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Abstract: In this paper we introduce a new test of the null hypothesis of no
cointegration between a pair of time series. For a very simple generating model, our
test compares favourably with the Engle-Granger/Dickey-Full er test and the Johansen
tracetest. Indeed, shortcomings of the former motivated the development of our test.
The gplicability of our test is extended to series generated by low-order vedor
autoregressons. Again, we find evidence that this general version d our test is more
powerful than the Johansen test. The paper concludes with an empiricd example in
which the new test finds drong evidence of cointegration, bu the Johansen test does
not.



1. Introduction

Foll owing the pioneeing work of Granger (1981 and Engle and Granger (1987,
the topic of cointegration hes been at the heat of time series ecmnametrics. In
addition to the substantial theoreticd developments that have subsequently been
reported, considering the posghility of cointegration, and the asociated error-
corredion model representation, has become an integral part of the standard paradigm

of applied time series econametrics.

In this paper we shall discussa spedfic problem - testing the null hypathesis of
no cointegration ketween a pair of time series. Let y, and y, bah be generated by

processes which are integrated of order one, | (1) ; that is, the series are norstationary,
but their first differences are stationary, or 1(0). Then, the series are mintegrated if
and orly if there eists a scdar b, such that (y, —by,,) is dationary. The general

form of our test, applicable when the process generating the series can be well-
approximated by arelatively low order vedor autoregresson, isintroduced in Sedion
3. Simulation evidence reported there suggests that the new test has superior power
compared with the most commonly applied extant test. Although generalisation o
our test to the cae of severa series would be very difficult, the cae of two seriesis

of considerableinterest in its own right: see for example, Ng and Perron (1997).

Sedion 2 d the paper is, in effed, an extended introduction to, and motivation
for, the general test procedure. In that sedion, we analyse avery simple generating
model, for which ou test has a straightforward and intuitively appeding structure.
We ague that, for this sSmple model, the new test has desirable properties when
compared with the two tests that have most often been applied in this case.

Finally, in Sedion 4,we briefly discussan empiricad example, where the new test
finds grong evidence of cointegration when ore of its competitors does nat, in a

situation where integration might reasonably be expeded ona priori grounds.



2. TheBasic Case

To motivate our test, we begin by reporting and dscussng the results of a small

smulaionstudy. Pairsof time series y, =(y,,Y,)" were generated from the model

Ay, =-y( Yita ~ y2,t—1) TV,

= - (1)
Ay, = y(th—l - y2,t—1) Vo, t=1..T

where v, =(v,,v,) IS zero-mean vedor white noise, taken to be Gaussan

throughout our simulations, with covariance matrix

L pC
2= 1F
P C

For y =0, the y, are I(1) pure random walks, possbly with contemporaneously
correlated white noise innowtions. For 0<y <1, the y, are generated by
ARIMA(1,1,7) processs of identicd forms, and are wintegrated, with (y, —V,,)
following an 1(0) first order autoregresson with parameter ¢=1-2y . Due to this
symmetry, it is irrelevant which vy, is treaed as the left-hand variable in Engle-
Granger regressons, thus abstrading from an iswue discussed by Ng and Perron
(1997. The generating process(1) is a speda case of processes used by Banerjee &

a (1986, Blangiewicz and Charemza (1990, Hansen and Philli ps (1990, Gonzalo
(1999, and ahers.

The two most commonly applied tests of the null hypothesis of no cointegration
are the Engle-Granger/Dickey-Fuller (EGDF) test (Engle and Granger 1987, Engle
and Yoo 1987 and the Johansen trace(JT) test (Johansen 1988, 1991 Johansen and
Juselius, 1990. We gplied these tests to series of T =100 200 observations,
generated from (1), alowing for nonzero intercept, but not trend, in the generating
process We dso took the model order to be known, so that redundhnt autoregressve
terms were not incorporated in the models to be estimated to generate the test
statistics. Then, the EGDF test was based onthe residuals from the regresson o y,,

on vy, , with intercept. The test statistic is the t-ratio from the Dickey-Fuller



regresson onthese residuals, with nointercept or lagged first differences. Criticd
values were obtained from the resporse surfaces of Madkinnon (1991). The JT test
was based onthe vedor autoregresson, with intercept, using criticd values given by
Osterwald-Lenum (1992. Here, and in the more genera case of the next sedion, we
tried aso the maximal-eigenvalue variant of the Johansen test. However, the results

were invariably very similar to those from the tracetest, and so will not be reported.

The results of these experiments on the powers of the two tests are summarised
in Table 1. The most striking feaure of these results is that, while the power of the
JT test is unaffeded by the parameter p, the power of the EGDF test depends

dramaticdly onthat parameter. For example, for p closeto 1, the EGDF test is much
more powerful than the JT test, whereas for p close to —1the performance of EGDF

is relatively very poar. It is cetainly interesting that the relative powers of the two

tests depend so dramaticdly on a single parameter in such asimple model.

In faq, it is graightforward to show, for the particular model considered here,

that the distribution d the JT test statistic is invariant to p. By contrast, the
distribution d the EGDF test statistic is clealy influenced by the parameter p. This

test statistic is based initially on least squares estimates from the regresson model
Yi =a+by, +U, 2

Its distribution therefore depends on the sampling distribution d the least squares
estimator b. Table 2 reports smulation evidence on the mean and standard deviation
of b for series of 100 ofservations generated from (1). For large paositive p this
estimator has mean close to 1, with small standard deviation. However, as p
deaeases, the biasin b rapidly increases, the extent of that bias being quite startling
for large negative p. It is certainly not surprising that the EGDF test has low power

in these drcumstances. Gonzalo (1994 discussesin some detail biasin thisand aher
estimators of the wintegrating parameter. Our interest lies in the impad of that bias
onthe EGDF test.

The results in Table 1 suggest that, for p close to —1, the performance of the
EGDF test is unacceptably poar. It is perhaps worth asking if such results would be



obtained in pradice for when b is poarly estimated the residuals , from (2) may not
appea to be first order autoregressve. Consequently, the user may apply the
augmented version d the Dickey-Fuller test to these residuals. We simulated series
of 100 olservations from the model (1), applying now the augmented version d the
EGDF test. We dlowed a maximum of six lagged dfferences in the Dickey-Fuller
regressons, seleding the number of lags adually employed ead time through
general-to-spedfic testing at the 0.05level, in line with proposals of Ng and Perron
(1995. Infad, the power of the EGDF test was not improved, and was dightly lower

for p closeto —1. We @nclude then that there eist circumstances - thase in which

the parameter of the mintegrating regresson is poaly estimated - when EGDF has
very poa performance Unfortunately, in pradicd applications, which are likely to
involve models that are different from and more daborate than (1), it would be

pradicaly impossble to identify cases where such circumstances arose.

Although the performance of the EGDF test can be very poa, the results of
Table 1 suggest also that there ae caes where substantial gains in pover can be
achieved through using EGDF rather than the Johansen test. It is worth asking
whether at least some of thase gains can be catured through a modified test whaose
power does nat fall dramaticdly where the power of EGDF does. We explore here a
test motivated dredly by the definition d cointegration, continuing to employ
Dickey-Fuller-type regressons, bu omitting the estimation d b through the

regresson (2), sincethis sansto be the source of the difficulties apparent in Table 1.

Let y,, and y,, be apair of (1) time series. Then, these series are mintegrated
if and orly if there exists ascdar b such that (y, —by,,) is gationary. We mnsider
Dickey-Fuller regressonsfor all possible b. Spedficdly, we estimate regressons of

the form
A(yy —by, ) =a+c(y,, —by, )+,

Let 7, be the t-ratio associated with the estimate of c. The lower is that t-ratio, the

stronger is the evidence suppating cointegration for a given b. Our test statistic is

the lowest value of 7, for @l posshble b; that is

T =inf,, T,



where 0 is a compad interval. Viewing 1, asafunction d the scdar b, 7 can

easily be found numericaly.

Table 3 shows criticd values of the T statistic & the standard significance
levels, oltained through simulations based on independent driftless random walks.
We shall discussthe asymptotics in the next sedion, bu note for now that the aiticd
values appea to settle down qute quickly with increasing sample size. It is nat
necessary to verify the robustness of these aitica values to correlation ketween the
innovations generating the random walks. As we shall see for the mode (1), the

finite sample distribution o 7° isinvariant to p forany y .

We next show that, to assessthe power of the 1 test applied to the model (1), it

Isonly necessary to consider the cae of p=0. We canwrite (1) as

(1- @)Yy — Ya) ={2(1- )} ey
(1_ L)(ylt + th) = {2(1+ P)} yzezt
where L is the lag operator and the white noise innowations (e, ,e, )" have identity

covariancematrix. Then, for any b, it foll ows that

(1- L)1~ L)(yy —by,) ={(1- p)/ 2" (1+b)(1- L)e,

v2 3)
HA+p) /277 (1-b)(1-dl)e,

The required results follow diredly from (3). Spedficdly we shal show that, in the
case where p =0, there exists b™ such that (y, —b'y,,) ispredsely the same series
as (y, —by,) inthe p#Z0 case. We neal only consider |b|<1, asfor |b|>1, we

might just as well analyse (y,, —dy,) for |[d|<1
The p =0 variant of (3) isgiven by

(1- L)L~ L)(yy —b'y,) =27{(1+b)(1- L)e, +(1-b')(1-dl)ey} (4)

First, if b=+1, the right-hand side of (3) is a mnstant multiple of the right-hand side

of (4) with b =+1  In the more general case, the right-hand side of (3) is a mnstant
multi ple of the right-hand side of (4) if



k(L+b) _ (L+D) k:EI_—leIZ
1-b) @-b) = H+pf

Then, since k >0, it follows that for every b, with |b|< 1, there exists a crrespondng
b, with |b'|<1, and ice versa. This establishes that the set of 7, Dickey-Fuller
statistics is the same, whatever the value of p, for a spedfic redisation d the white
noise generating series (g,,e, )’ . Therefore, bah the size and paver of the 7" test

areinvariant to p for series generated from the model (1).

Table 4 shows powers of the T~ test for model (1). Comparing these with the
results of Table 1, we find that T~ has appredably higher power than the JT test. In
fad, the new test has abou the same power as the EGDF test when p=0. For p

close to 1, EGDF is naticealy more powerful than 7. This is to be epeded,
however, since in that case, as we seefrom Table 2, b is quite predsely estimated

through the regresson (2).

There is a sense in which the relatively strong performance of the EGDF test is

fortuitouswhen p isnaot very closeto ore. For example, inthe cae p=0, EGDF is

noticedly more powerful than the Johansen test, and about as powerful asthe 7° test.
Yet, in that case, as can be seen from Table 2, the least squares estimator of b in (2)
Is quite severely biased. To see why the EGDF test nevertheless has respedable

power, let b be any fixed number. Then predsely asin (3),

A-a@)A(Yy - 6y2t)
=272{(1- p)Y2(1+b)(1- L)e, + 1+ p)2(A-b)(1- el)e,}

It then follows that (Y, —Dy,,) is ARIMA (1,1,), with a moving average parameter

between ¢ and 1,when |6|< 1. Itiswell known (seg for example, Schwert 1989and

Agiakloglou and Newbold 19929 that Dickey-Fuller regressons lead to frequent
regjedions of the unit root hypothesis for 1(1) generating models with large positive

moving average parameters.

The 1" statistic performs impressvely for the model (1), which is of course a

very speda case of cointegration. In the next sedion we discuss an augmented



variant of the T test, appropriate for general vedor autoregressve generating models.
However, even in the non-augmented case, the simulation results of Table 4 apply to
a much broader set of models than smply (1). Starting with (1), consider the

transformation
Xy =Cyy t dth v Xy = (C _1) Y t (d +1) Yo

Then (X, =X, ) =(Yy —Yx)- Also, the set of linea functions of (x,,X,) isthe
same @ the set of linea functions of (y,,Y,), so the distribution o the 7 test

statistic is invariant to this transformation. From (1), we then have

Ax, =-1/2(c-d)(1- (p)(xl,t—l - XZ,t—l) Uy
AXZt =1/ Z(d —C+ 2)(1_ (p)(xl,t—l - XZ,t—l) T Uy

where the white noise innowtions (u,,u,, )’ have mvariance matrix

0 c d C

Q=MIML M=00 1 (@+F

Then, al values of (c, d, p) in this model yield T~ statistics with identica sampling
distributions. In particular, undiredional casua models result from setting ¢ = d.

The usua error-corredion interpretation in this model requires 0< (c—d) <2.

3. TheGeneral Case

We begin by deriving a representation for the asymptotic distribution o 7~ in the
case of no cointegration. The model we a@nsider is more general than that in (1) as

we dlow v, to follow a stationary vedor process This leads us to construct a test

based onthe infimum of atransformation d 7, inwhich 1° arises as a spedal case.

Let y, =(Yy,Y,) follow thel(1) processgiven by

Yo =YtV t=100T,

where v, isastationary vedor processwith



T T T t-1
G=EV,y,), Q= IimeT‘lE(th Zv;), A= IimeT‘lz E(vy,).
t= S=. t=2 s=

First, we define x, = BY, where B'=(1-b). Hence x, isan I (1) processfor any
b: x, =% +¢& where &, = [V, and &, is a seridly correlated stationary process
Let 7, bethe t —statistic obtained from the regresson o Ax, ona mnstant and Xx,_; .

Then, the Philli ps-Perron statistic denoted by z(r,) isgiven by

2(r,) = (BGB)" (BB ™71,
~(BOB)MHT Y (%, ~ %)} B(@Q-C)B/2

Theorem 1. Suppcse that the sequence {v,}., satisfies the cndtions of Theorem
2.1 in Phillips and Durlauf (1986. Then, for any nonempty compad interval
O=[b,b,],

Z =inf,, z(t,) O inf, ¢,

where

(BQB)™ BR{[W(NAW(r) - [W(r)drW(D)}K'B

gb = 1 1 1
[(ﬁ'QB)'1I3'K{J'0W(r)W(r)'dr —J;W(r)clrJ'OW(r)'dr}K'ﬁ]”2

and W(r) is a bivariate vedor Brownian motion dfined as the limit of

(]

K‘l(T‘l’Zth) with K defined as KK'= Q.
t=1

Proof: SeeAppendix.

The limiti ng randam variable ¢, appeas to contain nusance parameters. However,

note that it can be expressed more intuiti vely by defining

w, (r) = (B'QB)™* BKW(r)



]
which is the limiting randam variable of (B’QB)‘”ZT‘l’ZZEt and hence is a
t=

standard Brownian motion process Using this notation, we have

£ [ W (1) = [ w, (1)r} 1 /2w, () () = [ w, (1) lrw, (D)

which isfreeof al nuisance parameters as in Philli ps and Perron (1988. It shoud be
noted that in the proof of Theorem 1 there is no restriction onthe dimension d b.
Hence the extension d the theorem to a more general case where there ae more than

two cointegrated variables dhoudd be straightforward. In the ca&e where
v, ~1ID(0,Z) then G=Q =%, z(1,)=1, and S0 Z =7, which is the smplified

statistic oonsidered in Sedion 2.

When v, is apure aitoregressve processof finite order it is sSmple to construct

an operational version d thetest z. We suppase v, follows the VAR(p) process
p
v, = Z AV +n.. n, ~11D(0,%)
P _
where the roats of |I - z AA'|=0 lie outside the unit circle and X is a positive
1=1
definite matrix. Then G isimplicitly defined by
>
G=) AGA +Z
which has the solution
- -1
vee(@) ={1 -5 (A DA vec()
Further,
2 -1 2 =1
Q=(1-3 A1 -3 A)
Now, since

p
Yo =Yiat ) Ay +,
1=1



then when the vedor regresson
A p ~ A
Ay, =i+ Z Ady,; +1,

is estimated by least squares it follows from Hamilton (1994, Ch. 18§ that A -5 A

~ T U A
andZ=T*$¥ A, - ,Z. Hence Gisconsistently estimated by G formed from

veo(6) ={1 - Z (A 0 A} vec()
and Q isconsistently estimated by
b=l —iA)'li(l —il\)"l

We now extend Theorem 1 to make the infimum statistic operational.

Theorem 2. Suppcse that the sequence {v,}., satisfies the cndtions of Theorem

2.1in Philli ps and Durlauf (1986. Let G and Q be any consistent estimators for G
and Q respedively, na dependingon b0 [J. Define z,(7,) by

2,(7,) = (BGR)*(BAB) ¥*1, — (BAB) YHT 2 Y (x4 - X1)} 2 B(Q-G)B/2
Then, for any non-empty compad interval [1=[b,,b,],

z, =infyy z,(1,) O infy £,
where /¢, isdefined asin Theorem 1.

Proof: SeeAppendix.

In Theorem 2, we require G and Q nat to depend onb. Thiscondtion, havever, is

more than we adually need to prove the theorem. In fad, G and Q could be dlowed

to depend on b as long as they can be expressed as continuows functions of b and

10



some sample moments which are O, (1) . In this stuation the agument in the proof
still goes through withou any major modification.

The main feaure of the &ove gproad is that it avoids weaknesss inherent

with the variants of 1~ based on augmented Dickey-Fuller style regressons. As a

simple example, suppase p =1 so that we have the model
Ay, = Ady,, +1,

Then
Ax = BADY, , + o, #alX , tw,

except in the particular case when A =a,l . So, in general, Ax, will not follow an

AR(p) process and hence ADF-style wrredions to unt root tests are, strictly
spe&ing, na appropriate.  Our suggested procedure, however, correds for
autocorrelation by fitting models explicitly to Ay, rather than Ax, and so avoids this

problem. Moreover, since the adual processfollowed by Ax, depends on b, so too

will the degree of any autoregressve gproximation wed for ADF tests. Thus, we
would read to alow the numbers of lagged terms in Ax, included in the ADF

regresson to vary with b which would make finding the gpropriate minimum ADF
test over b computationally very expensive. On the other hand, in ou approad, b
does nat influencethe order of the model which needsto be estimated.

In this more general setup, we neal to asessthe dfeds of estimating the A and
> onthe finite sample size and pover of the test z;. To this end, we simulated the

model (1) with y =0, assuming v, follows
Vt = Aivt—l +r’t

where n, =(n,,N,)" IS generated as Gausgan white noise with unt variances and
covariance p. Thesizeof z for different structures of A and values of p is sown
in Table 5; the aitica values used for z being those givenin Table 3. Also shown is
the size of the Johansen trace statistic, assuming one lagged term in Ay, is

incorporated in the vedor autoregresson (denoted as JT,). For T = 100, the sizes of

11



Z, are generally close to their nominal values, even with A =08l (so that y, begins
to resemble an 1(2) procesy. It is only when eah element of A is 0.4 that z
appeas to be dightly over-sized. However, problems of over-size ae rather more
apparent for JT,, most noticedly when A =081 . With T = 200, the sizes of z are
al broadly corred, whereas JT, remains over-sized in some caes. Finaly, it is
interesting to nde that, for given A , thesizeof z appeaslittle dfeded by changing
p. The results of the previous Sedion may well be relevant in explaining this

phenomenon.

Table 6 examines the powers of z and JT, to deted cointegration for sample

size T =100. Sincethe size of the tests does not depend on p to any gred extent, we
set p =0 throughou these smulations. In al the caes except when A =08l , Z is
generaly seen to be more powerful than JT,, often considerably so, and with pover
gains of up to 226. When A =08l the powers appea roughly equal, bu only
because JT, isover-sized in this case. Table 7 reports results from a similar exercise
using T = 200. Consistency of the test z is clealy evident, which is as we would
exped given its origins in the Dickey-Fuller methoddogy. Once more, z is

generally more powerful than JT,, with gains of around 1@% in mid-range power.

4. An Empirical Example

As a simple example of our test procedure, we test for cointegration between
short and long term U.K. interest rates. The short term rate (y,, ) isthe 91 day U.K.
Treasury Bill rate and the long term rate (y,, ) istheyield on 20yea U.K. gilts. The
data ae quarterly from 195201-198804 (148 olservations), and were obtained from
Mill s (1993. Augmented Dickey-Fuller tests applied to ead series suggest that both
are |(1) withou drift, na rgjeding the I(1) null even at the 0.10significancelevel (we
omit the detailed results here). Table 8 gives the vaues of the mintegration test
statistics z; and JT for p=01...,5, where p is the order of the VAR model fitted

12



to Ay, . Using standard t-ratios to assess sgnificance of the estimated coefficients on
lagged terms in Ay, suggested p =3 as the preferred arder. Also shown, as b, in
the table, is the value of b foundto minimize z,(1,), for eatr p. The Johansen test

fails to rged at the 0.10level the null hypothesis of no cointegration between the

interest rates for any of the lag lengths considered here, whereas z; rgeds non
cointegration at the 0.05level with p=1.2,...,4, and a the 0.10level with p=0,5.
For this particular data set then, the z’; test suggests grong evidence of cointegration

between short and long term interest rates, while the JT test does nat.

5. Summary

In this paper we have introduced a new test of the null hypothesis of no
cointegration ketween a pair of 1(1) time series. This test was motivated in Sedion 2
by observing the etremely variable power of the Engle-Granger/Dickey-Fuller
(EGDF) tedt, relative to the Johansen trace(JT) test, over a wide range of values of a
single parameter in asimple model. It was e that the very poa performance of the
EGDF test is asociated with the severe bias in the least squares estimator of the
parameter in the wintegrating regresson. We therefore proposed circumventing the
estimation d the mintegrating regresson by, in effed, applying the Dickey-Full er test
to all li nea combinations of the two time series. Our test statistic, in the smple cae
of Sedion 2, is then the Dickey-Fuller t-ratio that is least favourable to the null
hypothesis. We saw, for the smple model, that neither the JT test nor the new test
exhibit the volatility in power charaderistic of the EGDF test. Moreover, simulation
evidence indicaed that the new test was a good ded more powerful than the JT test.
A subsidiary benefit of our test, compared with EGDF, is that the test outcome does
not depend onthe abitrary choice of one series as the dependent variable in the

cointegrating regresson.

Of course, for our test to have much pradicd value, it must be gplicable in far
more general situations than that of Sedion 2,where every linea combination d the
seriesisarandam walk under the null hypothesis, and a particular linea combination

is a stationary first order autoregresson undy the dternative. An obvious possble

13



extension would be to base the new test on augmented Dickey-Fuller regresson, by
analogy with EGDF. However, we prefer an aternative generalisation, for two
reassons. First, we wanted a dired comparison with the JT test for finite order vedor
autoregresson. However, linea combinations of series generated by such models
generaly have infinite aitoregressve order, requiring some truncation rule for fixing
the number of lags in the Dickey-Fuller regressons. Sewmnd,sincewe ae mnsidering
all possble linea combinations of the series, choosing the number of lags in this way
is bath problematic and computationally burdensome. Different linea combinations
of the serieswill have different generating models. This suggests the necessty either
of a different number of lags for every linea combination, which is pradicaly
impassble, or the fixing for every paosshility of a very high number of lags, which

would inevitably reducethe power of the test.

In Sedion 3we proposed a general version d our test, which incorporates the
test of Sedion 2as a spedal case, based onthe prior fitting of vedor autoregressons
to first differences of the time series. Simulation results confirmed that this general
test has stisfadory size properties - more satisfadory in some caes than the JT test.
Moreover, the relative superiority in paver of the new test, olserved in the smple
case of Sedion 2, continues to hdd for the vedor autoregressons examined in a
simulation experiment in Sedion 3. Finally, in Sedion 4we gplied the new test and
the JT test to series of short-and long-term interest rates. Whil e the former suggested
strong evidence of cointegration, the latter did na, in a situation where severa
authors, including Engle and Granger (1987, have suggested that cointegration might
reasonably be expeded ona priori grounds.

14



Appendix
Proof of Theorem1. The t —statistic 7, isgiven by

T(P-1)
6{T N Z (Xt—l - )_(—1)2} e

L

where p = Z(E(X: i‘_l)x(x‘)z_ X and 67 =Ty (% %)~ Blx, ~X)} . Each

term in 7, can be expressd asa mntinuots function d b and some sample moments

asfollows:
~ .~ _ BAB
T(p-1)=—"——
(p-1) BB 3
~2 __ 1 -1 1 1 -1 -1 1 -1 (BATB)Z
= - -T
G2 =BT S vu)B-BT TV )T T V)R BB p

T Z (% —%X4)* = BB B
where
AT vV =TS v T 5 vy

B, =T - z yt—lyt,—l -7 z YeaT o z yt’—l :
Therefore, we have

4 (B'Arﬁ)z}_m BAB

21,) = OB BT S B BT S VTS VBT

(BQB)"2 BB.B  (BBB)"”
~(BQB)*(BB, B) " B(Q-G)B/2
=u(Z,.b) (5)

where Z; isa mx1 randaom vedor with m =19 defined as:

Zp =[T7vec(y vev) 25 v T2 5 v Tvee(S ViaYia)'s
T'lvec(z vtvt')’,T'lzvt’,T'l].
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The identity in the seaondline of (5) defines the function u(a,b) from R™ xR to R.

Next, we define afunction h(a) from R™ to R:
h(a) =inf ., u(ab).

The function ¢(a) isaset functionfrom R™ to 2% (power set of R) defined as:
@(a) =[b;,b,]

for any aOR™ where b,b, ae given in the theorem. First, nae that
h(Z;) =inf; z(t,) whaose limiti ng distribution we want to oltain. The next step is

to show (i) the joint convergenceof Z, in dstributionand (ii) the cntinuity of h(a) .
Sincethe last three éementsin Z, have degenerate limiti ng distributions and
[T vec(H vy ) TS v, T - [vec(G)' 0,01 = Z,

it is aufficient to show the joint convergence of the first four comporents. Using the

functional central limit theorem and continuous mapping theorem, we have

[T _1V€'C(z YiaVe), T2 z Y, T2 Z Vt,—l’T_zveC(z Ve Vi) 10
[{vec(KJ;lW(r)dW(r)'K’ N KJﬁW(r)dr}',{ KW(l)}',{vec(KEW(r)W(r)’drK')}’] =Z!

See Sims, Stock and Watson (1990, Chan and Wei (1988 for more details. Hence
wehave Z. 00 Z where Z' =(Z,,2,).

Next, we neeal to invoke the maximum theorem in Berge (1963 to show that

h(a) iscontinuows. The four condtions we need to verify are:

(1) The spaces R™ and R onwhich u(a,b) isdefined are Hausdorff.

(i)  Thefunction u(a,b) iscontinuowsin bah arguments.
(i) Foral aOOR™, @(a) isnat empty.

(iv)  Theset function ¢(a) iscontinuots.
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The first three ondtions are trivially satisfied. The last condtion is proved by

showing that ¢@(a) is upper semicontinous and lower semicortinous (See Takayama
(1985 for definitions). Let a° OR™ and V be an open set containing @(a®) = 0.
Define N(a°) ={aOR™:||la-a°’||<L which is not empty. Then, for any
adN(a°%), we have ¢(a) OV which implies that ¢(a) is upper semicontinous at
a’. Since a’ isan arbitrary point in R™, ¢(a) isupper semicontinousin R™. Next,
we show that @(a) is lower semicontinows. Let V and N(a°) be the same sets
defined as above. Then, forany a0 R™, @(a) nV =00 which impliesthat ¢(a)

islower semicontinowsat a°. Therefore, h(a) is continuows and we have
h(z,) O h(Z)

by the continuows mapping theorem. Notethat h(Z) =inf ., u(Z,b) where
u(Z,b) =(BB)™M*(BBR) M BAB- (BB (BBR) M B(Q-G)B/2
A= KI:W(r)dW(r)’K’ +A- KJ;lW(r)er(l)’K’
B= KI:W(r)W(r)’drK’ - KJjW(r)drI:W(r)’drK’ .

Using BAB = B'(A+A)B12=B(Q-G)B/2, u(Z,b) can besimplified to

(BQB)™ BR{LW(IAW(r) - [W()dr WD }K B

(BRA)™ BR{[W(IW(r)'dr = [W(r)dr [W(r) dr}K 81
=1,

u(z,b) =

Hence, h(Z) =inf ., ¢, which completes the proof. m

Proof of Theorem 2. Basicdly the same aguments as used in Theorem 1 go through

in the proof of Theorem 2. Note that
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_ (BB 5 Lty T L2 (BAB) 1o BAB
At ST A L T i o S R e

-(BQB) BB, BB (Q-G)BI2
=u,(Z,,b)

where ZT isa mx1 random vedor with m = 23 defined as:
Z! =[Z.,vec(G)',vec(Q)'].

Define afunction h (a) from R™ to R: h (a) =inf, u (a,b). It can be shown

that
()  Z, 0 Z,where Z, =(Z',vec(G)', vec(Q)')
(i) h,(a) iscontinuots.

Therefore, we have hp(ZT) 0 h,(Z,) by the continuows mapping theorem. Note

that
()  h,(Z;)=infy, z,(1,)
(i) hp(Zp) =inf ., ¢,

which completes the proof. m
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Table 1. Power of tests EGDF and JT for T =100 and
4000repli cations).

T =200 at nominal 0.10and 0.05criticd values

2 ® T =100 T =200
EGDF JT EGDF JT
-0.9 09 0.098 0.252 0.179 0.609
0.051 0.148 0.096 0.420
-0.9 0.8 0.170 0.621 0.556 0.994
0.095 0.433 0.408 0.970
-0.9 0.7 0.323 0.924 0.868 1.000
0.196 0.809 0.767 1.000
-0.6 0.9 0.173 0.253 0.454 0.609
0.086 0.140 0.279 0421
-0.6 0.8 0.441 0.621 0.955 0.992
0.292 0.434 0.893 0.967
-0.6 0.7 0.775 0.925 0.999 1.000
0.663 0.821 0.995 1.000
-0.3 0.9 0.228 0.255 0.607 0.611
0.120 0.139 0.417 0.421
-0.3 0.8 0.615 0.620 0.990 0.993
0.420 0.432 0.973 0.967
-0.3 0.7 0.916 0.925 1.000 1.000
0.821 0.828 0.999 1.000
0.0 0.9 0.266 0.252 0.703 0.604
0.145 0.142 0.509 0.418
0.0 0.8 0.718 0.618 0.999 0.994
0.525 0.428 0.990 0.968
0.0 0.7 0.962 0.922 1.000 1.000
0.905 0.824 1.000 1.000
0.3 0.9 0.303 0.252 0.756 0.606
0.167 0.142 0.579 0.414
0.3 0.8 0.781 0.620 0.999 0.993
0.592 0.423 0.997 0.967
0.3 0.7 0.979 0.920 1.000 1.000
0.935 0.821 1.000 1.000
0.6 0.9 0.329 0.249 0.798 0.601
0.185 0.140 0.618 0.409
0.6 0.8 0.821 0.618 1.000 0.994
0.646 0.434 0.999 0.969
0.6 0.7 0.987 0.922 1.000 1.000
0.957 0.814 1.000 1.000
0.9 0.9 0.354 0.252 0.823 0.600
0.203 0.141 0.651 0.418
0.9 0.8 0.842 0.613 1.000 0.994
0.677 0.439 1.000 0.967
0.9 0.7 0.995 0.917 1.000 1.000
0.965 0.814 1.000 1.000

21




Table 2. Meas and standard deviations of b from
regresson (2) for model (1) whereb =1, with T =100
(2000repliceions).

P [0 Mean Std. dev.
-0.9 0.9 -0.68 0.30
-0.9 0.8 -0.52 0.32
-0.9 0.7 -0.42 0.33
-0.6 0.9 -0.08 0.44
-0.6 0.8 0.13 0.39
-0.6 0.7 0.26 0.36

0.0 0.9 0.51 0.36

0.0 0.8 0.65 0.27

0.0 0.7 0.72 0.22

0.6 0.9 0.84 0.21

0.6 0.8 0.89 0.14

0.6 0.7 0.92 0.10

0.9 0.9 0.96 0.10

0.9 0.8 0.98 0.06

0.9 0.7 0.98 0.04

Table 3. Criticd valuesof T

(20000replicaions).

T 0.10 0.05 0.01
25 -3.61 -3.96 -4.75
50 -3.46 -3.77 -4.40
100 =341 -3.70 -4.24
200 -3.37 -3.65 -4.21
400 -3.36 -3.63 -4.16

Table 4. Power of test T~ for T =100 and
T =200 at nominal 0.10and 0.05criticd
values (4000repli cations).

@ T=100 T =200
0.9 0.266 0.695
0.153 0.507
0.8 0.721 1.000
0.516 0.997
0.7 0.975 1.000
0.922 1.000
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Table5. Size of Tests z and JT, for T=100and T = 200at nominal 0.10and 0.05
critica values (4000repli cations).

A @ P T=100 T =200
2 I A I
[0.00.0, 0.0 0.0] 0.0 0.0 0.118 0.112 0.111 0.110
0.059 0.056 0.056 0.053
[0.4 0.0, 0.0 04] 0.0 0.0 0.094 0.122 0.096 0.113
0.045 0.061 0.046 0.054
[0.4 02, 0.2 04] 0.0 0.0 0.101 0.126 0.096 0.116
0.049 0.061 0.048 0.056
[0.8 0.0, 0.0 0.8] 0.0 0.0 0.113 0.171 0.096 0.137
0.062 0.093 0.047 0.069
[0.40.4,0.40.4] 0.0 0.0 0.125 0.144 0.107 0.125
0.069 0.077 0.056 0.064
[0.00.0, 0.00.0] 0.0 0.5 0.119 0.112 0.110 0.110
0.059 0.056 0.056 0.053
[0.4 0.0, 0.0 0.4] 0.0 0.5 0.094 0.122 0.095 0.113
0.045 0.061 0.045 0.054
[0.4 02, 0.2 04] 0.0 0.5 0.098 0.123 0.095 0.116
0.049 0.062 0.047 0.057
[0.8 0.0, 0.0 0.8] 0.0 0.5 0.108 0.171 0.097 0.137
0.058 0.093 0.045 0.069
[0.40.4,0.40.4] 0.0 0.5 0.115 0.144 0.098 0.123
0.066 0.077 0.046 0.062
[0.00.0, 0.00.0] 0.0 -0.5 0.118 0.112 0.112 0.110
0.057 0.056 0.056 0.053
[0.4 0.0, 0.0 04] 0.0 -0.5 0.094 0.122 0.094 0.113
0.045 0.061 0.046 0.054
[0.4 02, 0.2 04] 0.0 -0.5 0.099 0.125 0.100 0.112
0.050 0.062 0.046 0.055
[0.8 0.0, 0.0 0.8] 0.0 -0.5 0.108 0.171 0.100 0.137
0.059 0.093 0.048 0.069
[0.40.4,0.40.4] 0.0 -0.5 0.123 0.145 0.108 0.125
0.068 0.077 0.058 0.063

23




Table 6. Power of Tests z and JT, for T=100, p =0
at nominal 0.10and 0.05criti cd values (4000replicdions).
A ® z JI,
[0.00.0,0.00.0] 0.90 0.311 0.261
0.192 0.140
[0.00.0,0.00.0] 0.80 0.749 0577
0.577 0.403
[0.00.0,0.00.0] 0.70 0.970 0.843
0.922 0.696
[0.4 0.0,0.0 04] 0.90 0.244 0.259
0.133 0.144
[0.4 0.0,0.0 04] 0.80 0.550 0.490
0.372 0.341
[0.4 0.0,0.0 04] 0.70 0.825 0.714
0.667 0.548
[0.4 02,0.2 04] 0.90 0.274 0.276
0.166 0.153
[0.402,0.2 04] 0.80 0.652 0.553
0.469 0.383
[0.402,0.2 04] 0.70 0.919 0.793
0.815 0.643
[0.8 0.0,0.0 0.8] 0.90 0.223 0.238
0.133 0.139
[0.8 0.0,0.0 0.8] 0.80 0.340 0.330
0.218 0.196
[0.8 0.0,0.0 0.8] 0.70 0.427 0.395
0.285 0.257
[0.40.4,0.40.4] 0.90 0.345 0.313
0.222 0.180
[0.40.4,0.40.4] 0.80 0.762 0.608
0.614 0.434
[0.40.4,0.40.4] 0.70 0.975 0.858
0.923 0.727
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Table 7. Power of Tests z and JT, for T=200, p =0

at nominal 0.10and 0.05criti cd values (4000repli caions).
A 7 zZ JT,
[0.00.0,0.00.0] 0.95 0.280 0.248
0.173 0.137
[0.00.0,0.00.0] 0.90 0.707 0.595
0.533 0.404
[0.00.0,0.00.0] 0.80 0.998 0.975
0.991 0.928
[0.4 0.0,0.0 04] 0.95 0.239 0.250
0.134 0.138
[0.4 0.0,0.0 04] 0.90 0.605 0.533
0.420 0.370
[0.4 0.0,0.0 04] 0.80 0.981 0.941
0.936 0.848
[0.4 02,0.2 04] 0.95 0.250 0.262
0.146 0.146
[0.4 02,0.2 04] 0.90 0.655 0576
0.473 0.396
[0.402,0.2 04] 0.80 0.992 0.967
0.969 0.910
[0.8 0.0,0.0 0.8] 0.95 0.220 0.244
0.123 0.130
[0.8 0.0,0.0 0.8] 0.90 0.435 0.404
0.285 0.253
[0.8 0.0,0.0 0.8] 0.80 0.752 0.657
0.584 0.488
[0.40.4,0.40.4] 0.95 0.288 0.282
0.167 0.160
[0.40.4,0.40.4] 0.90 0.708 0.608
0.544 0.437
[0.40.4,0.40.4] 0.80 0.998 0.976
0.991 0.937

Table 8. Values of thetests z, and JT applied to the Interest

Rate series.

P ZP JTP bmi n

0 -3.38* 13.64 0.831
1 -3.74** 14.32 0.828
2 -3.91** 14.33 0.833
3 —4.10** 14.60 0.846
4 -3.79* 13.43 0.865
5 -3.44* 11.55 0.834

t* ) denotes sgnificant at the 0.10(0.05 level.
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