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Abstract

Player i's payoff in a noncooperative game is generally expressed as a function of the
vector of strategies of all players. However, in some games - 'simply reducible games' - the
payoff of player i is a function of two arguments - the strategy chosen by i, and the sum of
the strategies of all players in the game. Cournot oligopoly, public good provision, cost-
and surplus-sharing, and open access resource exploitation are all simply reducible games.

We define the 'share function' of a simply reducible game. We indicate its role in
the analysis of equilibrium existence, uniqueness and comparative static properties of
simply reducible games, and apply it to a model of open access resource exploitation.
Finally, we suggest further applications and extensions of our approach.
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JOINT PRODUCTION GAMES AND SHARE FUNCTIONS

I. INTRODUCTION

At the analytical heart of many economic models is a noncooperative game on which a

good deal of special structure is typically imposed. Often, each player's payoff depends on

two arguments - one is that player's own chosen strategy, and the other is the unweighted

sum of every player's strategy choice. Shubik comments that such games "clearly have

much more structure than a game selected at random. How this structure influences the

equilibrium points has not yet been explored in depth" [Shubik (1982), p.325]. We refer to

such games as 'simply reducible games'. Some authors, such as Corchon (1996), have

called them aggregative games.

Several authors have indeed exploited the aggregative structure of games that arise

in specific contexts. Friedman (1982) refers to a proof - first suggested by Selten (1970)

and later used by Szidarovszky and Yakowitz (1977) - of the existence of a unique Nash

equilibrium in the Cournot oligopoly model. This exploits the observation that, under

certain assumptions, a player's best response function implies the existence of a function of

the form qi
*  = φi(Q), where qi

*  is player i's best response and Q is the total of all players'

choices, including that of player i. We define φi(Q) formally in Section II, where we also

suggest labelling it a 'replacement function'. It permits a simple characterisation of Nash

equilibrium as an allocation at which Σiφi(Q) = Q. Novshek (1984, 1985) uses a somewhat

more general replacement correspondence, which he calls a 'backward reaction mapping',

to establish existence of equilibrium under less restrictive assumptions. More recently,

Okuguchi (1993) and Cornes, Hartley and Sandler (1999) have exploited the replacement

function to analyse existence and uniqueness of equilibrium in the simply reducible games

that arise in models of oligopoly and public good provision1. Corchon (1994, 1996)

exploits the aggregative structure of such games using a slightly different approach.

In these papers, individual players' reaction functions - and, as a consequence, their

replacement functions - are assumed to be everywhere monotonic non-increasing. In

Cournot oligopoly models, this property is implied by the Hahn stability conditions which

are often imposed - see Vives (1999, Ch.4) for a recent survey of this literature. In models

of pure public good provision, the assumption that both goods are normal also has this
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implication. However, it is important to allow for non-monotonic reaction and

replacement functions. In the first place, even a slight relaxation of the Hahn conditions in

the Cournot model raises the possibility of locally increasing reaction functions. More

significantly, proportional cost and surplus sharing models, of which the open access

resource exploitation model is an important example, do not typically imply monotonic

reaction functions even when the normality assumption is adopted. Watts (1996) provides

a useful summary of this literature. In other significant applications, too - for example in

the literature on rentseeking surveyed by Nitzan (1994) - reaction functions typically fail

to be monotonic.

This paper extends existing analyses by introducing and exploiting the idea of a

'share function'. Player i's share function expresses the share qi
*/Q as a function of the

aggregate Q: βi(Q) = φi(Q)/Q. We believe that the share function provides an analytical

tool with at least four notable virtues. First, it is simple: it permits a straightforward

characterisation of Nash equilibrium. If each player's behavior is described by a well-

defined share function, then a Nash equilibrium is simply an allocation at which

( )βii Q∑ = 1. In common with the φi(Q) function, this characterisation avoids the need to

consider the mappings in potentially high dimensions that are generated by best response

functions. Instead, analysis proceeds by considering a simple function f: A → B in which A

and B are real numbers. This contrasts with the reaction function approach, which involves

mappings in a space of dimension equal to the number of players in the game. Second, it is

powerful: because of the simple way in which it models the interaction of players, it can be

used to analyse not only the existence and uniqueness of Nash equilibrium, but also its

comparative static properties. Furthermore, it can handle models involving many

heterogeneous players whose reaction functions are not necessarily monotonic. By

contrast, the reaction function approach is not well suited to handling heterogeneous

players, and typically has to resort either to 2-player models or else to identical players in

order to avoid what Bellman (1957, p. ix) called the 'curse of dimensionality'. Third, it is

versatile: it is applicable to any model which has the aggregative structure to which we

have alluded - indeed, our concluding section suggests extensions of the approach which

further extend its potential applicability. Finally, its simplicity permits a straightforward
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geometric representation which aids intuition and makes it an attractive expository

approach as well as a powerful research tool.

Section II provides a formal definition of a simply reducible game and of

replacement and share functions. Our aim is not simply to provide an alternative proof of

existence and uniqueness, but to suggest a simple and, we hope, helpful modelling tool

that provides an elementary and systematic method of analysing a wide variety of

applications. To achieve this aim, we also provide an informal discussion of the general

nature and strategy of the share function approach. Section III demonstrates the existence

of a unique Nash equilibrium, and explores comparative static issues, in a simple and well-

known open access resource model. Section IV shows how the approach may be used to

look at other surplus and cost sharing rules. Section V draws attention to the wide range

of additional applications of the approach, and suggests two extensions that further

increase its scope. Section VI concludes.

II.  SIMPLY REDUCIBLE GAMES AND SHARE FUNCTIONS

 (i) A definition

Consider a finite game. Let I be the set of players, of whom there are n. Player i's strategy

choice is denoted by the non-negative scalar qi, i = 1, …, n, and the vector of strategy

choices by all the players is q ≡ (q1, q2, …, qn). Player i's payoff, or utility, is ui. The

payoff of player i is generally a function of the vector of every player's chosen strategy:

( ) ( )u qi i i i i= = −ν νq q,

where q−i ≡ (q1, …, qι−1, qι+1…, qn) is the vector of strategy choices of others.

In a simply reducible game player i's payoff function ( )νi ⋅  can be expressed as a

function of two scalars. One is the player's own chosen strategy, qi, and the other is the

simple unweighted sum of the choices made by all players in the game, including player i.

We denote this sum by Q = Σj qj. Here is a formal definition:

Definition: The game G is a simply reducible game if and only if the payoff function for

each player i may be written as
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 ( )u q q q Qi i i j
j

n

i i= ∑








 =

=
ν ν, ,

1
. (1)

(i) The replacement function of player i

In a simply reducible game, each player has preferences over her own choice

variable, qi, and some aggregate, Q. We will later provide a more detailed discussion and

interpretation of this aggregate. In the Cournot model, it is the sum of all firms' chosen

output levels. In a public good provision model, it is the total provision of the public good,

and may include not only the contributions of all explicitly labelled players, but also

government provision. For the moment, it is sufficient to note that each player's behavior

is typically described by the best response function:

( )q q Qi
BR

i i= $ ~
, (2)

where 
~Qi ≡ q j

j
j i

n

=
≠

∑
1

. For a given Q, let Ψi(Q) denote the set of qi satisfying 0 ≤ qi ≤ Q and

( )q q Q qi i i= −$ . (3)

For a given value of Q, this set may be empty or may have many elements. In the sequel

we shall concentrate on situations in which, for any value of Q, Ψi(Q) contains the single

element φi(Q). We call φi(Q) the replacement function of player i. More formally,

Definition: If, for any Q ≥ 0, either Ψi(Q) is empty or Ψi(Q) = {φi(Q)}, we will call φi(Q)

the replacement function of player i.

Note that the domain of φi(Q) is the set of Q for which Ψi(Q) is non-empty. Our

reason for using the label ''replacement function'' is simple. Consider a given value of the

total, Q. Now ask the question: "Given Q, is there an amount Z, 0 ≤ Z ≤ Q, such that, if

the quantity Z were taken away from Q, player i's best response to the remaining quantity,

(Q − Z), would precisely replace Z?" If, for any given quantity Q, there is a unique Z with

this property, then it is described by the replacement function.
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Figure 1 illustrates these points. The thinner of the two continuous curves is the

graph of player i's best response function. Consider any point on this graph - say the point

C'. The corresponding point on the graph of the replacement function is the point D',

where C'D' = C'F'. The points D' and E' are obtained by completing the square with side

C'F'. The point D' represents the allocation ( ) ( )q Q q q Qi i i i
′ + ′ = ′ ′,

~
, . The thick line in the

figure - the graph of the replacement function - is obtained by applying this construction to

every point on the graph of the best response function. Note that, for Q < qi
0, where qi

0 =

( )$qi 0 , the set Ψi(Q) is empty. Here, qi
0 is the value that maximises the payoff of player i

in a 1-player "game". In the model of Cournot oligopoly it is the monopoly output.

It is easy to see from this construction that, if two points on the graph of ( )$qi ⋅  lie

on the same line of slope −45°, the "graph" of Ψi will contain two points for some Q.

Excluding such a possibility ensures that φi(⋅) is a function with domain Q ≥ qi
0.

(ii) The aggregate replacement function

Suppose that a replacement function can be defined for every player in a game.

Then we can define the aggregate replacement function of the game:

Definition: Let every player in the n-player game G have a replacement function,

( )q Qi i= φ . Then the aggregate replacement function of G is the function ( )Φ Q  where

( ) ( )Φ Q Qj
j

n
≡ ∑

=
φ

1
. (4)

The domain of  ( )Φ Q is the [possibly empty] intersection of the domains of the individual

replacement functions.

It follows readily from the definitions that (q1
*,…, qn

*) is a Nash equilibrium if and only if

qi
* = φi(Q

*) for all i where  Q q j
j

n
* *= ∑

=1
. Thus Q* is an equilibrium aggregate action if and

only if Q* = Φ(Q*). So examining Nash equilibria reduces to the study of fixed points of a

one-dimensional aggregate replacement function.
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Our motivation should now be clear. The investigation of existence and uniqueness

of Nash equilibrium, together with its comparative static properties, can be undertaken by

examining the properties of a function - Φ(Q) - defined on the real line. This is much

easier than the reaction function approach, which involves mappings defined in a

Euclidean space, the dimension of which is as large as the number of players.

Cornes, Hartley and Sandler (1999) show that, in the standard pure public good

model in which both the private and the public goods are normal, the replacement function

for the game is continuous and monotonic nonincreasing [and strictly decreasing wherever

positive]. It follows from these properties that a Nash equilibrium exists and is unique.

(iii) The share function

Under various different labels, the replacement function has been introduced and

exploited by a number of writers, mainly in the context of oligopoly theory. The analyses

with which we are familiar - for example, Okuguchi (1993) - typically make assumptions

that ensure that the aggregate replacement function is monotonic nonincreasing [and

strictly decreasing wherever positive]. However, to deduce this useful property can

require rather strong assumptions on demand and/or cost functions. In addition, there are

important examples of simply reducible games drawn from fields outside oligopoly theory

that do not necessarily imply a monotonic aggregate replacement function, but do imply

that the ratio φi(Q)/Q is strictly decreasing when φi(Q)/Q > 0. For this reason, for any Q >

0, we find it convenient to work, not directly with the replacement function as we have

defined it above, but rather with the 'share' function of player i.

Definition: Let every player in the n-player game G have a replacement function,

( )q Qi i= φ . Then, for Q > 0, the function βi(Q) = φi(Q)/Q is the share function of

player i.

The share function of player i answers the question "Given Q, is there a proportion, b, 0 ≤

b ≤ 1, such that, if the proportion b were taken away from Q, player i's best response to
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the remaining quantity, (1 − b)Q, would precisely replace the proportion b?" Given our

definition of the individuals' share functions, we can define an aggregate share  function:

Definition: Let every player in the game G have a share function, ( )$b Qi i= β  with domain

Q ≥ qi
0. Then the aggregate share function of G is the function ( )B Q  with domain Q ≥

max
,...,j n

jq
=1

0 , where ( ) ( )B Q Qj
j

n
≡ ∑

=
β

1
.

Using the aggregate share function, a Nash equilibrium can be characterised as follows:

Q* > 0 is an equilibrium value of Q if and only if ( )B Q * = 1. In the application in Section

III, we first establish the existence of a well-defined share function βi(⋅) for each player.

We then prove that, for each player i, βi(⋅) is continuous and strictly decreasing for all βi(⋅)

> 0, and that sup βi(⋅) ≥ 1 and inf βi(⋅) = 0. Since B(⋅) inherits these properties, we can

immediately conclude that there exists only one positive Nash equilibrium value Q*.

III. THE OPEN ACCESS RESOURCE PROBLEM

Imagine an open access resource, to which we will refer as a fishing ground. The total

catch of fish obtained from the ground, X, depends upon the aggregate level L of an input

that is applied to the fishing ground. We will think of this as labor. Exploitation of the

open access resource is described by a production function F(L) that exhibits diminishing

returns to labor. Player i chooses her level of variable input, li, taking the input levels of

all other players as given. The proportion of total output that is consumed by i, xi, equals

the proportion of total variable input that she supplies: xi /X = li/L. Player i's preferences

are represented by a utility function ui(xi, li). Player i's payoff to strategy profile (l1,…, ln)

is ui(xi, li) where ( )x
L

F Li
i=

l
 if L > 0 and is ui(0, 0) otherwise.

This is clearly a reducible game. Furthermore, its formal structure is precisely that

of the proportional surplus sharing game. We make the following assumptions:
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A.1 ui(xi, li), is quasi-concave, locally non-satiable, non-decreasing in xi, non-increasing in

li, continuous and continuously differentiable2 for xi, li > 0. Both xi and li are normal.

A.2 F(L) is increasing, strictly concave, continuous and continuously differentiable for

L > 0, and F(0) = 03.

A.3 Either (i) There exists a value of L > 0 such that ui(F(L), L) = ui(0, 0)

     or (ii) For all L ≥ 0, ui(F(L), L) ≤ ui(0, 0)4.

These assumptions are, for the most part, standard. Our characterisation of

normality in A.1 follows Watts (1996). Suppose that the allocation (xi', li') is in player i's

demand set when the budget set is pxi − wli ≤ mi'. Both goods are normal if, for any mi'' >

mi', the demand set associated with the budget set pxi − wli ≤ mi'' contains at least one

point (xi'', li'') such that xi'' ≥ xi' and li'' ≤ li'. Bearing in mind the fact that li is a 'bad' this

implies that, if preferences are strictly convex, income expansion paths in (xi', li') space are

downward-sloping. A.3 says that the indifference curve through the origin either crosses

the graph of the production function twice (the origin is common to both) or lies above it

for all positive values of L. Sufficient conditions for A.3 are either (a) F'(L) → 0 as L →

∞ or (b) the MRS of the indifference curve through the origin is unbounded. In particular,

an upper bound imposed on the input of player i corresponds to vertical indifference

curves at li = li , so that (b) is satisfied. We allow for the possibility that some individuals

may choose to supply a zero level of labor input in equilibrium.

Consistent with our discussion in the previous section, we denote player i's share

of total input at any allocation by bi: bi = li/L. Because of the dependence of xi on li and L,

both player i's payoff and also her marginal rate of substitution between xi and li can be

written as functions of bi and L:

( ) ( )( ) ( )u x u b F L b L b Li i i i i i i i, , ,l = ≡ ω

( )
( ) ( ) ( )( ) ( )− = = ≡

∂ ∂

∂ ∂
σ

u x

u x x
s x s b F L b L b L

i
i i i

i
i i i

i i i i i i i i
,

,
, , ,

l l

l
l . (6)
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Now consider the response of  xi to a change in li when the input levels of all other players

are taken as given. This response, which is i's marginal rate of transformation of input into

consumption, can be expressed as a function of bi and L. By differentiating the share

formula for i, holding all other players' input levels fixed, we obtain the following

expression for i's marginal rate of transformation:

( )
( ) ( )

( ) [ ] ( ) ( )l li i
i i i iL

F L
L

L
F L

L
b F L b

F L
L

b L






′ +
−











= ′ + − ≡1 τ , . (7)

Note that τi(⋅) is a convex combination of the marginal and average products evaluated at

L. Assumption A.2  implies that F'(L) < F(L)/L for all L. Consequently, for any value of L,

F'(L) ≤ τi(bi, L)  ≤  F(L)/L . This simple observation plays a key role in the subsequent

argument.

Denoting player i's most preferred quantities as $xi  and $ [ $ ]li ib L= , and allowing

for the possibility that at equilibrium $xi = $li = 0, the first order conditions can be written

as

( ) ( )σ τi i i ib L b L$ , $ ,≥ (8)

( ) ( )[ ]σ τi i i i ib L b L b$ , $ , $− = 0 (9)

and $xi / $li  = F(L)/L, or ( )$ $x b F Li i= .  (10)

(8) and (9) state that either $bi  is positive, in which case ( ) ( )σ τi i i ib L b L$ , $ ,= , or else $bi =

0 and σi(0, L) ≥ τi(0, L). It is often assumed that the players are competitive producers

whose objective is profit-maximisation. In this case, the marginal rate of substitution is

simply w/p, where w and p are, respectively, the input and output prices. It is readily

confirmed that, when the input levels of all other players are held constant, the sharing rule

implies that xi is a concave increasing function of li. Since ui(⋅) is quasi-concave by

assumption, conditions (8) - (10) are not only necessary but also sufficient for $bi  to solve

player i's problem.
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Our demonstration of the existence of a unique Nash equilibrium in the open

access resource game follows directly from a number of straightforward facts. The first

concerns the existence of the share function of player i:

Fact 1: For any L > 0, there is at most one $bi  satisfying (8) - (10).

Demonstration. Assumption A.1 implies that σi(bi, L) is non-decreasing in bi. Consider

the expression for τi(bi, L). Since L is constant, so too are F'(⋅) and F(⋅)/L. Furthermore,

assumption A.2 implies that F'(⋅) < F(⋅)/L. Therefore, as bi increases, relatively more

weight falls on the strictly smaller of the two constant terms in the convex combination in

(7). Therefore, τi(bi, L) is strictly decreasing in bi.

Since σi(⋅) is everywhere non-decreasing in bi and τi(⋅) is everywhere strictly

decreasing in bi, there is at most one value of $bi consistent with the first-order conditions.

g

Figure 2 summarises the reasoning that establishes Fact 1. Consider a particular value of

L, say L0 in the figure. Suppose that there is a share, bi
0, such that bi

0L0 is a best response

to (1 − bi
0)L0. If bi

0 is strictly positive, it is characterised by equality of σi(⋅) and τi(⋅). By

demonstrating that, for any such given value of L, σi(⋅) is nondecreasing in bi and τi(⋅) is

everywhere increasing in bi, we have established the uniqueness of such a share. For any L

> 0 for which conditions (8) - (10) have a unique solution, we will write βi(L) for that

solution. Note that Fact 1 does not constrain the domain of βi. However, as well as

drawing attention to a useful property of the share function, the next result shows that the

domain is an unbounded interval ( if non-empty).

Fact 2: Suppose L1 > L0 > 0 and βi(L
0) exists. Then βi(L

1) exists and βi(L
1) ≤ βi(L

0). The

latter inequality is strict if βi(L
0) > 0.
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Demonstration: Inspection of (6) makes it clear that, under our normality assumption,

σi(⋅) is a nondecreasing function of each of its arguments. Furthermore, inspection of (7)

reveals that, given the concavity of the production function, τi(⋅) is a decreasing function

of each of its arguments. Therefore

σi(βi(L
0), L1) ≥ σi(βi(L

0), L0) ≥ τi(βi(L
0), L0) > τi(βi(L

0), L1).

Hence either (a) σi(bi, L
1) ≥ τi(bi, L

1)  for 0 ≤  bi ≤ 1 or (b) σi( $bi , L1) = τi( $bi , L1)  for

some $bi . In case (a), βi(L
1) = 0 ≤ βi(L

0) and the inequality is strict if βi(L
0) > 0. In case

(b), since σi(⋅ , L1) is non-decreasing and τi(⋅ , L1) is strictly increasing, we have βi(L
1) =

$bi  < βi(L
0). Note that (b) can only occur if βi(L

0) > 0. g

Again, Figure 2 summarises the argument. Briefly stated, an increase in the value of L

from L0 to L1 shifts the graphs of both σi(⋅, L) and τi(⋅, L) to the left. Therefore, if player

i's most preferred share is initially positive, it must fall.

Nothing in our argument to this point excludes the possibilities that βi has empty

domain, exhibits downward jumps or has a strictly positive limit as L → ∞ , any of which

would pose difficulties for the existence of a Nash equilibrium. Fortunately, Fact 3 rules

out such problematic behavior.

Fact 3: If assumption A3(i) holds and 0 < bi ≤ 1, there is a value of L such that bi = βi(L).

If A3(ii) holds, βi(L) = 0 for all L > 0.

Demonstration: Figure 3 provides an intuitive justification of this fact. The graph marked

X = F(L) represents the aggregate technology. Choose any given value of bi such that 0 <

bi ≤ 1. Take any point on the graph of X = F(L), such as A. The point a is the point on the

ray OA with the property that Oa/OA = bi . As A moves along the graph of F(L), the point

a traces out the graph of the function ( )x b F bi i i i= l  for the chosen value of bi. Note

that the slope of the graph through a equals that of the graph through A:

( ) ( )∂ ∂x b F Li i i il l, = ′  evaluated at li/bi = L. It follows that both graphs share a

common tangent at the origin.
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If Assumption A.3(ii) holds, F '(0) ≤ si(0, 0) and we can deduce that βi(L) = 0 for

all L > 0. If A.3(i) holds [the case drawn in the figure] a point of intersection I exists, at

some positive value of L, between the graph of F(⋅) and player i's indifference curve

through the origin. Hence, the graph of xi = biF(li/bi) intersects this indifference curve at

some point S in the positive orthant. Conditions (8) - (10) are satisfied with $bi = bi at some

point on the graph between 0 and S. This follows from the observation that at S, player i's

marginal rate of substitution exceeds both the marginal product and also the average

product. It therefore exceeds their convex combination. At the origin, the opposite is true.

Continuity ensures that equality holds for some intermediate value of L. �

These facts ensure that βi is  (a) continuous, (b) strictly decreasing where positive, (c)

approaches or equals 0 and under A.3(i) βi(L) = 1 for some L, whilst under A.3(ii) βi(L) =

0 for all L > 0. If A.3(ii) holds for all i, then L = 0 is the only Nash equilibrium. Otherwise,

( ) ( )B L Lj
j

n
= ∑ ≥

=
β

1
1 for some L and satisfies (a), (b) and (c). Consequently there is a

unique L* > 0 satisfying B(L*) = 1. This establishes the next theorem.

Theorem 1 [Existence and Uniqueness]: Given assumptions A.1 - A.3, the open access

resource game has a unique Nash equilibrium.

Figure 4 summarizes our argument to this point. It shows the graphs of the individual

share functions associated with a 3-player game. Each is continuous and strictly

decreasing for positive values of the share, and the figure shows a situation in which each

reaches zero at some finite value of L. The aggregate share function, B(L), inherits these

properties of the individual share functions. Consequently, there exists a unique value, L*,

at which B(L*) = 1.

The present approach also allows us to derive some simple comparative static

results, all of which flow directly from the following theorem concerning an individual's

behavioral and welfare response to a change in the aggregate L.
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Theorem 2 [Comparative statics for the open access resource model]: Consider the

open access resource game in which assumptions A.1 - A.3 hold. Then, if L2 > L1 and

βi(L
1) exists,

(i)   L1 [1− βi(L
1)] < L2 [1− βi(L

2)  ] ,

and   (ii) ωi(βi(L
1), L1) ≥ ωi(βi(L

2), L2) for all i ∈ I, with strict inequality if βi(L
1) > 0.

Proof: (i) If βi(L
1) = 0, then βi(L

2) = 0 by Fact 2, so that (i) follows immediately.

If βi(L
1) > 0, Fact 2 implies that βi(L

2) < βi(L
1). Hence,

1 − βi(L
2) > 1 − βi(L

1) ⇒ L2[1 − βi(L
2)] > L1[1 − βi(L

1)]  for all i ∈ I,

which establishes claim (i).

Now write AP(L) for F(L)/L and note that AP(L) is strictly decreasing in L. Then

(i) implies that

( )( ) ( )[ ]
( )[ ] ( )( )

ω β β

β ω β

i i i i i i i

i i i i i i i

L L u AP L L L

u AP L L L L L

i

i

1 1 1 1 1

2 2 2 2 2

, max ,

max , ,

= − +





≥ − +



 =

l

l

l l l

l l l

 

                     

with strict inequality if βi(L
1) > 0. This proves (ii). g

Any shock that leads to a higher equilibrium value of L will leave non-participants

unaffected and reduce the welfare of participants. Its effect on preferred levels of input, by

contrast, is ambiguous. Theorem 2 can be exploited to generate comparative static

propositions covering situations in which L itself is treated as endogenous. Imagine a

situation in which initially there are n1 players exploiting an open access resource. Call this

game G1. Now imagine an alternative situation in which those n1 players have been joined

by others. Call this the game G2. In short G2 is obtained from G1 by simply adding extra

players so that if Ik denotes the set of players in game k, then I1⊂I2. Let Lk* denote the

aggregate labor input at the Nash equilibrium of game Gk.

The comparative static results that interest us can be readily obtained as corollaries

of theorem 2.
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Corollary 1: Let the open access game G2 be formed by taking the game G1 and adding

extra players, so that I1 ⊂ I2. Then, given assumptions A1, A2 and A3,

(i)  L1* ≤ L2* with strict inequality if some player not in I1 makes a positive

contribution in G2,

(ii)  L1* [1− βi(L
1*)] ≤ L2* [1− βi(L

2*)]  for all i ∈ I1 with strict inequality if L1* > L2*,

(iii)  The Nash equilibrium payoffs to all players in I1 are no larger in G2 than in G1.

Moreover, if L2* > L1*, then the payoffs are strictly less for those who make

positive contributions in G1.

Proof: Let Bk(L) be the aggregate share function of Gk, k = 1, 2. Then

B2(L1) = B 1(L1) + ( )β j
j I I

L1

2 1∈ −
∑ .

Since βj(L) ≥ 0 for all j, B 2(L1*) ≥ B 1(L1*) = 1.

Since B 2(L) is everywhere non-increasing, it must be true that, at the equilibrium

of G2,

1 = B 2(L2*) ≤ B 2(L1*) and L2* ≥ L1*.

If, in addition, βj(L
2*) > 0 for some j ∉ I1, then βj(L

1*) > 0 and all preceding inequalities

are strict. Having established that the equilibrium level of L cannot fall, and will generally

rise, we can infer (ii) and (iii)  immediately from Theorem 2.

Corollary 1 tells us that the addition of more players cannot improve, and will generally

lower, the equilibrium utility levels of the existing players. Note that this has been

established without assuming that the players have identical preferences. Furthermore,

existing players' contributions may increase or decrease when extra players join the game.

Now suppose that each player is subjected to the same upper limit on the

individual input level. This simply involves adding to the open access resource game a set

of constraints of the form li ≤ lmax , where we restrict attention to the case where the limit

is the same for all individuals. If preferences differ across individuals, such a quota may

bind for some players, but not others. Then Theorem 2 allows us to infer the consequences

of such regulations for those exploiters of the resource for whom the regulation does not
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bind. If the aggregate output of a subset of regulated players is constrained to be less than

their unconstrained Nash equilibrium levels, then such a regulation will increase the

payoffs to the remaining unregulated players:

Corollary 2: Let the open access resource game be modified by the introduction of a

uniform quota on the level of individual inputs, of the form li ≤ lmax for all i ∈ I. Then,

denoting the resulting 'regulated equilibrium'  by LR*,

(i)  LR* ≤ L*,

(ii)  For any player i who does not face a binding constraint in the regulated

equilibrium, LR* [1− βi(L
R*)] < L* [1− βi(L

*)],

(iii)  The Nash equilibrium payoffs to all players who do not face a binding

constraint at the regulated equilibrium are at least as high as in the unregulated

equilibrium. Moreover, if the constraint binds for some player, then any player

making a positive contribution in the regulated equilibrium who is not bound is

strictly better off.

Again, to demonstrate this we merely need to observe that the regulation truncates

individual share functions, so that i's share at any allocation is given by bi = min {βi(L),

lmax/L}. Each point on the share function of the regulated game is either unchanged or

moved to the left - ( ) ( ){ }B L L LR
i

i I
= ∑

∈
min , maxβ l  - from which the claims of corollary

2 follow immediately.

Finally, consider the consequences of two types of shock for the equilibrium of the

open access resource game with a fixed number of players. First, consider the effects of an

idiosyncratic technological shock which exogenously increases the inherent productivity,

or ability, of player i, while leaving that of all other players unaffected. This may be

modelled in the following way. Suppose that each unit of nominal input by player j

generates ej units of effective input, where ej is an exogenous parameter, so that lj = ejhj.

The variable hj may be interpreted, for example, as the actual number of hours applied by

player j to the productive activity. All our analysis up to this point assumes that ej = 1
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throughout for all players. We now consider the implications for equilibrium of an increase

in player i's ability when that of every other player remains at unity.

Player i's payoff and marginal rate of substitution functions may be written as

( ) ( ) ( )u x h u x
e

u b F L
b L

e
b L ei i i i i

i

i
i i

i

i
i i i, , , , ,=







 =







 ≡

l
ω

and

( ) ( ) ( )s x s b F L
b L

e
b L ei i i i i

i

i
i i i, , , ,l =







 ≡ σ .

Player i's preferences over (xi, hi) obey assumption A.1. Assumptions A.2 and A.3, also,

continue to hold. Consider an increase in ei from ei
1 to ei

2, holding bi and L constant.

Player i enjoys the same value of xi, and applies a lower level of hi. Consequently, ωi(⋅)

increases and σi(⋅) falls. As a consequence of the latter, if σi(⋅) now falls short of τi(⋅),

player i can further enhance her payoff by increasing her share bi. Consequently, βi(L, ei
2)

> βi(L, ei
1) - the increase in i's ability implies a rightward shift in the graph of her share

function in Figure 4, and therefore also in that of the aggregate share function. The

equilibrium level of L therefore increases. Since the share functions of all other players are

unchanged, we can appeal to theorem 2 to infer the consequences of the change in player

i's ability:

Corollary 3: In the open access game, let player i's inherent productivity increase, while

that of every other player remains constant. Then, denoting the initial and final equilibrium

values of L by L1* and L2* respectively,

(i)  L2* ≥ L1*,

(ii)  Either L2* = L1* and βi(L
2*) = βi(L

1*) = 0, or L2* > L1* and βi(L
2*) > βi(L

1*) ≥ 0,

(iii)  Player i's payoff will not fall and, if βi(L
2*) > 0, it will rise,

(iv)  Payoffs of players other than i will not rise and, if βi(L
2*) > 0, they will fall.

A generalised technological shock may be modelled by supposing that every player's

inherent ability takes a common value, e. We compare the equilibria associated with two

values of e: e = e1 = 1, and e = e2 > 1.
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We have already seen that an increase in each player's inherent ability shifts that

player's share function to the right. In the present exercise, therefore, the graph of every

player's share function shifts to the right. Therefore, so too does the aggregate share

function. Therefore the aggregate level of input rises. However, the payoff of any

individual player may rise or fall. Other things held constant, her own increase in ability

enhances her payoff, but the adjustments by others lead to an increase in the level of

exploitation that hurts her. We cannot draw the strong conclusions that we inferred in the

case of an idiosyncratic shock. The one unambiguous conclusion concerns the level of

aggregate exploitation:

Corollary 4: Let every player i's inherent productivity increase from e1 = 1 to e2 > 1.

Then, denoting the initial and final equilibrium values of L by L1* and L2* respectively,

L2* > L1*.

IV OTHER COST AND SURPLUS SHARING RULES

We define a simple surplus sharing rule as one in which player i's consumption is a

function of i's input and of the aggregate input level of all players. Clearly, the

proportional sharing rule is only one of many such rules. Other well-known examples

include the equal share rule, in which xi = (1/n)F(L), and the 'equal benefit rule', in which

xi = (1/n)F(L) +(li − L/n)F'(⋅) - see Corchon and Puy (1998) for a recent discussion of

these rules. Furthermore, any sharing rule that is a convex combination of simple sharing

rules, where the weights are themselves exogenous, also gives rise to a simply reducible

game. To show the versatility of our approach, we sketch its application to the exogenous

sharing rule, of which the equal sharing rule is a special case.

(a) The exogenous  shares model

 Suppose that player i receives an exogenous share θi of total output, regardless of

her own individual contribution to production. The restriction Σjθj = 1 ensures that total

output is just exhausted by payments to the players. The equal shares rule is obtained by

putting θi = 1/n for all i. Player i's payoff under the exogenous shares rule is ui(θiF(L),li).
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For simplicity, concentrate on the case where player i is at an interior solution. Then the

first-order condition is

( )− = ′
∂ ∂
∂ ∂

θ
u

u x
F Li i

i i
i

l
.

The left-hand side of this expression is precisely player i's marginal rate of substitution.

Again, we can express this as a function of player i's chosen share and of total input. Using

the superscript 'e' where necessary to remind ourselves that the context is that of the

exogenous sharing rule,

( ) ( )( )σ
∂ ∂
∂ ∂

θi
e

i
e i i

i i
i i i i i i

eb L
u

u x
s x s F L b L( , ) , ,= − = =

l
l      (11)

Inspection of (11), combined with A.1, reveals that σi
e

i
eb L( , )  is strictly increasing in both

arguments. Under the exogenous sharing rule, xi = θiF(L). Therefore, holding other

players' input levels fixed while perturbing that of player i, i's marginal rate of

transformation is

( )τ θi
e

i
e

ib L F L( , ) = ′ .

τi
e ( )⋅ is independent of li and decreasing in L. Consequently, an exogenous sharing rule

implies a horizontal graph for τi
e ( )⋅ in Figure 2. This slight modification does not change

the essential features of our analysis of existence and uniqueness. An increase in the value

of L shifts the graph of τi
e(⋅) against bi down, while shifting that of σi

e(⋅) to the left.

Consequently, the value of bi
e  satisfying the first order conditions must decline as L

increases. The share function under the exogenous sharing rule, βi
e(L), is monotonic

nonincreasing. Indeed, Facts 1 - 3 all hold for the exogenous sharing rule under our

assumptions A.1 to A.3.

The comparative static results with respect to i's payoff response to a change in L

differ from those of the proportional sharing rule. This reflects the well-established

presumption  that the Nash equilibrium under exogenous shares involves underprovision

of input. Theorem 2 is replaced by
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Theorem 3 [Comparative statics for the exogenous shares model]: Consider the

exogenous surplus sharing game in which assumptions A.1 - A.3 hold. Then, if L2 > L1,

(i)   L1 [1− βi
e(L1)] < L2 [1− βi

e(L2)  ]

and (ii) ωi(βi
e(L1), L1) ≤ ωi(βi

e(L2), L2) for all i ∈ I, with strict inequality if βi
e(L1) > 0.

[Note that part (i) is identical to Theorem 2. It is in part (ii) that the inequality is reversed.]

Proof: (i) As for Theorem 2.

(ii)  Since F(⋅) is strictly increasing, (i) implies that

( )( ) ( )[ ]
( )[ ] ( )( )

ω β θ β

θ β ω β

i i
e

i i i
e

i i

i i i
e

i i i i
e

L L u F L L L

u F L L L L L

i

i

2 2

0

2 2 2

0

1 1 1 1 1

, max ,

max , ,

= − +



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≥ − +



 =

≥

≥

l

l

l l

l l

 

                         

with strict inequality if βi(L
1) > 0. g

Consequently, Corollaries 1 - 4 continue to apply provided we replace statements that a

player is better or worse off with their opposite.

(b) Cost sharing models

Models of cost sharing have essentially the same structure as those of surplus

sharing. Consequently, our approach can be applied to the cost-sharing model with minor

modifications. To justify this claim, consider the proportional cost sharing game. It has a

similar structure to that of the proportional surplus sharing model. To analyse a cost

sharing game, it is most convenient to represent the technology by the cost function, C(X),

which describes the minimum cost required to produce X units of output - player i's payoff

is now a function of output xi, given by ( )u x
x

X
C Xi i

i,






where X xi
i

n
= ∑

=1
. We retain A.1

and A.3 and replace A.2 by

A.2' C(X) is increasing, strictly convex, continuous and continuously differentiable for X >

0, and C(0) = 0.
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We define player i's marginal rates of substitution and of transformation exactly as in the

surplus-sharing example. However, their arguments are (gi, X), where gi is player i's share

of total output: gi = xi/X. Moreover, player i's marginal rate of transformation equals the

reciprocal of the convex combination of the marginal and average costs implied by the

total output level:

( )
( ) [ ] ( )τi i

i i

g X
g C X g

C X
X

, ≡
′ + −

1

1
.

Comparison with (7) shows that, where the surplus sharing model generates a convex

combination of marginal and average products of a concave production function, the cost

sharing model generates the inverse of a convex combination of marginal and average

costs associated with a convex cost function. Figures 2 - 4, with suitable re-labelling of the

axes, remain qualitatively valid for the cost-sharing model. Consequently, existence and

uniqueness of equilibrium and comparative statics are established along exactly analogous

lines.

V FURTHER APPLICATIONS AND EXTENSIONS

We asserted in the introduction that the class of simply reducible games is much larger and

more interesting than it might appear at first sight. The most convincing way to validate

this claim is to provide examples of commonly analysed models that are covered by our

analysis. Here is a list of commonly studied models that imply simply reducible games:

(a) Schelling n-person binary choice games [Schelling (1978)]

(b) Pure public good provision [Cornes and Sandler (1985, 1996),

Bergstrom, Blume and Varian (1986)]

(c) Impure public good provision [Cornes and Sandler (1984, 1996)]

(d) Cournot oligopoly with undifferentiated output [Friedman (1982)]

(e) Simple surplus sharing [Moulin (1995), Watts (1996)]

(f) Simple cost sharing [Moulin (1995), Watts (1996)]

(g) Open access resource exploitation [Dasgupta and Heal (1979), Cornes

and Sandler (1983)]

(h) Technological complementarities [Bryant (1983), Cooper (1999)]
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(i) Financial intermediation [Cooper (1999)]

(j) Models of transfrontier pollution [Tulkens (1979), Barrett (1997), Hoel

(1997), Chander and Tulkens (1997)]

(k) Rentseeking contests with risk averse players [Nitzan (1994)]

These applications typically allow players to choose the value of a continuously variable

quantity. The apparent exception is the Schelling game, which offers players a binary

choice. However, if players in Schelling games are allowed to play mixed strategies, the

resulting model is a simply reducible game with continuously variable strategic choices.

When analysing these games, many authors assume that all players have identical payoffs,

and focus on symmetric Nash equilibria. Our approach offers a simple and attractive

approach to such games which permits heterogeneity and is not restricted to the analysis

of symmetric equilibria.

We should emphasise that we do not claim that all the models in our list have the

same structure and properties as the proportional surplus sharing model. Indeed, the

models of technological complementarity and intermediation inherently involve the

possibility of multiple equilibria and hence the need to solve a co-ordination problem. Our

claim is that they all have a simply reducible structure, and that their analysis may be

facilitated by exploiting this structure and examining share functions rather than by

analysing conventional reaction functions. The resulting analysis is significantly simplified

by the dramatic reduction of the dimension of the space in which it  is undertaken.

Furthermore, it is possible to extend our analysis in at least two ways that greatly

expand its scope. First, there are models of pure public good provision and of oligopoly

with differentiated products in which each player cares about, not an unweighted sum, but

a more general aggregate of all players' choices. It may be shown that, if the aggregator

function is additively separable, such games may be transformed into simply reducible

games and the share function approach may be applied. Second, there are interesting n-

person sharing games in which it is not possible to reduce the domain of the function

describing the individual player's economic environment to the real line, but where it is
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possible to reduce it to dimension K, where K < n. Such games, which may be called 'K-

reducible' games, are a topic for another paper.

VI CONCLUSION

A simply reducible game is one in which the payoff of every player can be expressed as a

function of that player's own strategy choice and the sum of the strategies chosen by all

players in the game. The models of pure public good provision, Cournot oligopoly with

undifferentiated products, proportional cost and surplus sharing, and the open access

resource game are all simply reducible games. The replacement and share functions of a

simply reducible game provide a simple analysis of existence, uniqueness and the

comparative static properties of equilibrium. In contrast to the usual approach, which

considers fixed points of mappings from ún to ún, where n is the number of players and may

be large, our approach enables us to base the analysis on a function defined on the real

line. By treating the total quantity Q as the parametric independent variable in describing

each player's behavior, the present approach obviates the need to solve a high order

simultaneous system of equations in order to find a Nash noncooperative equilibrium. This

greatly simplifies the analysis, and seems particularly promising in models with

heterogeneous individuals. Finally, we have suggested two ways in which the concept of

simple reducibility may be usefully generalised and its scope thereby increased.
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FOOTNOTES
1.  We are grateful to Wolfgang Buchholz for drawing our attention to Okuguchi's paper.
2.   Watts (1996) does not assume differentiability of ui(⋅). However, we should point out

that we make this assumption purely for expository reasons. The proofs in the sequel
go through in the nondifferentiable case if si(bi, L) is interpreted as the slope of a
separating line to the upper preference set of player i at (xi, li) = (biF(L), biL).

3.  These assumptions ensure that ( )lim
L

f L
→

′
0

exists provided we allow +∞ as a limiting

value. For convenience, we write f'(0) for this limit in the sequel.
4.  The indifference curve may be steeper than the graph of X = F(L) in the neighborhood

of the origin. This creates no problems for our analysis. It simply means that player i
will never choose a positive share. The important content of A.3 is that, if the
indifference curve is less steep at O, it must also intersect the graph of the production
function elsewhere at some finite value of L.



24

REFERENCES
Barrett, S. (1997), Towards a theory of international environmental cooperation, in

Carraro, C. and D. Siniscalco (eds.), New Directions in the Economic Theory of

the Environment, Cambridge University Press, 239-80.

Bellman, R. (1957), Dynamic Programming, Princeton University Press.

Bergstrom, T. C., L. Blume and H. R. Varian (1986), On the private provision of public

goods, Journal of Public Economics 29, 25 - 49.

Chander, P. and  Tulkens, H. (1997), The core of an economy with multilateral

environmental externalities, International Journal of Game Theory, 26, 379 - 401.

Cooper, R. W, (1999), Co-ordination Games, Cambridge University Press.

Corchon, L. (1994), Comparative statics for aggregative games: The strong concavity

case, Mathematical Social Sciences, 28, 151-65.

Corchon, L. (1996), Theories of Imperfectly Competitive Markets, Springer-Verlag.

Corchon, L. and Puy, M. (1998), Individual rationality and voting in co-operative

production, Economics Letters, 59, 83 - 90.

Cornes, R. C., Hartley, R. and Sandler, T. (1999), Equilibrium existence and uniqueness in

public good models: An elementary proof via contraction, Journal of Public

Economic Theory, 1, 499-509.

Cornes, R. C. and Sandler, T. (1983), On commons and tragedies, American Economic

Review, 73, 787-792.

Cornes, R. C. and Sandler, T.( 1984), Easy riders, joint production and collective action,

Economic Journal, 94, 580-598.

Cornes, R. C. and Sandler, T.( 1985), The simple analytics of pure public good provision,

Economica, 52, 103-116.

Cornes, R. C. and Sandler, T. (1996), The Theory of Externalities, Public Goods and

Club Goods, 2nd Edition, Cambridge University Press.

Dasgupta, P. S. and Heal, G. M. (1979), The Economic Theory of Exhaustible Resources,

Cambridge University Press.

Friedman, J. (1982), Oligopoly theory, in Arrow, K. J. and Intriligator, M. (eds.)

Handbook of Mathematical Economics, Volume I, North-Holland.



25

Hoel, M. (1997), How should international greenhouse gas agreements be designed? In

Dasgupta, P et. al, (eds.) The Economics of Transnational Commons, Oxford

University Press, 172-91.

Moulin, H. (1995), Cooperative Microeconomics, Prentice-Hall, New York.

Nitzan, S. (1994), Modelling rent-seeking contests, European Journal of Political

Economy, 10, 41-60.

Novshek, W. (1984), Finding all n-firm Cournot equilibria, International Economic

Review, 25, 61-70.

Novshek, W. (1988), On the existence of Cournot equilibrium, in Daughety, A. (ed.),

Cournot Oligopoly: Characterization and Applications, Cambridge University

Press, 103-21.

Okuguchi, K. (1993), Unified approach to Cournot models: Oligopoly, taxation and

aggregate provision of a pure public good, European Journal of Political Economy,

9, 233 - 45.

Phlips, L. (1995), Competition Policy: A Game-theoretic Perspective, Cambridge

University Press.

Schelling, T. C.  (1978), Micromotives and Macrobehavior, Norton.

Selten, R.(1970), Preispolitik der Mehrproduktenunternehmung in der Statischen

Theorie, Springer-Verlag.

Shubik, M. (1984), Game Theory in the Social Sciences: Concepts and Solutions, MIT

Press.

Szidarovszky, F. and Yakowitz, S. (1977), A new proof of the existence and uniqueness

of the Cournot equilibrium, International Economic Review, 18, 787 - 9.

Tulkens, H. (1979), An economic model of international negotiations relating to

transfrontier pollution. In Krippendorff, K. (Ed.) Communication and Control in

Society, Gordon and Breach: New York, 199 - 212.

Vives, X. (1999), Oligopoly Pricing: Old Ideas and New Tools, MIT Press.

Watts, A.(1996), On the uniqueness of the equilibrium in Cournot oligopoly and other

games, Games and Economic Behavior, 13, 269-85.



26

qi

Q, Qi

~

q (Q)ii
^ ~ φi(Q)

q 'i

Q 'i
~

Figure 1

qi

0

qi

0

C' D'

E'F'



27

bi

σi(.)
τi(.)

σi i(b , L )0

τi i(b , L )0

σi i(b , L )1

τi i(b , L )1

βi(L )0βi(L )1

Figure 2



28

li, L

x ,Xi

X=F(L)

O

a

A

u  = u (0, 0)i i

Figure 3

I

S
a'



29

Figure 4

1 1

L

B(L) = (L)Σ βi i

β
1 (.)

β
2 (.)

β
3 (.)

L*O


