w; is defined as above and

70T

Wy = (TOT)_IZwta
2

T
W)y = {(l—To)T}_l Z wy

ToT+1

Then, it is straightforward to show that & 21 and

T70G1 + (1 — 70)G2

tem =
em {T%Hl -+ (1 - T0)2H2}1/2

where

G = ({WQ)? -1} - /01W1(r)er1(1),
(/21 =1} = [ Waryrwa ),
H = /01W1(r)2dr—{/01W1(r)dr}2,
Hy = /Olwg(r)er—{ /OIWQ(r)dr}Q

Ga

11



and Wi (r) and Wa(r) are two independent standard Brownian motion processes.
The limiting distribution of ¢.,, depends on only the one nuisance parameter

To in a symmetrical way, which leads us to propose the following MGLS test
statistic:

70 ST G A+ U= 7o) P T g i1 AN
= T — v
(1SR i+ (L —70) 2 X 971 112

tem =

Since 63 2 1, there is no need to use s in the MGLS statistic. The
following lemma shows that the asymptotic null distribution of the MGLS
statistic is free of all nuisance parameters.

Lemma 4 Under the DGP (1)-(3),

PN G1+Go
cM z}¥;1?25577§.

4.3 Feasible Modified GLS

The MGLS statistic t.ps is not computable as it involves the parameters
010,090 and 79. We now propose a computable test statistic which has the
same asymptotic null distribution. We assume that we are given estimators
6%,6% and # with the properties 6% — 0%, = 0,(1), 62 — 0%y = 0,(1) and
T(+ — 7o) = Op(Mg?). These estimators can be obtained by either the
log-transformation method described in Section 3 or the QMLE method
proposed by Bai, Lumsdaine and Stock (1998).

The Feasible MGLS (FMGLS) statistic proposed here is identical to the
MGLS statistic except that we use 1,69 and 7 in place of 019,099 and 7.
Define now

G = 67 yd[t < #T) + 65y d[t > 7T
and
Ut = (Te — gy) 11t < 7T) + (G — Y2))1[t > 7T
where
T

¥y = (D)) d,
1

T
Jo = {1=DTY D" G

TT+1

The regression of #; on ¢;—1 (without a constant) is given by

Yt = Ppli—1 + ery

12



and the proposed FMGLS t—statistic is defined by

b TS 1B+ (=D S i1 A

C. - ~A_— T o AN )
T g+ A=) 2 9}

We now show that the FMGLS t—statistic has the same asymptotic distri-
bution as the MGLS ¢—statistic.

Theorem 2 Under the DGP (1)-(3),

Gi1+ G2

teF 5 ——————.
oF (Hy + Hy)1/2

Finally, we consider the behavior of the FMGLS statistic when there is
no break in variance in the DGP. Suppose that ¥, is generated by

Yt = Yt—1 + €, t=1,..,T, (9)

where ¢; is distributed I7D(0,03). Nunes, Kuan and Newbold (1995) and
Bai (1998) showed that the break estimator 7 obtained by searching the
unit interval [0,1] converges to 0 or 1 in probability. In both reality and
theory, we estimate the break point over an interior [ri,72] of the unit
interval where 0 < 71 < 72 < 1. Nunes, Kuan and Newbold (1995) and
Bai (1998) also showed in this case that the break estimator 7 converges
in distribution to a well behaved random variable which is a solution to
some quadratic maximization problem. These results are directly applicable
here, as the log-transformation method of Section 3 converts the problem to
one of estimating a break in mean. The following theorem shows that the
FMGLS statistic has the same limiting null distribution even when there is
no structural break in variance.

Theorem 3 Under the DGP (9),

PN Gi1+ G2
cF —(Hl +H2)1/2.

4.4 Monte Carlo Simulation

We obtained null critical values for the test statistic f.p via simulation.
Data were generated from the DGP (1)-(3) with standard normal 7,. In the
simulations we set g = 1.0, so that no break in variance occurs. When esti-
mating 79 we implement the search procedure between sample observations
0.057 and 0.95T", using the log-transformation method of Section 3.
Critical values for different T', based on 40,000 replications, are shown
in Table 1.2 The critical values settle down quite quickly with increasing

2The entries under oo are actually based on T = 10, 000.
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T. In the case where a break in variance does take place the finite sample
distribution of ¢, will depend, to some extent, on d¢ and 7. Thus, finite
sample critical values computed assuming §g9 = 1.0 are not really appropriate
in the case where §y #£ 1.0. In view of this, we suggest that the test should
always be carried out using the asymptotic critical values.

Tables 2 and 3 examine the finite sample size of ¢.p for different é¢ and
To using the asymptotic 5% critical value. These simulations are based on
5,000 replications. The values of 6y chosen match those used in Figures 1
and 2. For T' = 100, the test t.r is over-sized for small values of §g and 7y,
relative to the case where no break occurs. For example, with §g = 0.25 and
7o = 0.15 its actual size is 7.1%. However, this compares very favourably
with the standard Dickey-Fuller test, which, from Figure 2, has a size of
about 43%. Increasing the sample size to T = 200 improves the size of
ter, as is clear from Table 3. Given that both the location and amount of
any break in innovation variance are unknown, and given further the severe
size distortions that can occur from routine application of the standard
Dickey-Fuller test in the presence of a break, the proposed test appears to
exhibit very satisfactory size properties. In this sense at least, our choice of
the relatively simple log-transformation method to estimate the break point
seems to be vindicated.

Tables 4 and 5 examine the power of t.r to reject a false unit root null
in samples of 100 and 200 observations when the true DGP is a first order
autoregression with parameter p. The test power depends quite heavily
on 6y and Tg in the smaller sample. This is partly due to the fact that
test size depends on these parameters also. However, it is quite clear that
test power everywhere increases with distance away from the unit root null.
Moreover, on comparing Tables 4 and 5, the test appears to be consistent.
It is of interest to compare the power of {.r to that of the standard Dickey-
Fuller test computed assuming no break in variance. With p = 0.9, 0.8, our
simulations showed the power of the Dickey-Fuller test to be 0.308, 0.862 for
For T = 100 and 0.846,1.000 for For T' = 200. Thus, it is clear that .p
generally does not match the Dickey-Fuller test in terms of power. This is
of course to be expected as t.r is not constructed with optimality foremost
in mind, but instead size robustness under an unknown break in variance.
Tts gain over the Dickey-Fuller test in terms of test size appears well worth
the sacrifice in test power - that is, in many circumstances, it may be worth
accepting diminished power in exchange for reliable size and the avoidance
of spurious rejections.

5 Extensions

To allow our test statistic . to be generalized to account for additional
serial correlation, and possibly linear trends, it proves convenient to express

14



it in a different form. First note that {.r can be written as

7A'_1G1T +(1- 7A')_1G2T

tom —
ok {’f'_QHlT + (1 — ’f‘)_QHQT}l/Q
where
#T #T
Gir = Y %halj, Hir=>Y ¥,
1 1
T T
Gor = Y 1O, Hor= Y %1
#T+1 #T+1
Now define

glt - gt, t - ]_, ...,%T,
Gor = Gepsr, t=1,...,(01=7)T

and consider the two fitted OLS regressions

Y1t = &1+ pJu—1+en, t=1,..,7T, (10)
g = Qo+ pofu—1+exn, t=1,...,1—-7)T. (11)

Then it is straightforward to show that

01— 1 1
Gir = (E)QIA—A), Hir=—=——,
51 V{(p1) 51 V{(p1)

o — 1 1
Gor = (E)QQA—A), Hor = —=——
5 V{(p2) 85 "V {(py)

where V(f)l) is the estimated variance of p; and s? is the estimated resid-
ual variance from the regression (10), and V() and s3 are the analogous
quantities from the regression (11). This means we can express t.r as

#=1_(01 1) +(1_,f.)—1 (P2—1)

s V(1) 52_2V(f72)
ler = ~—9 11 N_9 1 1 (12)
1 —7)- 1 /2
T e T O e

which, from a computation aspect, is a rather more transparent and conve-
nient representation.

5.1 Additional Serial Correlation
Suppose that, instead of (1), y; is generated by the process

k
Ay =Y dildyr—i+ e (13)
=1
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Then, the appropriate test statistic takes the same form as (12) except
that 7, G1and &9 are calculated from the residuals of the augmented regres-
sion

k
Y =&+ pyr—1 + Z i Ay—; + et (14)
i=1

and V(p,), s3 and V(p,), s3 are calculated, respectively, from the two aug-
mented OLS regressions

k
G1e = 61+ pifu—1+ Y d1Aju—i + e, (15)
i=1
k ~
G = G2+ Pafiar1+ Y PoAfar—i +ex (16)
i=1

The test statistic t.r in (12), based on these newly calculated quantities,
continues to have the asymptotic null distribution (Gy + Go)/(H; + Ha)'/2.
The proof is straightforward, but lengthy and follows along the lines of the
proof of ADF test limiting distribution in the standard case. Tables 6 and
7 give simulations of the finite sample size of t.r for data generated from
(13) in the case where k = 1 and ¢; = 0.5. The size results are pretty much
comparable to those of the basic test given in Tables 2 and 3 and similar
comments therefore apply.

5.2 Linear Trends

As it stands, the test ¢.r is invariant to transformations of the form y; —
c1 + y: for p < 1. However, in practice, we often require invariance to the
transformation y; — c¢1 4+ cot +y;. We therefore consider a second test statis-
tic, which we denote ¢;p. This test is constructed in an entirely analogous
manner to t.r, except that we include linear trend terms in the regressions
(14), (15) and (16). The asymptotic distribution of #;r has the same form as
that of t.p, but whereas that of t.r is written in terms demeaned Brownian
motion processes, that of ¢, replaces these with demeaned and detrended
Brownian motions. The proof of this result is quite straightforward and is
not presented here. We have simulated null critical values for ¢;r and these
are provided in Table 8.
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6 Appendix: Proofs of Theorems and Lemmas
6.1 Proof of Theorem 1.
First note that y; can be written in the form
yr = o10wi1[t < 70T + (020w — Awro7)1[t > 70T
where A = 099 — 010 and wy, = Y i_; n;. Also, t. in (4) can be written as

. T o (ye-1 — §)ee .
{T2 o (g1 — §)2}1/2

Dealing with the numerator term first, we have

T T -,
r 2 (1 ~p)e = T D yi1e — T2t/ > e
2 5 g

and using the above representation for y;, we find that

T T T
T_l Zyt—lst = J%OT_l Zwt—lnt -+ (0'%0 — Ugo)T_l Z Wr—1M;
2 2 ToT+2

—0'20>\T_1/21UTOTT_1/2 (’U)T - wTOT+1) —+ Op(l)

where
T 1
TS wam, = §{W(1)2 -1},
2

T
1
TN Y0 wean, = S{WA)? = W(ro)® - (1-T0)},
T0T+2

T_l/QwTOTT_l/Q(wT —Wror11) = W(To){W(1) — W(70)}

Next,

T T
T—l/Qy = O'10T_3/2 Zwt + AT 32 Z wy — A1 — TO)T_I/QwTOT
1 ToT+1

where

T 1
T2 Z wy = / W (r)dr,
1 0

T 1
T—3/2 Z w = / W (r)dr,
ToT+1 7o

T_l/Q’wTOT = W(ro)
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and

T
T-1/2 Z er = o107 ?wp + AT /2 (wp —wryT)
2

where

TV 2wr = W(Q),
T_l/Q(’u}T - wTOT) = W(l) - W(To).

Gathering together these results then shows that
T
T3 (g1 — §er = 039A(b0,To) (17)
2
Using a similar argument, we have

- Z(yt 1—9)° = 0%0B(b0, To). (18)

Finally, it is straightforward to show that

T
62=1"1 Za‘% + 0p(1)
t=1

and
T ToT+2
T3 e = 01T} Z M + o5l Z m
1 ToT+1
= o} Znt + (039 — 030) (L = To){(1 — 70)T} " Z n;
ToT+1
B 0%+ (030 — 0%)(1 — T0)
= 7-00'%0 + (]_ —_ 7-0)0'%0.
So
&2 5 7'00'%0 +(1- 7'0)0'%0 (19)

Combining (17), (18) and (19) gives the result in (5).
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6.2 Proof of Lemma 1.

First, the T'—consistency T'(7 — 7o) = Op(Ag ?) is a direct result of Propo-
sition 3 in Bai (1993) Wlthout loss of generality, we consider the case
# < 7o. Then, 62 = (7)1 17 &7 can be expressed as

10T 10T
010 {(roT)~ Zm (reT)™" > ni}
FT+1
where
02y,
PS
70T
(roT)™' > mf B 1,
1
10T
(roT)™" > nf 50
#T+1

This last result is obtained using the T'—consistency of the break estimator:
T(# — 7o) = Op(Ng?). Hence, we have
42

01 — 0%0 = op(1).

The same argument can be applied to show 62 — 02y = op(1).

6.3 Proof of Lemma 2.

Consider

‘V(T)—V(T)‘ < |(tT)~ Zlog(et — (1)~ Zlog(et

T
+{(1 =0T} Z log(ef) = {(1 = 7)T}™" ) log(e})

7T+1 7T+1

First we show the first term is o,(1). We define

f(p)

(rT)~ Z log (et

= (7T)” Zlog{ft +a(T)}

where ay(T) = —2(p — 1)(yi—1 — §)e&t + (p — 1)?(y:—1 — §)?. Then, by the
mean value theorem, we have

f@) = f)+F®)p-1)
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where p is between p and 1. Hence, we have

(rT)~ Z log(et — ()~ Z log(et

1

7T
<D %7 ‘ +lop(1)].

where et (T) =€ — 20— D(yr—1 —§)es + (p — 1)2(yt_1 - y)Q. Let Vo =

(7)1 7 gz(:f,). Let € > 0 and A = {|Vp| > €}. Then, P(|Vp| > ¢€) =

P(A) < P(AN B) + P(B°) for any event B. Choose B = {|é(T)| > ¢4}
where (i) er — 0 and (i) T'ck — co. Then, P(B€) = P(|é}(T)| < c%) — 0
as T — oco. Hence, it is sufficient to show that P(AN B) — 0. Consider

Q

P(ANB) = >e and &(T) > cf)

('Bl

T
P(|(rT)~ Z
t=1

T

Z_; ag (T)

< P((rTc)™? > €).

Since (Tc¢2)~! = o(1) by the assumption (i5) on cr, it is sufficient to show
that ‘ZZL at(T)‘ = Op(1). Note that

7T
)‘ < 21D (-1 —He| + (b - 1)2 y_)Q‘ +op(1)
t=1
= 2|1T(p—- 1| |(vT)~ Z(yt 1— )| T
+HT(p = * |(rT) ™ Z(yt—l — 9|7 +0p(1)
t=1

= 0,(1) + 0y(1) + ap(1) = Oy(1).
In a very similar way it can be shown that [{(1 — 7)T} ' X%, ; log(e?) —
{Q-7)T} 12T 1 log(e?)| = op(1). Therefore, ) — V(T)‘ = op(1).

6.4 Proof of Lemma 4.

First, note that t.ps can be expressed as

(10T) 2 5T o1 O3 + {(1 = 70) T} 2 07 oy Be1 3
[(ToT)~2 ZTOT Ui+ {1 —70)T}72 ZTOT+1 Y2412

_ (roeT)! 79T (wy_1 — W) Aw; 4+ {(1 — 70)T} ! ST rra(wi—y — w(g))Awt +op(1)
— p(1).
|(70T) =2 25" (wem1 = 02))% + {(1 = 70)T} 2 YT r (w1 — B(a))?] v

te =
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Then, it is straightforward to show that

70T
(ToT Z(wt 1 —w(l))Awt = Gl,

T

{@=ro)} ! Z (w1 — W(g))Awy = Go,
T0T+2
70T
(ToT Z(wt 1—’11)(1)) = Hl,
T
{(l—To)T}_2 Z (wt_l—u_)(g))Q = H>
ToT+2

which delivers the desired result.

6.5 Proof of Theorem 2.

We write t.pr as

_ GT) 4T o1 O + {(1 = #) T} ZgT-i-l -1t

(G2 87 5 +{A = DT} Sl 70

We will only prove here that (+7)~' 377 4,_1A§ = Gi.
arguments can be applied to the other terms in ¢.r. Note that

7T 7T

The same

7T 7T
FT) Y G A = GT) Y Gea Mg — GT) 2D 56T 2> A
2 2

2 2

Without loss of generality, we consider the case 7 < 7¢. Then, the first term

can be expressed as

7T ToT

N —_ O'
) G Mg = — 2
2

0010

where

10T
(toT)~ Zwt 1Awg = (1/2){wi(1)% — 13,
70T
(toT)™ Z wi_1Awy 2.
FT+1
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The last result is obtained using the T'—consistency of the break estimator:

T(+ — 7o) = Op(Ng2). Hence, we have

(7T)~ Zyt 103 = (1/2){Wi(1)* - 1}

The limit of the other two terms are given by

2T 70T
~m\=3/2\" s _  (7043/2910 -3/2 _ 3/2010
(D)5 = (FHED Y w - (N
1
= /Wl(r),
0
)—1/2§T:A~ _ (2)1/2ﬂ(T T)—1/2TZOZ:F _( )1/2010
5 o= T 01 0 277t T 01
= Wl(l)

using the same argument. Therefore,

(*T)~ Zyt 1A = Gh
A similar approach establishes that

T
{@=DTY" Y Gl = Go,
TT+1

(TT QZyt 1 = H17

{@-nT}1* Z Ji1 = H
#T+1

which completes the proof.

6.6 Proof of Theorem 3.

Consider 7 € [T1,72] and define

T
A = @)Y e,
1

T
o5(r) = {Q-7TY' Y €.

T7T+1
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Then, it is straightforward to show that 6%2(7) & ¢2 and 62(r) & o2 uni-
formly in 7. Define

Ut = (Gt — 9y) 1t < 70T + (G — Y2))1[t > 70T
where
G = 63(1) 'yl [t < 7T + 65(7) " yedft > 7T,

T
¥ = {A-DTy " > e

7T+1
Then, the FMGLS statistic based on 7 is given by

b (T) = () 35 g1 D% + {1 =N TY ' i G188
()2 5" 51 + {1 = )T} X 574112
Using the Functional Central Limit Theorem (FCLT) it can be easily shown

that

Gi1+ Gy
(Hy + Hy)'/?
uniformly in 7. By Nunes, Kuan and Newbold (1995) and Bai (1998), the

break estimator 7 obtained by searching [71,72] converges in distribution to
a well-behaved limiting random variable

ter(T) =T = (20)

7= T (21)

where T is a solution to some quadratic maximization problem. Note
that t.p(7) = 7T if and only if for every bounded continuous function ¢,
Elp{ter(T)} — E{p(Y)}. Let ¢ be a bounded and continuous function
and € be a positive real number. We need to find an N(€) > 0 such that
|Elp{ter(T)} — E{e(Y)}| < € for all T > N(€). First, note that (i) there
exists an Ni(e) > 0 such that sup, |E[p{tcr(T)}] — E{p(Y)}| < € for all
T > Ni(e€) by (20) and (i) there exits an N2 > 0 such that 7 has a proper
density, denoted by f;(7), for all T > Ny by (21). Consider T' > No:

Blp{ter ()] = Ble(TH = | [ El{p{ter(®)} = o(O Y fr(r)ar]
< [ sup IBU{ter ()} = (D) Hemr]lf(r)dr

1

< /:2 efz(T)dr

= €

for all T > Ni(e). Therefore, we choose N(€) = max{Ni(e), N2} which
completes the proof.

24



Table 1. Critical Values of {.p.
10% 5% 1%

T
100 | —2.98 —-3.26 —3.82
200 | =3.00 -3.28 -3.83
400 | =3.03 -3.32 -—-3.85
oo | —=3.04 —-3.33 -—-3.86

Table 2. Size of t.r at Asymptotic 5%-level Critical Values, T = 100.

6 1.00 080 0.60 040 0.25

70
0.15 0.045 0.053 0.062 0.070 0.071
0.30 0.045 0.055 0.064 0.079 0.083
0.45 0.045 0.049 0.060 0.073 0.074
0.60 0.045 0.046 0.057 0.066 0.067
0.75 0.045 0.043 0.046 0.054 0.057

Table 3. Size of t.r at Asymptotic 5%-level Critical Values, T = 200.

6 1.00 080 0.60 040 0.25
70
0.15 0.048 0.054 0.065 0.067 0.066
0.30 0.048 0.052 0.063 0.065 0.069
0.45 0.048 0.049 0.063 0.068 0.067
0.60 0.048 0.047 0.056 0.065 0.064
0.75 0.048 0.045 0.049 0.058 0.055
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Table 4. Power of t.p at Asymptotic 5%-level Critical Values, T' = 100.

do 1.00 0.80 0.60 0.40 0.25

70
015 | P= 0.9 0.181 0.185 0.185 0.228 0.343
p=038 0.501 0.504 0.502 0.516 0.586
030 2= 0.9 0.181 0.190 0.217 0.272 0.367
p=038 0.501 0.520 0.600 0.677 0.748
045 | P= 0.9 0.181 0.193 0.233 0.286 0.378
p=038 0.501 0.544 0.653 0.757 0.835
060 | P= 0.9 0.181 0.193 0.225 0.283 0.342
p=038 0.501 0.540 0.643 0.742 0.797
05| P= 0.9 0.181 0.191 0.208 0.225 0.240
’ p=038 0.501 0.522 0.556 0.603 0.638

Table 5. Power of t.p at Asymptotic 5%-level Critical Values, T = 200.

do 1.00 0.80 0.60 0.40 0.25

7o
015 | P= 0.9 0.503 0.503 0.502 0.515 0.586
p=038 0.811 0.813 0.821 0.857 0.887
030 P= 0.9 0.503 0.541 0.616 0.692 0.789
p=038 0.811 0.876 0.956 0.996 0.999
045 | P= 0.9 0.503 0.539 0.692 0.771 0.844
p=038 0.811 0.890 0.978 1.000 1.000
060 | P= 0.9 0.503 0.556 0.673 0.746 0.802
p=038 0.811 0.886 0.972 0.996 1.000
ors | P 0.9 0.503 0.527 0.564 0.608 0.650
’ p=038 0.811 0.865 0.919 0.966 0.988
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Table 6. Size of t.p at Asymptotic 5%-level Critical Values, T' = 100,
ARIMA(1,1,0) DGP.

6 1.00 080 0.60 040 0.25
70
0.15 0.052 0.063 0.072 0.078 0.072
0.30 0.052 0.063 0.075 0.085 0.079
0.45 0.052 0.062 0.074 0.081 0.074
0.60 0.052 0.058 0.070 0.072 0.070
0.75 0.052 0.051 0.061 0.068 0.062

Table 7. Size of t.p at Asymptotic 5%-level Critical Values, T = 200,
ARIMA(1,1,0) DGP.

6 1.00 080 0.60 040 0.25
70
0.15 0.051 0.060 0.071 0.069 0.071
0.30 0.051 0.063 0.072 0.073 0.071
0.45 0.051 0.059 0.066 0.069 0.067
0.60 0.051 0.056 0.063 0.068 0.066
0.75 0.051 0.056 0.039 0.065 0.056

Table 8. Critical Values of #;p.
10% 5% 1%

T
100 | —=3.711 —-3.98 —4.51
200 | =3.79 —-4.06 —-4.57
400 | —3.84 —4.11 —4.63
oo | —3.86 —4.13 —4.65
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