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Abstract

Assume that a time series is generated by an autoregression which has at
most one unit root. A correctly specified model, including linear time trend,
is estimated by ordinary least squares, but no allowance is made for any unit
root in the generating process. We investigate the impact of estimation error
on the mean squared error of forecasts calculated from the fitted model.



1 INTRODUCTION

Consider a time series whose generating process is a finite order autore-
gression, possibly incorporating a single unit root or a linear time trend.
Suppose that a model with linear trend and correctly specified autoregres-
sive order, but not any unit autoregressive root, is fitted by ordinary least
squares to a series of T observations. This fitted model is then employed in
the usual way to forecast h steps ahead. The forecast error variance is then
the sum of two components - one whose value is that which would occur if
the parameters of the generating process were known, and a second of order
T~ following from sampling variability in the parameter estimators. Our
purpose is to assess the second term, as T becomes large but the forecast
horizon h remains fixed.

Our analysis follows a sequence of investigations, beginning with Ya-
mamoto (1976), who derived the asymptotic mean squared error (a.m.s.e.)
of forecasts obtained from a correctly specified model fitted to data gen-
erated by a finite order stationary autoregression with zero mean. Sub-
sequently, this was extended by Yamamoto (1981) to the case of a mixed
autoregressive-moving average generating process. Baillie (1979) extended
the results of Yamamoto (1976) to the case of a linear regression model with
fixed or stochastic exogenous variables and autoregressive errors. Fuller and
Hasza (1981) generalised Yamamoto (1976) to the case where the station-
ary autoregressive generating process has unknown mean. Following some
preliminary definitions and analysis in Section 2, in Section 3 of the paper
we extend this line of research to the case where the generating process is a
stationary autoregression around an unknown linear trend.

Fuller and Hasza (1981) also derived forecast a.m.s.e. when an autore-
gressive model is fitted to data generated by a unit root process, but provided
an explicit expression only for the pure prediction error component, simply
proving that the estimation error component is Op(T_l/ 2). In Section 4 of
the paper we analyse this latter case in more detail, allowing a linear trend in
the fitted model, as might be done when the generating process incorporates
drift. Tt is straightforward to infer from our analysis corresponding results
for the case of a driftless generating process and a fitted model including
intercept but no trend. Qur results apply to a finite forecast horizon h,
and in particular it is interesting to compare them with the corresponding
results of Section 3 for the trend-stationary generating model for one-step-
ahead prediction, h = 1. Because the general case is algebraically complex,
and therefore difficult to interpret, we also explicitly discuss the comparison
for general h when the fitted model is a first order autoregression.

Several other authors have analysed this topic, including extensions to
the multivariate case. However, either the correct order of integration is
assumed known, as for example in Reinsel and Lewis (1987) and Sampson
(1991), the forecast horizon h and sample size T are allowed to grow simul-



taneously, as in Stock (1996), Phillips (1998) and Kemp (1999), or, as in
Clements and Hendry (1999), where the impact of an incorrect choice of the
order of integration is assessed, no autoregressive terms are included in the
fitted model when the data-generating process is difference-stationary.

2 MULTI-STEP PREDICTION ERROR

Let the series y; be generated by an autoregressive process of order p, AR(p),
with a linear time trend

p
t—1
Yt = Zd’jyt—j +u+o (T) + &, t=1,..,T, (1)
j=1

where the particular normalization of the time trend function has been cho-
sen, without loss of generality, for clarity of presentation. We impose the
following assumption on e;.

Assumption 1. ¢, is distributed as IID(0,02) and 0 < 02 < co.

Define a vector of the true parameters ¢ = (¢, ..., ¢p, 4, 6)" and a selec-

tion matrix Spm = | In  Opx(m—n) | Which selects the first n elements in an
m x 1 vector. To specify the h—steps ahead forecast of y;, it is convenient
to transform the DGP in (1) into a vector AR(1) process

V=AY, 1+ E;

where Y; = (Y1, Yi—1, -, Yt—p+1, 1, t/T)', By = (&4,0,...,0)" and

AEH; j;‘] @)

' = (Sp(p+2)0)’ | 1 0 _| w6
w1thA1_l L Oty ,Ag = -1 1 yand Ay = .

Then, Y7}, is given by
h—1
YT+h = AhYT + Z A]ET—i-h—j-
§=0

Assume that the regression model for (1) is correctly specified. Under
this assumption, the OLS estimator ¢ = (¢, ..., §p, f1,6)’ satisfies

p
, (-1
Y=Y Oy + i+ (T) + et 3)
=1
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where e, is the regression residual. Given &, A is estimated by A = A(&))
The h—steps ahead forecast of Y;, based on A, standing at time T is

YT-ﬁ-h = AhYT

and the forecast error is

h—1
Yrin —Yrin=—Y AErinj+ (AP — AMyp
=0

The h—steps ahead forecast error of y; is the first element of YTJF;L —Yrin,
and is given by
h—1 _ A
Ir4n —yren=— Y A Er g+ (1A — el AMYy 4)
j=0
where e; is a vector with one in the first element and zeros elsewhere. As-
suming that T1/2(ej A" — & A") Yy 2, F, we define the asymptotic mean
squared error of the h—steps ahead forecast §ryn, denoted a.m.s.e.{grin},

am.s.e{jrin} = 0% + v

where 07 = var [— Z;L ée’lAjETJrh_j] and v? = T~ lvar(F). Three com-
ments should be noted.  First, the convergence condition 7/ 2(e’lflh -

e} A YT L F is satisfied for most estimators of ¢, including the OLS
estimator & which will be used in this paper. Second, since it can be easily
shown that
h—1
0} =23 (e Aer)?, (5)
j=0
we will focus on the second component v2. Finally, since it is easily shown
that the h—steps forecast error is invariant to ¢ and §, and hence so is the
asymptotic mean squared error, we without loss of generality set =6 =0
in all the derivations.
To obtain the asymptotic mean square error of g4, using the expression
in (4), it is convenient to expand €} A", viewed as a function of ¢, as a Taylor
series around the true value ¢, which can be shown to give

0(e1 A")
0¢

One can show by using the methods in Yamamoto (1976) and Fuller and
Hasza (1981) that

A" = A" + (3 — @) +op(T711%). (6)

! AR h—1 ) )
—8(631;1 ) - (¢ ey A1 = (7)
=0



Note that, for p = § = 0, My, is a 2 x 2 block diagonal matrix. We will
denote the two matrices on the diagonal as Mp; and Mpys, with respective
dimensions px p and 2x2. Collecting (4), (6) and (7) yields for the h—steps
prediction error

h—1

Irh —Yrin = — Y L AEp i+ (¢ — &) My Y7 + 0p(T~Y?)
=0

which will be the basis for our subsequent discussion.

3 ASYMPTOTIC MSE OF PREDICTION FOR
TREND STATIONARY PROCESSES

In this section the results of Yamamoto (1976) and Fuller and Hasza (1981)
are extended to the case where a linear trend term is included in the fit-
ted model. We impose the following assumption on the AR(p) generating
process for y; in (1) to render it trend stationary

Assumption 2. All the roots of the equation

1— ¢z — dopz? — = Pp2P =0

lie outside the unit circle.

It is well known that under Assumptions 1 and 2 and the assumption
p = 6 = 0, which as we have noted implies no loss of generality in the
asymptotic mean squared forecast error,

TV2($ - ¢) % N(0,02T 1)

I'hn O

whereI‘El 0 Ty

] with Ty = E(X¢X}), Xi = (Yt, Yt—1, ---, Yt—p+1)’ where

1 1/2].

now ¥ is generated by a zero-mean autoregression, and I'y = l 1/2 1/3

Then, the following theorem immediately follows.
Theorem 1 Suppose that Assumptions 1 and 2 hold. Then,

am.s.e{jrin} = 0% + v

where o2 is given in (5) and

h—1 2

> (€1 AT er)

j=0

v = o?T Y tr(M) T My 1) + 4

where My, = Z?;& (e’lAlljel)A?_l_j which is the first px p submatriz of My,.
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The general result of Theorem 1 is algebraically quite involved. In the
special cases where either p = 1 or h = 1 considerable simplification results,
yielding findings that are more easily interpretable and directly compara-
ble with previous research. These two cases are covered by the following
corollaries.

Corollary 1 Suppose that Assumptions 1 and 2 hold and that p = 1. Then,

am.s.e{friny =or +vi

where
h—1 o
2 2
Op =0 Zdﬁj
j=0

and

of =t {2l s af1- e - o).

The result of Corollary 1 can be compared with findings of Yamamoto
(1976) and Fuller and Hasza (1981), both of which obtain results of the form

o = {2l s k[ g - o)}

The former shows that, in the case where the intercept and slope terms are
(correctly) both omitted from the regression (3), & = 0, while it follows
from Corollary 2.1 of the latter that when only the slope term is omitted,
k = 1. Hence, including a redundant trend term in the regression would

2
add 30271 [(1 — 1) N1 - d)?)] to forecast a.m.s.e.

Corollary 2 Suppose that Assumptions 1 and 2 hold and that h = 1. Then,
am.s.e{jry} = o3 + 0

where
0% =0
and
fu% = JQT_l(p +4).

Again this result is easily related to those of Yamamoto (1976) and Fuller
and Hasza (1981). For their respective assumed generating processes they
findk=0and k=11in

v =a?T Y p+k).

Thus, including a redundant trend term in the regression would add 3027}
to the asymptotic mean squared error of one-step-ahead forecasts.



4 ASYMPTOTIC MSE OF PREDICTION FOR
DIFFERENCE STATIONARY PROCESSES

In this section, although a model of the form (1) is fitted and projected
forward for forecasting, the true generating process is difference-stationary,
so that the following assumption is imposed.

Assumption 3. The characteristic equation for the DGP in (1) can be
factorised as

1— 1z — o2 — ... — $pf = (1-2)(1— a1z - a2 — ... —ap_12F71)
and all the roots of the equation
1—a1z —agz® — ... — ap_lzp_l =0

lie outside the unit circle.

In the presence of difference-stationarity, the assumption § = 0 in the
generating process (1) is standard. In what follows, we further assume,
again without loss of generality, that g = 0 in that process. Choi (1993)
derived the asymptotic distribution of the OLS estimators of the autore-
gressive parameters under Assumption 3 when constant and trend are not
included in the model. Here, we follow his approach for the OLS estimator
& in (3). Define a (p+ 2) x (p + 2) square matrix B as follows

B= By By Opx2
T | Oexp-1y O2xa D2

where By is a p X (p — 1) matrix with (¢,5) element 1 for i = j (i =
l,..,p=1), =1fori=354+1 G = 2,...,p), and 0 elsewhere, and By =
(1,—a1,—a2, ..., —ap—1)’. Specifically, recalling that ¥; = (ys, ys—1, ..., Yo—p+1, 1, /T,
the matrix B has the property

BY, = (AY/, )’ ®)
where AY; = (Ays, Ayi—1, ..., AYs—pt2)’ is a vector with p— 1 elements from
which the deterministic components are excluded, and 2; = (2, 1,¢/T) with

2t = zt—1 + &¢. It can be easily verified that B is nonsingular. Next define
a scaling matrix Dt as

DTElDT1 0 ]

0  Dpo

where Dr = Tl/QIp—l, and Dy = l € T1921 ] :
2
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Lemma 1 Let ¢ = (&)1, - &I,,,&, 3)’ denote the OLS estimatorin (83). Then,
under Assumptions 1 and 3

s-o- 07 [ 5 e

F3 Op(T~3/?)
where
T T
Fr = (T ). AYaAY )7'TV2 Y AYiae
t=p+1 t=p+1
T T
Ff = (Dpy Y. %-15.4Dp3) "Dy > Zirer
t=p+1 t=p+1
Further,

Fr 4 N(0,02T;0)
where Tq = E(AY;AYY), and

Fy = 231K
where
1 00 fW(r)er JW(r)dr [rW(r)dr
YX=[(0 o 0|, =| [W(r)dr 1 1/2
0 0 o JrW(r)dr 1/2 1/3
and

1/2{W(1)* — 1}
H= w(1)
W(l) — [W(r)dr

where W(r) 18 standard Brownian motion.

The following lemma provides an expression for the model estimation
error component, scaled by T2 of the error for an h—steps ahead forecast.

Lemma 2 Suppose that Assumptions 1 and 8 hold. Then,
T2Y7 My (¢ — ¢) = Cf + Cs + Op(T7/?)

where
h—1 j _
Cr = AYp Y Y () AFe)) AV =Dy
7=0 k=0
h—1 j
Cy = Y > (el A e)) (T 22r,1,1)F3
7=0 k=0
a/
A* =
l Ip—2 Op-2)x1 ]
a = (a1,a2,...,ap-1)".



In general, the terms C7 and C5 will not simplify further, but to provide
some insight we rearrange them as

h—1 h—1j-1
Cik _ AY% Z(ellA*/kel)A*/(h—l—j) + Z Z(ellA*/kel)A*/(h—l—j) Fl*
=0 =0 k=0
h—1 h—1j-1
Cs = |h+ D (hA™er) + 3 (ehA*%er) | (T %2r,1,1)F5.
j=0 3=0 k=1

Written in this way, the double summation terms are essentially interaction
terms that arise when a unit root and AR components are simultaneously
present. For example, if the DGP of Ay, is a stationary AR(p — 1) with
constant and trend and there is no unit root present, then fitting a correctly
specified model to this series would yield

h—1
Cr = AYp | (e)A*%e) AYP—17D) | Fy (9)
=0
h—1
Cs = |D (1A er)| (L, 1)F3
j=0

where Fy is redefined, excluding the terms corresponding to z;. The asymp-
totic mean squared error of the h—steps forecast calculated from C} and C3
in (9) is essentially the same as the one given in Theorem 1. The only
difference is that the dimension of the AR parameters is p rather than p—1.

The asymptotic mean squared error of the h—steps ahead forecast g
for difference stationary processes immediately follows from Lemma 2.

Theorem 2 Suppose that Assumptions 1 and 8 hold. Then,
am.s.e{frin}y =0r +vi
where o2 is given in (5) and
v =gt {tr(I‘aHhI‘;lH'h) + nﬂr%}
where I}, = Z?;é 1 _o(e A¥Re) AM(=1-0) oy = Z?;é 7 _o(e)A*%ey),

n1 = var(WS™H) and R = (W (1),1,1)".

As in the previous section, the general result is algebraically very com-
plex, and it is useful to consider separately the special cases where p = 1 and
where h = 1. The following corollaries set out the result for these cases.



Corollary 3 Suppose that Assumptions 1 and 3 hold and thatp = 1. Then,
am.s.e{jrin} = 0% + v

where

and
vi = o*T~ 1 (h*n1) = 6T 'h%0?

where ny is given in Theorem 2.

The final conclusion of the corollary uses n1 = 6, a result obtained
through simulation, with a series of 5,000 independent standard normal vari-
ates employed to generate a random walk and the appropriately normalised
sums to approximate the corresponding functionals.

Of course, the conclusion of Corollary 3, which gives the asymptotic mean
squared error of forecasts obtained when a first order autoregression with
linear trend is fitted to a random walk, can be obtained more directly using
the result given by Clements and Hendry (1996) on the limiting distribution
of T(f)h — 1), where p is the least squares estimator of the autoregressive
parameter.

Corollary 4 Suppose that Assumptions 1 and 8 hold and that h = 1. Then,
am.s.e{jri1} = o3 + 0

where
2

0% =0
and
fu% =271 {p—-1)+m}= JQT_l(p +5).

It is interesting to compare the conclusions of Corollaries 2 and 4. In
particular, it emerges that it would be misleading to extend the result for a
trend stationary generating process to the case where an autoregression with
linear trend is fitted to data generated by a difference stationary process.
Although the same number of parameters is estimated in each case, the
a.m.s.e is higher by ¢?7~! in the latter. Similarly it can be concluded
that, if the analyst knows the correct order of integration in that case,
and so fits to the first differences an autoregression of order (p — 1) with
intercept but no trend, using the result of Fuller and Hasza (1981) a gain of
2T (p+5) — 02T 1p=502T"! in a.m.s.e. would result.
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For completeness we consider two further simple cases. First, suppose
that the true generating process is difference stationary with no drift, and
that the trend term is excluded from the fitted model, which is now

D
Y = Z iYt—5 + o+ e (10)
=1

In this case, the asymptotic mean square error of the h—steps forecast of y;
is provided in the following theorem.

Theorem 3 Suppose that Assumptions 1 and 8 hold and the h—steps ahead
forecast is constructed based on the fitted model in (10). Then,
am.s.e{jrin} = 0% + v

where o2 is given in (5) and

v =gt {tr(I‘aHhI‘;lH'h) + nyr%}

where ny = var [N’S§3(5’23%S§3)_15’23H], and So3 = [ Ir 0oy } )

Proofs of Theorem 3 and the corollaries that follow from it are along
precisely the same line as those of Theorem 2 and Corollaries 3 and 4,
and are therefore omitted. When p = 1 or h = 1, we have the following
corollaries, the value no = 3 having again been obtained by simulation.

Corollary 5 Suppose that Assumptions 1 and 8 hold, p = 1 and the h—steps
ahead forecast is constructed based on the fitted model in (10). Then,
am.s.e{jrin} = 0% + v
where
02 = ho?
and
vi = o*T (h?ng) = 3T h%0?

where ny is given in Theorem 3.

Corollary 6 Suppose that Assumptions 1 and 3 hold, h = 1 and the h—steps
ahead forecast is constructed based on the fitted model in (10). Then,
am.s.e{jri1} = o3 + 0

where
ol=0c
and
vi=0 T {(p-1)+n} =T (p+2).

11



Comparing with Yamamoto (1976), notice that an analyst who knew the
correct order of integration and fitted a zero-mean autoregression of order
(p — 1) to the series of first differences would achieve a gain of 367! in
a.m.s.e. of one-step ahead forecasts.

Finally, suppose that the true process is driftless difference stationary
and an autoregression of order p with no intercept or trend is fitted; that is

p
Yt = Z GiYt—j + et
j=1

Then, it can be easily shown that the model estimation error component fu%
in the a.m.s.e of the h—steps forecast is given by

v =gt {tr(I‘aHhI‘;lH'h) + ngﬁ%}

where ng = var [N 13(5’1335’13)_15’137{], with Si3 = [ 1 O1x2 } The

expression for fu% is in the usual way specialised to
vi = o?T~ Y (h%n3) = 2T 1 h%0?
when p =1 and
W = 02T {(p— 1) +ms} = 02T (p + 1)

when A = 1. The value ng = 2 has again been obtained from simulation.

5 SUMMARY

We have analysed the impact on prediction mean squared error when an
autoregression with linear trend is estimated and the fitted model is pro-
jected forward to derive forecasts. By contrast with some previous work
on this topic, although we let the number of observations available for es-
timation grow, the forecast horizon is kept fixed, so that our results are
applicable to short-term forecasting. We assume that the fitted model is
correctly specified, although it is not assumed that account is taken of any
unit autoregressive root in the generating process.

Sections 3 and 4 of the paper consider respectively the cases of trend
stationary and difference stationary processes. The results of the former
provide an extension to the linear trend case of well known conclusions
relating to the case of a fixed mean, which is either assumed known or
must be estimated. In Section 4 we demonstrated how the analysis can
be modified if the time series is difference stationary. In both sections, we
found it useful to provide insight by specialising our general results to the
cases of one step ahead prediction and of a fitted first order autoregression.

12



Tt is interesting to note that the results for the difference stationary case are
somewhat different than would be obtained by taking the trend stationary
results and allowing an autoregressive parameter to approach to unity.
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6 APPENDIX: PROOFS

6.1 Proof of Theorem 1

: 2
Since 02 = E [— Z?;é e’lAJETJrh_j] , we have
h—1 h—1
2 !/ j !/ j1 2 !/ j 2
oy = Z A E(Erih—jEr_j)Ae1 =0 Z(elAjel)
j=0 j=0

as given in equation (5).
The OLS estimator ¢ = (¢, ..., ¢p, i1, 6)" can be expressed as
—1

T
T2 3 Yiae
t=p+1

T
T ) YV
t=p+1

] +0,(T71/?)

T%($ — )

n
Fy

|

in the case p = § = 0, where

-1

[ T T
_ 1 / —1/2
Fo= T Y XeaXen!| T2 3 Xeae,
| i=p+1 i=p+1
[ T -1 T
_ —1 / —1/2
h = T Z Ti—1T1—1 T/ Z Ti_1€¢
t=p+1 t=p+1

and z; = (1,¢/T). It is straightforward to show that
£ 4 N (0,07

where ¢ = 1,2 and F} and Fj are asymptotically independent since they are
jointly normal and the asymptotic covariance matrix is zero.

Hence, the model estimation component of the error for an h—steps
ahead forecast, scaled up by T7/2, is given by

n

TG - 0) = Vi | T

] + 0,(T7V/?).

It can be shown that

e A e
1 Ali
YrA

e'lAlljel
(X5A7 1,1 +O(T7).
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Hence, we have
YIM], = Y7 Z(e'lA'fel)A'(h_l_J)
=0
= | Xp i@ A e AT S Alen)(1,1) + O(TY) |-

Therefore, the model estimation component of the error for the h—steps
ahead forecast is

T'2Y7 My (6 — )
h—1 _ _ h—1 _
= X5 3 (AT e) AR 4 3 () AT en)(1, 1) Py + Op(T71/?)
j=0 j=0
h—1 _
= XpMnFi+ Y () Afer)(1,1)Fy + Op(T~1/?)
j=0
= C1+ Ca+Op(T7V?)

where the last line defines C; and Cs. Since F; 4, N(0, JQI‘i_l) fori=1,2,
the asymptotic variances of Cj and Cs are given by

asyvar{C1} = o*tr(Mj,T7 My Ty)
2

h—1
asyvar{Cs} = o° [Z(e'lA'jel) (1, Hry*@a, 1’
7=0

2

h—1
= 40? [Z (e} AV er)

=0

Using the well known fact that Xr is asymptotically uncorrelated with &
(hence with Fy and F3), we have

h—1 2

> (€1 AT er)

j=0

v = o?T Y tr(M) T M) + 4

6.2 Proof of Corollary 1
When p = 1, ej Ale; = d){ Hence, 02 = o2 Z?;& %j. Also note that the
terms in the expression for fu% in Theorem 1 are simplified as follows.

My = hd’gh_l)-
I = E(y).
e’lA/f e1 = ¢.
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Hence, tr(M},TT  MyiT) = thﬁ(h_l) and Z?;Ol(e’lAlljel) =(1-¢) 11—
#%), which delivers the desired result.

6.3 Proof of Corollary 2
Note that Mp; = Ip4o when h = 1. Hence, tr(M],T7 My ) = tr(Ip) = p.

Since A%= T, Z?;& (e’lAllj e1) = 1 which completes the proof.

6.4 Proof of Lemma 1
The OLS estimator ¢ = (&)l, ves &I,,,&, 3)’ can be expressed as

—1
T T
¢p—¢ = B Z B'Y,_1(B'Y:-1) Z B'Y;_1e
t=p+1 t=p+1
T -1 T
= BD;'|D;' Y BY(BY,.)'Di'| Di' Y BYiae.
t=p+1 t=p+1
It is straightforward to show using the property in (8) that
T
D' > BY,1(BY;.1) Dy
t=p+1
_ T Y p AIYtQ—lAYtI—1 » TOp(T_l/Q) »
Op(T~1/?) D Yiept1 211211 Dy
so that
T —1
D7' Y BYii(BY:o1)Dit (11)
t=p+1
71T LAY, AY, )! 0 _
_ ( t=p+1 . ¢ i1) R o o pelyd +0,(T 1/2).
(Do Zt:p—‘,—l %-1%_1Dzy)
Further, since
T —1/25~T
T NRAN 7
Dy' ) B'Y, e = l D_1thp+1 i ] : (12)
t=pt1 T9 Zt=p+1 Zt—1€¢
it follows from (11) and (12) that
5 1| Fy O,(T™)
4 1 1 P
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where FT and F3 are as given in the statement of the lemma. Using standard
results in Hamilton (1994), it can then be shown that

Fr % N(0,0°T; )
where T, = E(AY;AY}), and

Fy = B3 K.

6.5 Proof of Lemma 2

It can be shown using (13) that the model estimation component of the error
for an h—steps ahead forecast, scaled up by T%/2, is given by

, 1| FY Op(T™!
vy~ o =g (o7 | || X0 ).
p

Recalling the expression for M;,

h—1
My =" (ehA9e1) A",
7=0

it can be shown that
_ J
e A% = Z(e’lA*'kel)
k=0
YiAIB = | AYZA" 2% 4+0(T7) |

(in fact . +O(T~Y) = (27,1,1+0O(T~1))’) where A* is given in Lemma 2.
Hence, we have

h—1
TV MLB = TYV2Yp Y (e)Ae))AP—1-Dp
=0

h—1
= T2 (e Ale))vp AP 1-0B
=0

h—1
= TN (e AVer) [ AVFAGD) o O(T Y |
7=0
= TV AYF SIS ATe) A 1D ShA (el Allen)Zh + O(T ) |

Therefore, the model estimation component of the error for the h—steps
ahead forecast is
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VY1 M (3 - )
= T AV Y (e ATe) A1 Yo Aer)Z + O(T ) |

e [ 5 <[ o |

h—1 h—1
= AY7 Y (e A7e)) AVPTIDEE + 3" (e At ) (T 220, 1, 1) By + Op(T 7).
=0 =0

On substituting in for €} A”e; we can write this as
T2YEM;(§ = ¢) = Cf + C5 + Op(T/7)

where
h—1 J _
Cr = AY7 DY (e Aer) AV Y
=0 k=0
h—1 J

C; = 3 S (A e ) (T2, 1,1)F.
7=0 k=0

6.6 Proof of Theorem 2

To obtain the asymptotic variance of TV2YAM} (¢ — ¢), we will show later

that CT and C5 are asymptotically uncorrelated. Since FY 4N 0,0T;1),
the asymptotic variance of C7 is given by

asyvar{C;} = otr(ToI1,T; 'IT},)

where

h—1 j
Hh = Z Z(ellA*/kel)A*/(h—l—])
=0 k=0
Noting that (T—Y227,1,1)Ff = o¥3 M, the asymptotic variance of C}
is given by:

asyvar{Cs} = o’ 72

where
n1 = var(NS1H)
h—1 j
T = ZZ(ellA*/kel)
=0 k=0
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To show asymptotic uncorrelatedness between C} and C3, we focus on
the simple case where no intercept and trend are included in the regression
model for clarity of presentation. The proof goes through in the general
case. We write Cf and C3 as

T T
Cr = AVQ(T Y. AYLAY )TV N AYie
t=p+1 t=p+1

T
= AYEQiT'TV2 3" AYi_ge + Op(T7/?),

t=p+1
T T
—1/2 ) 2 \—1p—1
C; = @T /zT(T Z zp )" T Z 2i_1Et
t=pt+1 t=p+1

where ()1 and ¢o are constants. We now simplify each term in C} and C5
as follows.

T T—k T
T-1/2 Z AY, 1g, = T2 Z AY,_1ey + T /2 Z AY;_1g

t=p+1 t=p+1 t=T—k+1
T—k
= T2 37 AYiae+O0p{(K/T)"?},
t=p+1
T
T = TP +T712 Y g
t=T—k+1
= T2k + Op{(k/T)"/?},
T T—k T
T2 zpy = T2 44T > 7,
t=p+1 t=p+1 t=T—k+1
T—k
= T2 3 22, +0,{(k/T)%},
t=p+1
T T—k T
T ze = T ) zaa+T D). zae
t=p+1 t=p+1 t=T—k+1
T—k
= CZ—'_1 Z Zt_16t+0p(k/T).
t=p+1

Hence, we have

T—k
Ci = AYZQIT'T712 3N AV e+ Op{(k/T)?,

t=p+1
T—k Tk

Cy = @T Vo (T2 > 22 )77 Y 2180+ Op{(k/T)/?}.
t=p+1 i=p+1
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We assume that k = O(T'~%), where 0 < § < 1. Then

T—k
Of = AVIQITTIT V2 3 AYi_ie +0,(T%),

t=p+1
T-k T—k
Cék = qQT_l/QzT—kJ(T_Q Z Zg_l)_lT_l Z Zi_1Et —+ Op(T_lS/Q).
t=p+1 t=p+1

Since AY] is a zero-mean stationary AR(p — 1) process, this term is asymp-
totically uncorrelated with all the other random variables in C7 and C5
which completes the proof.

6.7 Proof of Corollary 3

When p =1, AYr, A* and F} do not exist. Hence, Cf does not exist. On
the other hand,
Cs = WTY%2p,1,1)F3

which implies that
vi = o*T (h?ny)

where n; = var(NS1H).
6.8 Proof of Corollary 4

When h =1, we have

C; = AYLFY
Cy = (T7'’2r,1,1)F;

which implies that
vi=c’T(p—1)+mni).
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