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Abstract: In this paper we introduce a new test of the null hypothesis of no

cointegration between a pair of time series.  For a very simple generating model, our

test compares favourably with the Engle-Granger/Dickey-Fuller test and the Johansen

trace test.  Indeed, shortcomings of the former motivated the development of our test.

The applicabilit y of our test is extended to series generated by low-order vector

autoregressions.  Again, we find evidence that this general version of our test is more

powerful than the Johansen test.  The paper concludes with an empirical example in

which the new test finds strong evidence of cointegration, but the Johansen test does

not.
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1.   Introduction

Following the pioneering work of Granger (1981) and Engle and Granger (1987),

the topic of cointegration has been at the heart of time series econometrics.  In

addition to the substantial theoretical developments that have subsequently been

reported, considering the possibilit y of cointegration, and the associated error-

correction model representation, has become an integral part of the standard paradigm

of applied time series econometrics.

In this paper we shall discuss a specific problem - testing the null hypothesis of

no cointegration between a pair of time series.  Let ty1  and ty2  both be generated by

processes which are integrated of order one, )1(I ; that is, the series are nonstationary,

but their first differences are stationary, or )0(I .  Then, the series are cointegrated if

and only if there exists a scalar b, such that ( )y byt t1 2−  is stationary.  The general

form of our test, applicable when the process generating the series can be well -

approximated by a relatively low order vector autoregression, is introduced in Section

3.  Simulation evidence reported there suggests that the new test has superior power

compared with the most commonly applied extant test.  Although generalisation of

our test to the case of several series would be very diff icult, the case of two series is

of considerable interest in its own right: see, for example, Ng and Perron (1997).

Section 2 of the paper is, in effect, an extended introduction to, and motivation

for, the general test procedure.  In that section, we analyse a very simple generating

model, for which our test has a straightforward and intuitively appealing structure.

We argue that, for this simple model, the new test has desirable properties when

compared with the two tests that have most often been applied in this case.

Finally, in Section 4, we briefly discuss an empirical example, where the new test

finds strong evidence of cointegration when one of its competitors does not, in a

situation where cointegration might reasonably be expected on a priori grounds .
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2.   The Basic Case

To motivate our test, we begin by reporting and discussing the results of a small

simulation study.  Pairs of time series ),( 21 ′= ttt yyy  were generated from the model

Ttyyy
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t

t

ttt

ttt

,...,1,)(
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1,21,12
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where ),( 21 ′= ttt ννν  is zero-mean vector white noise, taken to be Gaussian

throughout our simulations, with covariance matrix
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
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For γ = 0, the yit  are I(1) pure random walks, possibly with contemporaneously

correlated white noise innovations.  For 0 1< <γ , the yit  are generated by

ARIMA(1,1,1) processes of identical forms, and are cointegrated, with ( )y yt t1 2−

following an I(0) first order autoregression with parameter φ γ= −1 2 .  Due to this

symmetry, it is irrelevant which ity  is treated as the left-hand variable in Engle-

Granger regressions, thus abstracting from an issue discussed by Ng and Perron

(1997).  The generating process (1) is a special case of processes used by Banerjee et

al (1986), Blangiewicz and Charemza (1990), Hansen and Philli ps (1990), Gonzalo

(1994), and others.

The two most commonly applied tests of the null hypothesis of no cointegration

are the Engle-Granger/Dickey-Fuller (EGDF) test (Engle and Granger 1987, Engle

and Yoo 1987) and the Johansen trace (JT) test (Johansen 1988, 1991, Johansen and

Juselius, 1990).  We applied these tests to series of 200,100=T  observations,

generated from (1), allowing for non-zero intercept, but not trend, in the generating

process.  We also took the model order to be known, so that redundant autoregressive

terms were not incorporated in the models to be estimated to generate the test

statistics.  Then, the EGDF test was based on the residuals from the regression of y t1

on y t2 , with intercept.  The test statistic is the t-ratio from the Dickey-Fuller
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regression on these residuals, with no intercept or lagged first differences.  Critical

values were obtained from the response surfaces of MacKinnon (1991).  The JT test

was based on the vector autoregression, with intercept, using criti cal values given by

Osterwald-Lenum (1992).  Here, and in the more general case of the next section, we

tried also the maximal-eigenvalue variant of the Johansen test.  However, the results

were invariably very similar to those from the trace test, and so will not be reported.

The results of these experiments on the powers of the two tests are summarised

in Table 1.  The most striking feature of these results is that, while the power of the

JT test is unaffected by the parameter ρ , the power of the EGDF test depends

dramatically on that parameter.  For example, for ρ  close to 1, the EGDF test is much

more powerful than the JT test, whereas for ρ   close to –1 the performance of EGDF

is relatively very poor.  It is certainly interesting that the relative powers of the two

tests depend so dramatically on a single parameter in such a simple model.

In fact, it is straightforward to show, for the particular model considered here,

that the distribution of the JT test statistic is invariant to ρ .  By contrast, the

distribution of the EGDF test statistic is clearly influenced by the parameter ρ .  This

test statistic is based initially on least squares estimates from the regression model

y a by ut t t1 2= + +             (2)

Its distribution therefore depends on the sampling distribution of the least squares

estimator 
�
b .  Table 2 reports simulation evidence on the mean and standard deviation

of b̂  for series of 100 observations generated from (1).  For large positive ρ  this

estimator has mean close to 1, with small standard deviation.  However, as ρ

decreases, the bias in b̂  rapidly increases, the extent of that bias being quite startling

for large negative ρ .  It is certainly not surprising that the EGDF test has low power

in these circumstances.  Gonzalo (1994) discusses in some detail bias in this and other

estimators of the cointegrating parameter.  Our interest lies in the impact of that bias

on the EGDF test.

The results in Table 1 suggest that, for ρ  close to –1, the performance of the

EGDF test is unacceptably poor.  It is perhaps worth asking if such results would be
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obtained in practice, for when b  is poorly estimated the residuals 
�
ut  from (2) may not

appear to be first order autoregressive.  Consequently, the user may apply the

augmented version of the Dickey-Fuller test to these residuals.  We simulated series

of 100 observations from the model (1), applying now the augmented version of the

EGDF test.  We allowed a maximum of six lagged differences in the Dickey-Fuller

regressions, selecting the number of lags actually employed each time through

general-to-specific testing at the 0.05 level, in line with proposals of Ng and Perron

(1995).  In fact, the power of the EGDF test was not improved, and was slightly lower

for ρ  close to –1.  We conclude then that there exist circumstances - those in which

the parameter of the cointegrating regression is poorly estimated - when EGDF has

very poor performance.  Unfortunately, in practical applications, which are likely to

involve models that are different from and more elaborate than (1), it would be

practically impossible to identify cases where such circumstances arose.

Although the performance of the EGDF test can be very poor, the results of

Table 1 suggest also that there are cases where substantial gains in power can be

achieved through using EGDF rather than the Johansen test.  It is worth asking

whether at least some of those gains can be captured through a modified test whose

power does not fall dramatically where the power of EGDF does.  We explore here a

test motivated directly by the definition of cointegration, continuing to employ

Dickey-Fuller-type regressions, but omitting the estimation of b  through the

regression (2), since this seems to be the source of the diff iculties apparent in Table 1.

Let y t1  and y t2  be a pair of I(1) time series.  Then, these series are cointegrated

if and only if there exists a scalar b  such that ( )y byt t1 2−  is stationary.  We consider

Dickey-Fuller regressions for all possible b .  Specifically, we estimate regressions of

the form

ttttt byycabyy ω+−+=−∆ −− )()( 1,21,121

Let τ b  be the t-ratio associated with the estimate of c.  The lower is that t-ratio, the

stronger is the evidence supporting cointegration for a given b .  Our test statistic is

the lowest value of τ b   for all possible b ; that is

bb ττ ℑ∈= inf*
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where ℑ  is a compact interval.  Viewing τ b  as a function of  the scalar b ,  τ *  can

easily be found numerically.

Table 3 shows criti cal values of the τ *  statistic at the standard significance

levels, obtained through simulations based on independent driftless random walks.

We shall discuss the asymptotics in the next section, but note for now that the criti cal

values appear to settle down quite quickly with increasing sample size.  It is not

necessary to verify the robustness of these criti cal values to correlation between the

innovations generating the random walks.  As we shall see, for the model (1), the

finite sample distribution of τ *  is invariant to ρ  for any γ .

We next show that, to assess the power of the τ *  test applied to the model (1), it

is only necessary to consider the case of ρ = 0.  We can write (1) as

( )( ) { ( )}

( )( ) { ( )}

/

/

1 2 1

1 2 1
1 2

1 2
1

1 2
1 2

2

− − = −

− + = +

φ ρ
ρ

L y y e

L y y e

t t t

t t t

where L  is the lag operator and the white noise innovations ),( 21 ′tt ee  have identity

covariance matrix.  Then, for any b , it follows that

( )( )( ) { ( ) / } ( )( )

{ ( ) / } ( )( )

/

/

1 1 1 2 1 1

1 2 1 1
1 2

1 2
1

1 2
2

− − − = − + −

+ + − −

φ ρ
ρ φ

L L y by b L e

b L e

t t t

t                                         
               (3)

The required results follow directly from (3).  Specifically we shall show that, in the

case where ρ = 0, there exists b*  such that ( )*y b yt t1 2−   is precisely the same series

as ( )y byt t1 2−   in the ρ ≠ 0 case.  We need only consider | | , | |b b≤ >1 1 as for , we

might just as well analyse ( | | .y dy dt t2 1 1− <) for 

The ρ = 0  variant of (3) is given by

( )( )( ) { ( )( ) ( )( ) }* / * *1 1 2 1 1 1 11 2
1 2

1 2− − − = + − + − −−φ φL L y b y b L e b L et t t t          (4)

First, if b = ±1, the right-hand side of (3) is a constant multiple of the right-hand side

of (4) with b* .= ±1    In the more general case, the right-hand side of (3) is a constant

multiple of the right-hand side of (4) if
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Then, since k > 0, it follows that for every b b, | | with < 1, there exists a corresponding

b b* *, | | with < 1, and vice versa.  This establishes that the set of τ b  Dickey-Fuller

statistics is the same, whatever the value of ρ , for a specific realisation of the white

noise generating series ),( 21 ′tt ee .  Therefore, both the size and power of the τ *  test

are invariant to ρ  for series generated from the model (1).

Table 4 shows powers of the τ *  test for model (1).  Comparing these with the

results of Table 1, we find that τ *  has appreciably higher power than the JT test.  In

fact, the new test has about the same power as the EGDF test when ρ = 0.  For ρ

close to 1, EGDF is noticeably more powerful than τ * .  This is to be expected,

however, since in that case, as we see from Table 2, b is quite precisely estimated

through the regression (2).

There is a sense in which the relatively strong performance of the EGDF test is

fortuitous when ρ   is not very close to one.  For example, in the case ρ = 0, EGDF is

noticeably more powerful than the Johansen test, and about as powerful as the τ *  test.

Yet, in that case, as can be seen from Table 2, the least squares estimator of b  in (2)

is quite severely biased.  To see why the EGDF test nevertheless has respectable

power, let 
�
b  be any fixed number.  Then  precisely as in (3),

})1)(ˆ1()1()1)(ˆ1()1{(2            

)ˆ()1(

2
2/1

1
2/12/1

21

tt

tt

eLbeLb

ybyL

φρρ

φ

−−++−+−=

−∆−
−

It then follows that (
�

)y byt t1 2−  is ARIMA (1,1,1), with a moving average parameter

between φ  and 1, when |
�
|b < 1.  It is well known (see, for example, Schwert 1989 and

Agiakloglou and Newbold 1992) that Dickey-Fuller regressions lead to frequent

rejections of the unit root hypothesis for I(1) generating models with large positive

moving average parameters.

The τ *  statistic performs impressively for the model (1), which is of course a

very special case of cointegration.  In the next section we discuss an augmented
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variant of the τ *  test, appropriate for general vector autoregressive generating models.

However, even in the non-augmented case, the simulation results of Table 4 apply to

a much broader set of models than simply (1).  Starting with (1), consider the

transformation

tttttt ydycxdycyx 212211 )1()1(, ++−=+=

Then )()( 2121 tttt yyxx −=− .  Also, the set of linear functions of ),( 21 tt xx   is the

same as the set of linear functions of ),( 21 tt yy , so the distribution of the τ *  test

statistic is invariant to this transformation.  From (1), we then have

tttt

tttt

uxxcdx

uxxdcx

21,21,12

11,21,11

))(1)(2(2/1

))(1)((2/1

+−−+−=∆
+−−−−=∆

−−

−−

φ
φ

where the white noise innovations ),( 21 ′tt uu  have covariance matrix









+−

=′∑=Ω
)1()1(

,
dc

dc
MMM

Then, all values of (c, d, ρ) in this model yield τ *  statistics with identical sampling

distributions.  In particular, unidirectional casual models result from setting c = d.

The usual error-correction interpretation in this model requires 0 ( 2≤ − <c d ) .

3.   The General Case

We begin by deriving a representation for the asymptotic distribution of τ *  in the

case of no cointegration.  The model we consider is more general than that in (1) as

we allow ν t  to follow a stationary vector process.  This leads us to construct a test

based on the infimum of a transformation of τ b  in which τ *  arises as a special case.

Let ),( 21 ′= ttt yyy  follow the I(1) process given by

Ttyy ttt ,...,1,1 =+= − ν ,

where ν t   is a stationary vector process with
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First, we define tt yx β ′≡  where  ),1( b−=′β .  Hence, tx  is an )1(I  process for any

b : ttt xx ξ+= −1  where tt vβξ ′≡  and tξ  is a serially correlated stationary process.

Let τ b  be the −t statistic obtained from the regression of tx∆  on a constant and 1−tx .

Then, the Philli ps-Perron statistic denoted by )( bz τ  is given by

.2/)(})({)(

)()()(
2/12

11
22/1

2/12/1

ββββ
τββββτ

GxxT

Gz

t

bb

−Ω′−Ω′−

Ω′′≡
−

−−
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∑

Theorem 1.  Suppose that  the sequence ∞
=1}{ ttν  satisfies the conditions of Theorem

2.1 in Philli ps and Durlauf (1986).  Then, for any non-empty compact interval

],[ 21 bb≡ℑ ,

bbbb zz
�

ℑ∈ℑ∈ ⇒≡ inf)(inf* τ

where

2/11
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−
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�

and )(rW  is a bivariate vector Brownian motion defined as the limit of

)(
][

1

2/11 ∑
=

−−
Tr

t
tTK ν  with K  defined as Ω=′KK .

Proof:  See Appendix.

The limiti ng random variable 
�

b  appears to contain nuisance parameters.  However,

note that it can be expressed more intuitively by defining

)()()( 2/1 rKWrwb βββ ′Ω′≡ −
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which is the limiti ng random variable of ∑
=

−−Ω′
][

1

2/12/1)(
Tr

t
tT ξββ  and hence is a

standard Brownian motion process.  Using this notation, we have

        })1()()()({]})({)([
1

0

1

0

1

0

2/121

0

2 ∫ ∫∫ ∫ −−= −
bbbbbbb wdrrwrdwrwdrrwdrrw

�

which is free of all nuisance parameters as in Philli ps and Perron (1988).  It should be

noted that in the proof of Theorem 1 there is no restriction on the dimension of b .

Hence, the extension of the theorem to a more general case where there are more than

two cointegrated variables should be straightforward.  In the case where

),0(~ ΣIIDtν  then Σ=Ω=G , z b b( )τ τ=  and so ** τ=z , which is the simpli fied

statistic considered in Section 2.

When ν t  is a pure autoregressive process of f inite order it is simple to construct

an operational version of the test z* .  We suppose ν t  follows the VAR(p) process

t

p

i
itit A ηνν += ∑

=
−

1

,   ),0(~ ΣIIDtη

where the roots of | |I Ai
i

i

p

− =
=
∑ λ

1

0 lie outside the unit circle and Σ  is a positive

definite matrix.  Then G is implicitl y defined by

Σ+′= ∑
=

p

i
ii AGAG

1

which has the solution

)(})({)( 1

1

Σ⊗−= −

=
∑ vecAAIGvec

p

i
ii

Further,

1

1

1

1

)()( −

=

−

=
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p

i
i

p

i
i AIAI

Now, since

 y y A yt t i t i
i

p

t= + +− −
=
∑1

1

∆ η
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then when the vector regression

∆ ∆y A yt i t i
i

p

t= + +−
=
∑

� � �
µ η

1

is estimated by least squares it follows from Hamilton (1994, Ch. 18) that ipi AA →ˆ

and Σ→′=Σ ∑
=

−
p

T

t
ttT

1

1 ˆˆˆ ηη .  Hence, G is consistently estimated by 
�

G  formed from

)ˆ(})ˆˆ({)ˆ( 1

1

Σ⊗−= −

=
∑ vecAAIGvec

p

i
ii

and Ω  is consistently estimated by

1

1

1

1

)ˆ(ˆ)ˆ(ˆ −

=

−

=

′−Σ−=Ω ∑∑
p

i
i

p

i
i AIAI

We now extend Theorem 1 to make the infimum statistic operational.

Theorem 2.  Suppose that  the sequence ∞
=1}{ ttν  satisfies the conditions of Theorem

2.1 in Philli ps and Durlauf (1986).  Let Ĝ  and Ω̂  be any consistent estimators for G

and Ω  respectively, not depending on ℑ∈b .  Define zp b( )τ  by

.2/)ˆˆ(})({)ˆ()ˆ()ˆ()( 2/12
11

22/12/12/1 ββββτββββτ GxxTGz tbbp −Ω′−Ω′−Ω′′≡ −
−−

−−− ∑

Then, for any non-empty compact interval ],[ 21 bb≡ℑ ,

bbbpbp zz �ℑ∈ℑ∈ ⇒≡ inf)(inf* τ

where b�  is defined as in Theorem 1.

Proof:  See Appendix.

In Theorem 2, we require Ĝ  and Ω̂  not to depend on b .  This condition, however, is

more than we actually need to prove the theorem.  In fact, Ĝ  and Ω̂  could be allowed

to depend on b  as long as they can be expressed as continuous functions of b  and
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some sample moments which are )1(pO .  In this situation the argument in the proof

still goes through without any major modification.

The main feature of the above approach is that it avoids weaknesses inherent

with  the variants of τ *  based on augmented Dickey-Fuller style regressions.  As a

simple example, suppose p = 1 so that we have the model

ttt yAy η+∆=∆ −11

Then

ttttt xayAx ωωβ +∆≠+∆′=∆ −− 1111

except in the particular case when IaA 11 = .  So, in general, tx∆  will not follow an

AR(p) process and hence ADF-style corrections to unit root tests are, strictly

speaking, not appropriate.  Our suggested procedure, however, corrects for

autocorrelation by fitting models explicitl y to ty∆   rather than tx∆  and so avoids this

problem.  Moreover, since the actual process followed by tx∆  depends on b, so too

will t he degree of any autoregressive approximation used for ADF tests.  Thus, we

would need to allow the numbers of lagged terms in tx∆  included in the ADF

regression to vary with b which would make finding the appropriate minimum ADF

test over b computationally very expensive.  On the other hand, in our approach, b

does not influence the order of the model which needs to be estimated.

In this more general setup, we need to assess the effects of estimating the iA  and

Σ  on the finite sample size and power of the test zp
* .  To this end, we simulated the

model (1) with γ = 0, assuming ν t  follows

ν ν ηt t tA= +−1 1

where ),( 21 ′= ttt ηηη  is generated as Gaussian white noise with unit variances and

covariance ρ .  The size of z1
*  for different structures of A1 and values of ρ  is shown

in Table 5; the criti cal values used for z1
*  being those given in Table 3.  Also shown is

the size of the Johansen trace statistic, assuming one lagged term in ty∆  is

incorporated in the vector autoregression (denoted as JT1).  For T = 100, the sizes of
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z1
*  are generally close to their nominal values, even with A I1 08= . (so that yt  begins

to resemble an I(2) process).  It is only when each element of A1 is 0.4 that z1
*

appears to be slightly over-sized.  However, problems of over-size are rather more

apparent for JT1 , most noticeably when A I1 08= . .  With T = 200, the sizes of z1
*  are

all broadly correct, whereas JT1  remains over-sized in some cases.  Finally, it is

interesting to note that, for given A1, the size of z1
*  appears littl e affected by changing

ρ .  The results of the previous Section may well be relevant in explaining this

phenomenon.

Table 6 examines the powers of z1
*  and JT1  to detect cointegration for sample

size T = 100.  Since the size of the tests does not depend on ρ  to any great extent, we

set ρ = 0 throughout these simulations.  In all the cases except when A I1 08= . , z1
*  is

generally seen to be more powerful than JT1 , often considerably so, and with power

gains of up to 22%.  When A I1 08= .  the powers appear roughly equal, but only

because JT1  is over-sized in this case.  Table 7 reports results from a similar exercise

using T = 200.  Consistency of the test z1
*  is clearly evident, which is as we would

expect given its origins in the Dickey-Fuller methodology.  Once more, z1
*  is

generally more powerful than JT1 , with gains of around 10% in mid-range power.

4.   An Empirical Example

As a simple example of  our test procedure, we test for cointegration between

short and long term U.K. interest rates.  The short term rate ( y t1 ) is the 91 day U.K.

Treasury Bill rate and the long term rate ( y t2 ) is the yield on 20 year U.K. gilts.  The

data are quarterly from 1952Q1-1988Q4 (148 observations), and were obtained from

Mill s (1993).  Augmented Dickey-Fuller tests applied to each series suggest that both

are I(1) without drift, not rejecting the I(1) null even at the 0.10 significance level (we

omit the detailed results here).  Table 8 gives the values of the cointegration test

statistics zp
*   and JTp  for p = 01 5, ,..., , where p is the order of the VAR model fitted
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to ∆yt  .  Using standard t-ratios to assess significance of the estimated coeff icients on

lagged terms in ∆yt  suggested p = 3 as the preferred order.  Also shown, as bmin  in

the table, is the value of b  found to minimize zp b( )τ , for each p.  The Johansen test

fails to reject at the 0.10-level the null hypothesis of no cointegration between the

interest rates for any of the lag lengths considered here, whereas zp
*   rejects non-

cointegration at the 0.05-level with p = 12 4, ,..., , and at the 0.10-level with p = 05, .

For this particular data set then, the zp
*   test suggests strong evidence of cointegration

between  short and long term interest rates, while the JTp  test does not.

5.   Summary

In this paper we have introduced a new test of the null hypothesis of no

cointegration between a pair of I(1) time series.  This test was motivated in Section 2

by observing the extremely variable power of the Engle-Granger/Dickey-Fuller

(EGDF) test, relative to the Johansen trace (JT) test, over a wide range of values of a

single parameter in a simple model.  It was seen that the very poor performance of the

EGDF test is associated with the severe bias in the least squares estimator of the

parameter in the cointegrating regression.  We therefore proposed circumventing the

estimation of the cointegrating regression by, in effect, applying the Dickey-Fuller test

to all li near combinations of the two time series.  Our test statistic, in the simple case

of Section 2, is then the Dickey-Fuller t-ratio that is least favourable to the null

hypothesis.  We saw, for the simple model, that neither the JT test nor the new test

exhibit the volatilit y in power characteristic of the EGDF test.  Moreover, simulation

evidence indicated that the new test was a good deal more powerful than the JT test.

A subsidiary benefit of our test, compared with EGDF, is that the test outcome does

not depend on the arbitrary choice of one series as the dependent variable in the

cointegrating regression.

Of course, for our test to have much practical value, it must be applicable in far

more general situations than that of Section 2, where every linear combination of the

series is a random walk under the null hypothesis, and a particular linear combination

is a stationary first order autoregression under the alternative.  An obvious possible
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extension would be to base the new test on augmented Dickey-Fuller regression, by

analogy with EGDF.  However, we prefer an alternative generalisation, for two

reasons.  First, we wanted a direct comparison with the JT test for finite order vector

autoregression.  However, linear combinations of series generated by such models

generally have infinite autoregressive order, requiring some truncation rule for fixing

the number of lags in the Dickey-Fuller regressions.  Second, since we are considering

all possible linear combinations of the series, choosing the number of lags in this way

is both problematic and computationally burdensome.  Different linear combinations

of the series will have different generating models.  This suggests the necessity either

of a different number of lags for every linear combination, which is practically

impossible, or the fixing for every possibilit y of a very high number of lags, which

would inevitably reduce the power of the test.

In Section 3 we proposed a general version of our test, which incorporates the

test of Section 2 as a special case, based on the prior fitting of vector autoregressions

to first differences of the time series.  Simulation results confirmed that this general

test has satisfactory size properties - more satisfactory in some cases than the JT test.

Moreover, the relative superiority in power of the new test, observed in the simple

case of Section 2, continues to hold for the vector autoregressions examined in a

simulation experiment in Section 3.  Finally, in Section 4 we applied the new test and

the JT  test to series of short-and long-term interest rates.  While the former suggested

strong evidence of cointegration, the latter did not, in a situation where several

authors, including Engle and Granger (1987), have suggested that cointegration might

reasonably be expected on a priori grounds.
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Appendix

Proof of Theorem 1.  The −t statistic τ b  is given by
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The identity in the second line of (5) defines the function ),( bau  from RR m ×  to R .

Next, we define a function )(ah  from mR  to R :

),(inf)( )( bauah ab φ∈≡ .

The function )(aφ  is a set function from mR  to R2  (power set of )R  defined as:

],[)( 21 bba ≡φ

for any mRa ∈  where 21,bb  are given in the theorem.  First, note that

=)( TZh )(inf bb z τℑ∈  whose limiti ng distribution we want to obtain.  The next step is

to show (i) the joint convergence of TZ  in distribution and (ii ) the continuity of )(ah .

     Since the last three elements in TZ  have degenerate limiti ng distributions and

],,)([ 111 ∑ ∑ −−− ′′′ TTvecT ttt ννν p→ 221 ]0,0,)([ ZGvec ′≡′ ×

it is suff icient to show the joint convergence of the first four components.  Using the

functional central limit theorem and continuous mapping theorem, we have
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See Sims, Stock and Watson (1990), Chan and Wei (1988) for more details.  Hence,

we have ZZT ⇒  where ),( 21 ZZZ ′′≡′ .

Next, we need to invoke the maximum theorem in Berge (1963) to show that

)(ah  is continuous.  The four conditions we need to verify are:

(i) The spaces mR  and R  on which ),( bau  is defined are Hausdorff .

(ii ) The function ),( bau  is continuous in both arguments.

(iii ) For all mRa ∈ , )(aφ  is not empty.

(iv) The set function )(aφ  is continuous.
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The first three conditions are trivially satisfied.  The last condition is proved by

showing that )(aφ  is upper semicontinous and lower semicontinous (See Takayama

(1985) for definitions).  Let mRa ∈0  and V  be an open set containing ℑ=)( 0aφ .

Define }1||||:{)( 00 <−∈≡ aaRaaN m  which is not empty.  Then, for any

)( 0aNa ∈ , we have Va ⊂)(φ  which implies that )(aφ  is upper semicontinous at

0a .  Since 0a  is an arbitrary point in mR , )(aφ  is upper semicontinous in mR .  Next,

we show that )(aφ  is lower semicontinous.  Let V  and )( 0aN  be the same sets

defined as above.  Then, for any mRa ∈ , ≠ℑ=∩Va)(φ ∅  which implies that )(aφ

is lower semicontinous at 0a .  Therefore, )(ah  is continuous and we have

)()( ZhZh T ⇒

by the continuous mapping theorem.  Note that ),(inf)( bZuZh b ℑ∈=  where
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ℑ∈= inf)(  which completes the proof.  ■

Proof of Theorem 2.  Basically the same arguments as used in Theorem 1 go through

in the proof of Theorem 2.  Note that
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Define a function )(ahp  from mR  to R :  ),(inf)( bauah pbp ℑ∈≡ .  It can be shown

that

(i) pT ZZ ⇒ˆ  where ))(,)(,( ′Ω′′≡′ vecGvecZZ p

(ii ) )(ahp  is continuous.

Therefore, we have )()ˆ( ppTp ZhZh ⇒  by the continuous mapping theorem.  Note

that

(i) =)ˆ( Tp Zh )(inf bpb z τℑ∈

(ii ) =)( pp Zh bb
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which completes the proof.  ■
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Table 1. Power of tests EGDF and JT for T = 100 and
T = 200 at nominal 0.10 and 0.05 criti cal values (4000 replications).

ρ φ T = 100 T = 200
EGDF JT EGDF JT

−0.9 0.9 0.098 0.252 0.179 0.609
0.051 0.148 0.096 0.420

−0.9 0.8 0.170 0.621 0.556 0.994
0.095 0.433 0.408 0.970

−0.9 0.7 0.323 0.924 0.868 1.000
0.196 0.809 0.767 1.000

−0.6 0.9 0.173 0.253 0.454 0.609
0.086 0.140 0.279 0.421

−0.6 0.8 0.441 0.621 0.955 0.992
0.292 0.434 0.893 0.967

−0.6 0.7 0.775 0.925 0.999 1.000
0.663 0.821 0.995 1.000

−0.3 0.9 0.228 0.255 0.607 0.611
0.120 0.139 0.417 0.421

−0.3 0.8 0.615 0.620 0.990 0.993
0.420 0.432 0.973 0.967

−0.3 0.7 0.916 0.925 1.000 1.000
0.821 0.828 0.999 1.000

0.0 0.9 0.266 0.252 0.703 0.604
0.145 0.142 0.509 0.418

0.0 0.8 0.718 0.618 0.999 0.994
0.525 0.428 0.990 0.968

0.0 0.7 0.962 0.922 1.000 1.000
0.905 0.824 1.000 1.000

0.3 0.9 0.303 0.252 0.756 0.606
0.167 0.142 0.579 0.414

0.3 0.8 0.781 0.620 0.999 0.993
0.592 0.423 0.997 0.967

0.3 0.7 0.979 0.920 1.000 1.000
0.935 0.821 1.000 1.000

0.6 0.9 0.329 0.249 0.798 0.601
0.185 0.140 0.618 0.409

0.6 0.8 0.821 0.618 1.000 0.994
0.646 0.434 0.999 0.969

0.6 0.7 0.987 0.922 1.000 1.000
0.957 0.814 1.000 1.000

0.9 0.9 0.354 0.252 0.823 0.600
0.203 0.141 0.651 0.418

0.9 0.8 0.842 0.613 1.000 0.994
0.677 0.439 1.000 0.967

0.9 0.7 0.995 0.917 1.000 1.000
0.965 0.814 1.000 1.000
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Table 2. Means and standard deviations of 
	
b  from

regression (2) for model (1) where b = 1, with T = 100
                                 (2000 replications).

ρ φ Mean Std. dev.

−0.9 0.9 −0.68 0.30
−0.9 0.8 −0.52 0.32
−0.9 0.7 −0.42 0.33
−0.6 0.9 −0.08 0.44
−0.6 0.8 0.13 0.39
−0.6 0.7 0.26 0.36
  0.0 0.9 0.51 0.36
  0.0 0.8 0.65 0.27
  0.0 0.7 0.72 0.22
  0.6 0.9 0.84 0.21
  0.6 0.8 0.89 0.14
  0.6 0.7 0.92 0.10
  0.9 0.9 0.96 0.10
  0.9 0.8 0.98 0.06
  0.9 0.7 0.98 0.04

Table 3. Criti cal values of τ *  (20000 replications).
T 0.10 0.05 0.01

  25 −3.61 −3.96 −4.75
50 −3.46 −3.77 −4.40
100 −3.41 −3.70 −4.24
200 −3.37 −3.65 −4.21
400 −3.36 −3.63 −4.16

Table 4. Power of test τ *  for T = 100 and
T = 200 at nominal 0.10 and 0.05 criti cal

values (4000 replications).
φ T = 100 T = 200

0.9 0.266 0.695
0.153 0.507

0.8 0.721 1.000
0.516 0.997

0.7 0.975 1.000
0.922 1.000
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Table 5. Size of Tests z1
*  and JT1  for T = 100 and T = 200 at nominal 0.10 and 0.05
criti cal values (4000 replications).

A1 φ ρ T = 100 T = 200

z1
* JT1 z1

* JT1

[0.0 0.0, 0.0 0.0] 0.0 0.0 0.118
0.059

0.112
0.056

0.111
0.056

0.110
0.053

[0.4 0.0, 0.0 0.4] 0.0 0.0 0.094
0.045

0.122
0.061

0.096
0.046

0.113
0.054

[0.4 0.2, 0.2 0.4] 0.0 0.0 0.101
0.049

0.126
0.061

0.096
0.048

0.116
0.056

[0.8 0.0, 0.0 0.8] 0.0 0.0 0.113
0.062

0.171
0.093

0.096
0.047

0.137
0.069

[0.4 0.4, 0.4 0.4] 0.0 0.0 0.125
0.069

0.144
0.077

0.107
0.056

0.125
0.064

[0.0 0.0, 0.0 0.0] 0.0 0.5 0.119
0.059

0.112
0.056

0.110
0.056

0.110
0.053

[0.4 0.0, 0.0 0.4] 0.0 0.5 0.094
0.045

0.122
0.061

0.095
0.045

0.113
0.054

[0.4 0.2, 0.2 0.4] 0.0 0.5 0.098
0.049

0.123
0.062

0.095
0.047

0.116
0.057

[0.8 0.0, 0.0 0.8] 0.0 0.5 0.108
0.058

0.171
0.093

0.097
0.045

0.137
0.069

[0.4 0.4, 0.4 0.4] 0.0 0.5 0.115
0.066

0.144
0.077

0.098
0.046

0.123
0.062

[0.0 0.0, 0.0 0.0] 0.0 -0.5 0.118
0.057

0.112
0.056

0.112
0.056

0.110
0.053

[0.4 0.0, 0.0 0.4] 0.0 -0.5 0.094
0.045

0.122
0.061

0.094
0.046

0.113
0.054

[0.4 0.2, 0.2 0.4] 0.0 -0.5 0.099
0.050

0.125
0.062

0.100
0.046

0.112
0.055

[0.8 0.0, 0.0 0.8] 0.0 -0.5 0.108
0.059

0.171
0.093

0.100
0.048

0.137
0.069

[0.4 0.4, 0.4 0.4] 0.0 -0.5 0.123
0.068

0.145
0.077

0.108
0.058

0.125
0.063
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Table 6. Power of Tests z1
*  and JT1  for T = 100, 0=ρ

at nominal 0.10 and 0.05 criti cal values (4000 replications).
A1 φ z1

* JT1

[0.0 0.0, 0.0 0.0] 0.90 0.311
0.192

0.261
0.140

[0.0 0.0, 0.0 0.0] 0.80 0.749
0.577

0.577
0.403

[0.0 0.0, 0.0 0.0] 0.70 0.970
0.922

0.843
0.696

[0.4 0.0, 0.0 0.4] 0.90 0.244
0.133

0.259
0.144

[0.4 0.0, 0.0 0.4] 0.80 0.550
0.372

0.490
0.341

[0.4 0.0, 0.0 0.4] 0.70 0.825
0.667

0.714
0.548

[0.4 0.2, 0.2 0.4] 0.90 0.274
0.166

0.276
0.153

[0.4 0.2, 0.2 0.4] 0.80 0.652
0.469

0.553
0.383

[0.4 0.2, 0.2 0.4] 0.70 0.919
0.815

0.793
0.643

[0.8 0.0, 0.0 0.8] 0.90 0.223
0.133

0.238
0.139

[0.8 0.0, 0.0 0.8] 0.80 0.340
0.218

0.330
0.196

[0.8 0.0, 0.0 0.8] 0.70 0.427
0.285

0.395
0.257

[0.4 0.4, 0.4 0.4] 0.90 0.345
0.222

0.313
0.180

[0.4 0.4, 0.4 0.4] 0.80 0.762
0.614

0.608
0.434

[0.4 0.4, 0.4 0.4] 0.70 0.975
0.923

0.858
0.727
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Table 7. Power of Tests z1
*  and JT1  for T = 200, 0=ρ

at nominal 0.10 and 0.05 criti cal values (4000 replications).
A1 φ z1

* JT1

[0.0 0.0, 0.0 0.0] 0.95 0.280
0.173

0.248
0.137

[0.0 0.0, 0.0 0.0] 0.90 0.707
0.533

0.595
0.404

[0.0 0.0, 0.0 0.0] 0.80 0.998
0.991

0.975
0.928

[0.4 0.0, 0.0 0.4] 0.95 0.239
0.134

0.250
0.138

[0.4 0.0, 0.0 0.4] 0.90 0.605
0.420

0.533
0.370

[0.4 0.0, 0.0 0.4] 0.80 0.981
0.936

0.941
0.848

[0.4 0.2, 0.2 0.4] 0.95 0.250
0.146

0.262
0.146

[0.4 0.2, 0.2 0.4] 0.90 0.655
0.473

0.576
0.396

[0.4 0.2, 0.2 0.4] 0.80 0.992
0.969

0.967
0.910

[0.8 0.0, 0.0 0.8] 0.95 0.220
0.123

0.244
0.130

[0.8 0.0, 0.0 0.8] 0.90 0.435
0.285

0.404
0.253

[0.8 0.0, 0.0 0.8] 0.80 0.752
0.584

0.657
0.488

[0.4 0.4, 0.4 0.4] 0.95 0.288
0.167

0.282
0.160

[0.4 0.4, 0.4 0.4] 0.90 0.708
0.544

0.608
0.437

[0.4 0.4, 0.4 0.4] 0.80 0.998
0.991

0.976
0.937

Table 8. Values of the tests zp
*   and JTp  applied to the Interest

Rate series.
p zp

* JTp bmin

0    −3.38* 13.64 0.831
1     −3.74** 14.32 0.828
2     −3.91** 14.33 0.833
3         −−4.10** 1414..6060 00..846846
4     −3.79** 13.43 0.865
5   −3.44* 11.55 0.834

                           * (** ) denotes significant at the 0.10 (0.05) level.


