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Abstract

We investigate the Nash equilibria of asymmetric, winner-take-all, imper-
fectly discriminating contests, focussing on existence, uniqueness and rent
dissipation. When the contest success function is determined by a pro-
duction function with decreasing returns for each contestant, equilibria are
unique. If marginal product is also bounded, limiting total expenditure is
equal to the value of the prize in large contests even if contestants di¤er.
Partial dissipation can occur only when in…nite marginal products are per-
mitted. Our analysis relies heavily on the use of ‘share functions’ and we
discuss their theory and application. Increasing returns typically introduces
multiple equilibria and requires an extension of share functions to correspon-
dences. We describe the appropriate theory and apply it to the characterisa-
tion of all equilibria of contests employing the asymmetric generalisation of
a widely-used symmetric contest success function.

Keywords: Contests, rentseeking, noncooperative games, share functions,
share correspondences.
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1 Introduction

There is now a large and growing literature on the theory and application of
contests. At its simplest a contest is a game in which players expend e¤ort to
increase their chance of winning a prize. An early contribution by Tullock[29]
assumes identical risk neutral contestants who expend resources competing
for an exogenous prize. Contestant i wins the prize with probability pi =
xi=

P
j xj, where xi is the level of resources expended by i. This formulation of

the ‘contest success function’ implies that, if at least one contestant expends a
strictly positive level of resources, the prize will be won by one of the players
with certainty. However, the outcome is not well-de…ned if xi = 0 for all
contestants, and in that case it is typically assumed that there is no contest,
and the prize is not won. Tullock was principally interested in the extent
to which monopoly rents were dissipated in the act of rentseeking. Since
Tullock’s contribution, the basic model has been extended in many directions.
For example, Hillman and Katz[11], Hillman and Samet[13], Skaperdas and
Gan[26] and Konrad and Schlesinger[15] examine the implications of strict
risk aversion among contestants. Perez-Castrillo and Verdier[20] explore the
implications of a contest success function of the form pi = xri=

P
j x

r
j where

r > 0 is an exogenous discrimination factor, and Nti[19] considers contests in
which there is a positive probability that no player wins the rent. Corchon[3]
allows prior probabilities that the prize will go to one of the agents even
if no resources are expended on the contest. The resources expended by
contestants modify the prior probability. Dixit[5] analyses a Stackelberg
formulation in which one player is able to precommit.

An important motivation for these and various other extensions is the
recognition that a wide variety of problems are contests of some kind. They
have been used to model rent-seeking (Tullock[29], Hillman[10]), con‡ict and
appropriation (Gar…nkel and Skaperdas[9]), R&D and patent races (Loury[16],
Beath et al[1], Nti[19]), nonprice competition (Huck et al[14]), the choice be-
tween lobbying and litigation (Rubin et al[23]), the periodic contests between
cities and countries to host prestigious events such as the Olympic Games
(Corchon[3]) and status games (Frank[6], Frank and Cook[7]). There remain
many further problems that invite modelling as contests - for example, the
competition between universities for students, and the competitive applica-
tion for grants by researchers.

However, in spite of the many extensions and applications of the basic
framework - ably surveyed by Nitzan[17] and Tollison[28] - and the prospects
of many further applications, certain fundamental modelling issues have been
only incompletely addressed. For example, the characterisation of Nash equi-
libria when the technology for transforming e¤ort into probability of winning
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the contest exhibits increasing returns has not been investigated for heteroge-
neous contests. Another issue arises from the …nding in the early literature
on rent-seeking that with free entry the whole rent will be dissipated in rent
seeking at least when potential contestants have access to the same linear
‘technology’. The claim that this appears to predict higher rent-seeking
expenditures than are typically observed has been christened the “Tullock
paradox” by Riley[22] and motivates a search for modi…cations leading to
partial rent dissipation. Potential candidates are high entry costs, modi…ed
technologies and heterogeneous contestants. One possible reason why these
issues remain unaddressed is the di¢culty of handling non-identical players
by conventional means, which treat Nash equilibrium as a …xed point of the
best response mapping. This entails working in a space of dimension equal
to the number of players. In this paper, we adopt an alternative approach
introduced in Cornes and Hartley [4] which allows us to work entirely with
functions of a single variable, considerably simplifying the analysis. A sub-
sidiary aim of this paper is to illustrate the power of this technique, whose
scope for application to this area is by no means exhausted in our discussion.

The present paper follows Perez-Castrillo and Verdier[20] and most of the
literature in con…ning attention to contests played by risk neutral contestants.
In return for this self-imposed restriction, we are able to focus on the role
played by the technology that transforms e¤orts into winning probabilities.
In particular we scrutinise the implications of representing this technology
by a homogeneous function, as suggested by Tullock and adopted by others.

Section 2 describes the basic contest. Section 3 analyses the simplest
situation in which the technology available to each contestant is linear and
also allows us to introduce our approach in a relatively uncomplicated setting.
Section 4 extends the analysis to incorporate a general decreasing-returns
technology and Section 5 analyses situations involving increasing returns.

2 The basic model of contests

There are n contestants, where n > 2, in a ‘winner take all’ contest. Con-
testant i has initial wealth Ii and chooses an e¤ort level xi. The greater is
xi, the greater is the probability that contestant i will be the sole winner of
the exogenous prize R. The probability that contestant i wins the rent is

pi =
fi (xi)Pn
j=1 fj (xj)

(1)

where fi (¢) is an increasing function for all i. Some authors - for example,
Szidarovszky and Okuguchi[27] - call fi (¢) contestant i’s ‘production function
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for lotteries’. Contest success functions such as (1) in which an increase in
e¤ort always increases the probability of winning are often called imperfectly
discriminating - see Hillman and Riley[12] - in contrast to perfectly discrim-
inating contests in which the prize is awarded to the contestant supplying
the most e¤ort. An axiomatic foundation for the form (1) was o¤ered by
Clark and Riis [2]. A particularly well-studied form for fi is fi (xi) = aix

ri
i ,

where ri > 1 and ai > 0, and we shall return to it at various points in the
exposition. This form was introduced by Tullock[29] and given an axiomatic
foundation in symmetric contests by Skaperdas[25].

It will prove convenient to change variables by setting yi = fi (xi) for each
i. Then the function fi (¢) may be thought of as transforming individual
e¤ort xi into an ‘intermediate input’ yi. We will henceforth refer to xi as the
e¤ort, and yi as the input, of contestant i. Since fi is monotonic, it has a
well-de…ned inverse function, gi (yi) = f¡1i (yi). The function gi (yi) describes
the total cost to contestant i of generating the level yi of input. Writing
Y for the aggregate input - Y =

Pn
i=1 yi - the probability that contestant i

wins is pi = yi=Y , which is that contestant’s share of the total input into the
contest. This ratio plays a key role in subsequent analysis, and we denote it
by ¾i:

We shall assume throughout the paper that contestants are risk neutral.
Consequently, the payo¤ of contestant i is

pi [Ii +R ¡ xi] + (1¡ pi) (Ii ¡ xi) ,

which can be written in transformed variables as

¼i
³
yi; eYi

´
=

�
yi

yi + eYi

¸
R+ Ii ¡ gi (yi) , (2)

where eYi = Y ¡ yi =
P

j 6=i yj. The expression (2) applies provided at least
one contestant makes a positive input. If yi = 0 for all i we assume that
no player wins the rent so that ¼i (0; 0) = Ii. This de…nes a simultaneous-
move game and the solution concept we use throughout the paper is that
of a pure-strategy Nash equilibrium of this game: a vector of input levels in
which each player’s e¤ort maximises his payo¤ given the e¤ort levels of all
his opponents.

The simplest technology that is encountered in the literature is the linear
technology, under which e¤ort is transformed into input under constant re-
turns to scale: yi = aixi, where ai > 0 is a multiplicative parameter re‡ecting
i’s e¢ciency in this transformation. This technology is analysed in Section 3.
In particular, we show that there is a unique Nash equilibrium and investi-
gate large contests. Section 4 extends the model by considering a decreasing
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returns to scale technology. As in Section 3, we prove that a unique Nash
equilibrium exists. We also subject to critical scrutiny the suggestion made
by Tullock and adopted by a number of later writers of using a homoge-
neous production function, fi (xi) = aixri , 0 < r < 1. We argue that it is
not entirely innocuous in this context. Although it is indeed a very simple
way of introducing decreasing returns, it also implies unbounded marginal
product as an individual’s e¤ort level approaches zero. In the rentseeking
context this feature has signi…cant implications in large contests. We also
suggest how decreasing returns may be modelled to avoid this di¢culty and
investigate the corresponding large-game limit. In Section 5, we extend the
analysis to contests with increasing returns to scale technology. This has
profound e¤ects: there may be multiple equilibria or even no equilibria at all
and the results for large contests found when returns to scale are constant or
decreasing do not extend to this case. However, we are able to characterise
the set of Nash equilibria, even in the form of an analytic solution when the
contest is symmetric.

3 Contests with linear technologies

In this section we consider the case in which all contestants use a linear
technology for converting e¤ort into input. We single this case out for
special study as it will allow us to introduce our approach in a relatively
uncomplicated setting where explicit formulae are available. We assume that
fi (x) = aix, where ai > 0 is a multiplicative e¢ciency factor for contestant
i. If ai > aj , contestant i is inherently more productive than contestant
j and has to apply less e¤ort to obtain a given incremental increase in the
probability of winning.

3.1 Share functions

With linear fi, equation (2) becomes

¼i
³
yi; eYi

´
=

yi

yi + eYi
R + Ii ¡

yi
ai

(3)

which is strictly concave in yi. So yi > 0 is a unique best response to eYi if
and only if

y2i + 2eYiyi +
³

eY 2i ¡ aiReYi
´
= 0. (4)

Restricting attention to the positive solution of this quadratic in yi, and
taking account of the requirement that the input level must be non-negative,
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the best response byi to eYi satis…es

byi = max
½q

aiReYi ¡ eYi; 0
¾
: (5)

Rather than work directly with best responses, which can become very
messy when contestants are heterogeneous, a considerable simpli…cation can
be achieved by an alternative approach. Player i’s replacement function1

ri (Y ) is de…ned for any Y > 0 by requiring ri (Y ) to be the best response to
to eYi = Y ¡ ri (Y ) so that, from (5), we obtain

ri (Y ) = max

½
Y ¡ Y 2

aiR
; 0

¾
. (6)

Rather than use the replacement function directly, it proves convenient to
divide both sides of (6) by Y > 0. We refer to the resulting function as
contestant i’s share function, si (Y ). Note that si (Y ) is the probability
that contestant i wins so i’s share function can be thought of as her prob-
ability of winning when equilibrium aggregate input is equal to Y . Since
this function is the key to subsequent analysis, we display it explicitly in the
following proposition.

Proposition 3.1 If fi (x) = aix for contestant i, a share function exists for
that contestant and satis…es

si (Y ) = max

½
1¡ Y

aiR
; 0

¾
for all Y > 0: (7)

Figure 1 shows the graphs of the best response, replacement and share
functions of a risk neutral contestant with linear technology. Observe that
the best response function graphed in Panel (a) is not monotonic. Therefore
proofs of results that rely on monotonicity of best responses are not available
to us in this model. The graph of the replacement function in Panel (b)
is easily obtained from that of the best response function. At each point
- for example

h
eY 0; by

³
eY 0

´i
- on the graph of the best response function,

construct a square with that point as its top left hand corner. Then its top
1If aggregate input level is Y and ri (Y ) is removed from this input, player i’s best

response is to replace this shortfall to restore the level to Y . This explains our terminology.
The same function is referred to as the ‘backward best response function’ by Novshek
[18]. Selten[24] calls it the ‘Einpassungsfunktion’, which Wolfstetter[31] translates as the
‘inclusive reaction function’, and Phlips[21] calls it the ‘…tting-in function’. Brief references
to this function can also be found in Friedman[8] and Vives[30].
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right hand corner represents the corresponding point on the graph of the

replacement function. This construction simply adds the quantity by
³

eY 0
´

horizontally to the quantity eY 0, so that the graph in panel (b) maps by
³

eY 0
´

against Y = eY + by
³

eY 0
´
. A further purely geometric device enables us to

construct the graph of the implied share function, shown in Panel (c). Draw
the ray from the origin that passes through a given point, say (Y 0; y0), on
the graph of the replacement function. At the point where this ray where
Y = 1, its height measures the share value implied by (Y 0; y0). The associated
point on the graph of the share function is therefore (Y 0; ¾0). Although this
purely geometric argument contributes no additional economic insights, it
serves to stress that the three functions are no more than alternative ways
of presenting precisely the same information. The choice between them may
be guided by analytical convenience. Moreover, the simple piecewise-linear
form of the share function suggests that this is the most convenient to use.

Important properties of the share function for subsequent analysis are
that it is continuous (indeed piece-wise linear), its value approaches 1 as
Y ! 0, it falls (linearly) as Y increases until Y = aiR, and remains at zero
thereafter.

3.2 Nash equilibria

Figure 2 shows the share functions for four individuals with di¤erent unit
costs. It also shows the graph of the aggregate share function, obtained sim-
ply by adding the graphs of the individual share functions vertically. Nash
equilibrium values of Y occur where the aggregate share function equals
unity. In our example, this gives Y ¤ satisfying

nX

i=1

si (Y
¤) =

nX

i=1

�
max

½
1¡ Y ¤

aiR
; 0

¾¸
= 1 (8)

The thick line in Figure 2 is the graph of the vertical sum of the individual
share functions, and the Nash equilibrium value, Y ¤, is the unique value at
which this sum is unity. Given Y ¤, the corresponding equilibrium strategy
pro…le is found by multiplying Y ¤ by each contestant’s share evaluated at
Y ¤: y¤i = Y

¤si (Y ¤).
The properties of the individual share functions imply the following prop-

erties of the aggregate share function: (i) it is continuous, (ii) for su¢ciently
small values of Y its value exceeds 1, while for su¢ciently large values of Y
its value is zero, and (iii) it is strictly decreasing in Y whenever it is positive.
From these observations we can immediately infer existence and uniqueness.
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Theorem 3.1 If fi (x) = aix for i = 1; : : : ; n, the contest has a unique Nash
equilibrium.

3.3 Large contests

Students of rentseeking contests have been particularly concerned with the
question of whether, and under what conditions, the resources expended in
the contest fully dissipate the rent. In particular, when all contestants are
identical, technology is linear and there are no barriers to entry, the rent is
completely dissipated. Rather than model entry directly, we address the
issue by considering the limit as the number of players tends to in…nity. In
the same spirit, we can regard results on rent dissipation with a …nite number
of players as a re‡ection of positive barriers to entry.

The extent of rent dissipation is easily addressed using share functions.
Recall, however, that the value of resources expended is measured not by Y .
Rather, it is the value of X =

P
i xi that we need to examine. The next

result puts an upper bound on X=R.

Theorem 3.2 Suppose that fi (x) = aix for i = 1; : : : ; n and m contestants
are active in equilibrium. The proportion of rent dissipated in equilibrium will
not exceed (m¡ 1) =m and will equal this if and only if all active contestants
are identical.

Note particularly that, if each contestant has the same technology, then
each of the n contestants will be an active contestant and the proportion of
rent dissipated is (n¡ 1) =n and in a large contest the rent is almost fully
dissipated.

However, the theorem allows us to analyse large asymmetric contests. A
simple way of generating such a contest is as follows. Imagine a population
consisting of a discrete number of types of individual, distinguished by their
ability parameters. Figure 2 may be interpreted as showing the share function
of each of four ability types: s1 (:) is the share function of an individual with
the highest ability and a1 > a2 > a3 > a4. Call an individual whose e¢ciency
factor is ai a ‘type i’. The use of share functions shows in a very simple and
direct manner the implications of increasing the number of contestants by
repeated draws from the population of types. If two type 1’s are drawn, the
aggregate share function of these two individuals alone is the sum of their
two individual share functions. It passes through the point H and its slope
is twice that of s1 (:). If a third is added, the graph of the aggregate share
function of the three individuals again passes through H, and is yet steeper -
three times the slope of s1 (:) - and so on. Clearly there is a …nite number of
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type 1’s at which the equilibrium level of Y implied by their aggregate share
function exceeds the point D at which the next highest type drops out of the
contest. If the number of type 1’s equals or exceeds this value, then only this
type will actively contest the prize at equilibrium. More generally, let there
be T ability types, and adopt the convention that a1 > a2 > ¢ ¢ ¢ > aT . Denote
the number of type i’s drawn from the population by ni. Consider the sum
of the share functions of the highest ability type, whose ability parameter is
a1. As their number grows, so too does the value of Y that would represent a
Nash equilibrium if only type 1’s were contesting the rent. For large enough
n1 this value exceeds the maximum value of Y at which type 2 individuals
would want to contest the rent. This situation arises if Y ¤ > a2R, where

n1

µ
1¡ Y ¤

a1R

¶
= 1.

which simpli…es to n1 > a1= (a1 ¡ a2) and yields the following result:

Theorem 3.3 Let there be contestants of T ability types, with e¢ciency fac-
tors a1 > a2 > ¢ ¢ ¢ > aT . Then, if n1 > a1= (a1 ¡ a2), only type 1 contestants
will devote a positive level of e¤ort to contesting the rent. As n1 tends to
in…nity, the rent is wholly dissipated.

In the next section, we examine a more general convex technology for
converting e¤ort into input. Our objective is to test the robustness of the
conclusions of the present section and to establish analogous results in a more
general setting.

4 Contests with convex technologies

Throughout this section, we maintain the following assumption:
A.1 For contestant i(= 1; : : : ; n) the production function fi satis…es the

following conditions:

fi (0) = 0, and f 0i (x) > 0, f
00
i (x) 6 0 for all x > 0:

Note that the implied cost function, gi = f¡1i , has the following properties:

gi (0) = 0, and g0i (y) > 0, g
00
i (y) > 0 for all y > 0.
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4.1 Share functions

As in the previous section, the key to the analysis of Nash equilibria and
large contests is the share function of individual contestants. In contrast to
the case of constant returns to scale, typically we can no longer write down
an explicit functional form for the share function. However, this will not
prevent us from using the …rst order conditions for best responses to obtain an
implicit equation for shares from which appropriate qualitative properties can
be deduced. This is facilitated by the recognition that contestant i’s payo¤
function, given by (2) is a strictly concave function of yi under assumption
A.1. As a result, the …rst-order conditions are necessary and su¢cient for
best responses and can be written in the form (recalling that the share value
¾i = yi=Y ):

g0i (¾iY )Y > (1¡ ¾i)R (9)

with equality if ¾i > 0. This condition leads directly to the next proposition,
proved in Appendix 2.

Proposition 4.1 If A.1 holds for contestant i there a share function: si (Y ).
si (Y ) satis…es si (Y ) = 0 if and only if f 0i (0) <1 and Y > Rf 0i (0). Other-
wise, si (Y ) = ¾, where ¾ is the unique solution of:

(1¡ ¾)R = g0i (¾Y )Y (10)

We may use this proposition to infer that the crucial qualitative properties
of the share function derived under the assumption of constant returns to
scale continue to hold for decreasing returns. The full details are set out in
the following proposition, proved in Appendix 2.

Proposition 4.2 If A.1 holds for contestant i, the share function si (Y ) has
the following properties:

1. si (Y ) is continuous,

2. limY!0 si (Y ) = 1,

3. si (Y ) is strictly decreasing where positive,

4. if i’s marginal product is bounded, si (Y ) > 0 for 0 < Y < Rf 0i (0) and
si (Y ) = 0 if Y > Rf 0i (0),

5. if i’s marginal product is unbounded, si (Y ) > 0 for all Y > 0 and
si (Y ) ! 0 as Y ! 1.
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Diminishing marginal product means that whether the marginal product
is bounded or not is determined by behaviour at the origin. In the for-
mer case f 0i (0) is …nite and the share function decreases continuously from
one to zero over the interval (0; Rf 0i (0)) beyond which it takes the value
zero. We refer to Rf 0i (0) as player i’s dropout point. If equilibrium Y
exceeds a player’s dropout point, that player will not be an active partici-
pant. Unbounded marginal product means that f 0i (0) is in…nite and there
is no dropout point. The share function decreases from one to zero over all
positive Y .

These observations shed light on a signi…cant implication of the form
of fi (¢) suggested by Tullock and adopted by others. Assume, following
Tullock’s suggestion, that fi (x) = xri where 0 < ri 6 1. In the case ri = 1,
dealt with in the preceding section, marginal product is bounded, indeed
constant, and therefore the share function takes the value zero for large
enough Y . One consequence, explored in that section, is that a contestant
with such a production function may be driven out of active participation
by more e¢cient opponents. Another consequence, as we shall see later,
is the full rent dissipation discovered in that section which turns on the
boundedness or otherwise of marginal product. The case r < 1 captures in
a simple way the idea of decreasing returns. However, it also implies that
the marginal product of contestant i’s e¤ort is unbounded above: f 0 (0) is
in…nite. Then, Proposition 4.2 asserts that contestant i makes a positive
e¤ort (though one approaching zero for large Y ) in any equilibrium. There
is no value of Y at which the contestant will drop out of the contest. She
will always want to apply a strictly positive level of e¤ort.

Unbounded marginal product appears to deny the economic fact of scarcity2.
It seems more plausible to suppose that the marginal product is bounded
above, so that there is a strictly positive lower bound to the marginal cost.
This can be arranged by a slight modi…cation of the production function.
For example, the form fi (xi) = (xi + ki)

ri ¡ krii also exhibits decreasing re-
turns to scale but has bounded marginal product provided ki > 0. This
signi…cantly changes the nature of equilibria in large games.

2The Inada conditions, widely used in applications such as growth theory include a
similar assumption. However, these conditions are typically employed to avoid awkward
boundary problems by pushing solution paths away from the boundaries and their in…-
nite marginal products. By contrast, in large contests, participants supply vanishingly
small levels of input, placing them right in the economically implausible region where the
marginal product becomes arbitrarily large.
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4.2 Nash equilibria

Properties of share functions enable us to study Nash equilibria. Recall that
Y ¤ is an equilibrium value of aggregate input if and only if the sum of the
share functions over all contestants takes the value one at Y ¤. It follows
from Proposition 4.2 that the aggregate share function exceeds one for small
Y and is less than one for large Y . Since it is also continuous, there is an
equilibrium value of aggregate input. Proposition 4.2 also implies that the
aggregate share function is strictly decreasing, so the equilibrium value is
unique. Finally, recall that a unique Y ¤ implies a unique strategy pro…le
and we have the following result:

Theorem 4.1 If A.1 holds for all participants, the contest has a unique
Nash equilibrium.

This result was …rst proved by Szidarowszky and Okuguchi[27], using a
more involved application of replacement functions rather than direct use of
share functions.

4.3 Large games

Whether or not the marginal product is bounded has profound implications
for the extent to which rent is dissipated in the limit. In particular, when the
marginal product is bounded in a large symmetric game, almost the whole
rent is dissipated. The intuition behind this conclusion is straightforward.
Bounded marginal product implies that share functions eventually become
zero (Part 4 of Proposition 4.2). This dropout point places an upper bound
on the equilibrium value of aggregate input for any number of players. Since
there is a unique equilibrium (Theorem 4.1), each player’s input becomes
arbitrarily small. Then a bounded marginal product allows us to use a linear
approximation and hence exploit the results for linear production functions
obtained in the preceding section. In particular, rent is fully dissipated in
the limit. The following theorem states this result and a formal proof is
given in Appendix 2.

Theorem 4.2 Suppose every contestant has the same technology which has
a bounded marginal product and satis…es A.1. As the number of contestants
tends to in…nity, the proportion of rent dissipated tends to unity.

The assumption that all contestants are identical is not a prerequisite
for full rent dissipation in the limit. An argument similar to that used to
justify Proposition 3.3 can be applied here. Suppose there are …nitely many
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types of contestant. If all contestants have a bounded marginal product,
there is a dropout point for each type and we refer to the type with the
highest dropout point as the most e¢cient. If there are enough contestants
of the most e¢cient type, the aggregate share function will exceed one at the
dropout points of all other types. This means that only contestants of the
most e¢cient type participate and the preceding theorem can be applied to
show that almost all the rent will be dissipated in large contests.

When marginal product is unbounded, these results must be modi…ed.
To address these issues, we focus on the case where all production functions
are proportional to xr, where 0 < r < 1. Such production functions, of
course, have unbounded marginal product and the next proposition, proved
in Appendix 2, gives an upper bound to equilibrium rent dissipation.

Theorem 4.3 Suppose fi (x) = aixr for i = 1; : : : ; n, where 0 < r < 1. The
proportion of rent dissipated in equilibrium will not exceed (n¡ 1) r=n and
will equal this if and only if all contestants are identical.

As in the case of linear production functions discussed in the preceding
section, strategic e¤ects in contests with identical participants lead to equi-
librium aggregate e¤ort being reduced by a factor inversely proportional to
the number of players. By contrast, however, even when there are many
contestants rent dissipation is incomplete by a factor r. We reiterate that
what leads to incomplete dissipation is not decreasing returns to scale per se
but rather the unbounded marginal product implicit in the speci…c functional
form. If this economically problematic assumption is avoided by modifying
the production function to a form which has decreasing returns but bounded
marginal product, Theorem 4.2 shows that the whole rent is dissipated in
the limit.

5 Contests with nonconvex technologies

In this section, we characterise Nash equilibria for contests in which some
or all contestants have production functions exhibiting increasing returns.
Increasing returns introduce complications not found when returns are con-
stant or decreasing. First, a contestant’s payo¤ is no longer a concave or
even pseudo-concave function of her own strategy. This means that the …rst-
order conditions are not su¢cient to characterise optima and non-unique best
responses may arise. Second, and consequently, there may be more than one
share value consistent with a given level of aggregate input. Hence, share
functions may be multi-valued and we need to resort to correspondences to
examine equilibria.
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Under increasing returns details of the analysis depend on the precise
form of the production function. We follow the literature by modelling
increasing returns with the production function fi (x) = aixri where ri > 1
(and ai is an e¢ciency factor as above). However, our method is much more
general; qualitatively similar results obtain for a wide range of production
functions. In the next subsection, we de…ne and elucidate the properties of
share correspondences for contestants with such production functions. In the
following subsections we apply these results to characterise Nash equilibria
and to investigate large games.

5.1 Share correspondences

We de…ne contestant i’s share correspondence Si (Y ) for Y > 0 to be the
set of share values ¾ such that yi = ¾Y is a best response to eYi = Y ¡ yi. In
order to derive the properties of share correspondences we …rst need to derive
necessary and su¢cient conditions for best responses. When ri > 1, the
payo¤ function ¼i

³
yi; eYi

´
is not concave but neither is it without structure.

When eYi > 0, it takes the value 0 at y = 0, is initially decreasing, has at most
two stationary points and is eventually negative. Figure 3 graphs contestant
i’s payo¤ against yi for several values of eYi. Depending on the value of eYi,
the maximum occurs either at yi = 0 or at the rightmost stationary point or
possibly both. There are two maxima if

eYi = Y i
def
= aiR

ri
(ri ¡ 1)ri¡1

rrii
.

For positive eYi < Y i, the best response is at the unique level of input at which
marginal payo¤ is zero and the payo¤ itself is positive. For eYi > Y i, the
best response is zero. For example, suppose ai = 1, ri = 3=2 and R = 2. If
eYi = Y i =

p
32=27, there are two local maxima: y = 0 and y = byi =

p
8=27.

For eYi <
p
32=27, the interior maximum is indeed the true global maximum,

whereas for eYi >
p
32=27, the maximum payo¤ of zero is achieved at y = 0.

A detailed justi…cation of these claims may be found in Appendix 3 as part
of the proof of the next proposition.

Proposition 5.1 Suppose fi (x) = aixri. Then

1. if eYi = 0, player i has no best response,

2. if 0 < eYi < Y i, player i has a unique best response: the solution in y of

ri a
1=ri
i R eYi y(ri¡1)ri =

³
y + eYi

´2
and a1=rii Ry1¡

1
r >

³
y + eYi

´
, (11)
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3. player i has two best responses to eYi = Y i: 0 and

byi = aiRri
�
ri ¡ 1
ri

¸ri
,

4. if eYi > Y i, player i’s unique best response is 0.

Proposition (5.1) can be used to characterise share correspondences. First,
it follows immediately that Si (Y ) contains zero if and only if Y > Y i. There
is also a range of values of Y for which a positive share lies in Si (Y ). Specif-
ically, we have a function s+i (Y ) de…ned for 0 < Y 6 Y i where

Y i = aiR
ri

µ
ri ¡ 1
ri

¶ri¡1
> Y i

and s+i (Y ) is a member of Si (Y ) if and only if 0 < Y 6 Y i. Further-
more, Si (Y ) contains no other positive shares. This is illustrated in Figure
4. Observe that, in the interval

£
Y i; Y i

¤
, the share correspondence has one

positive and one zero member. Outside this interval, Si (Y ) is a singleton.
Furthermore, s+i (Y ) approaches unity for small Y and decreases strictly to
(ri ¡ 1) =ri at Y i. Typically, we cannot obtain an explicit expression for s+i
but it is the partial inverse of an explicit function given in the next propo-
sition, which also summarises the results above. The proof is in Appendix
3.

Proposition 5.2 If fi (x) = aixri , where ri > 1, contestant i’s share corre-
spondence satis…es

Si (Y ) =

8
<
:

©
s+i (Y )

ª
if 0 < Y < Y i,©

0; s+i (Y )
ª

if Y i 6 Y 6 Y i,
f0g if Y > Y i,

where s+i is the inverse of the function

Ái (¾) = aR
riri

ri [1¡ ¾]ri ¾ri¡1. (12)

restricted to the interval (ri ¡ 1) =ri 6 ¾ < 1. Furthermore, s+i is continu-
ous, strictly decreasing and satis…es

s+i (Y ) ! 1 as Y ! 0, and

s+i
¡
Y i

¢
=

ri ¡ 1
ri

.
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5.2 Nash equilibria

As with share functions, the properties of the share correspondences set out
in Proposition 5.2 allow us to characterise Nash equilibria in contests where
all contestants have production functions with increasing returns. This is
achieved by studying the aggregate share correspondence of a game which is
obtained by combining the individual share correspondences using addition
of sets. Formally,

S§ (Y ) =
nX

i=1

Si (Y )
def
=

(
¾ : ¾ =

nX

i=1

¾i, ¾i 2 Si (Y ) 8i = 1; : : : ; n
)

.

A strategy pro…le (y¤1; : : : ; y
¤
n) is a Nash equilibrium if and only if S§ (Y ¤)

contains unity and y¤i =Y
¤ 2 Si (Y ¤) for i = 1; : : : ; n. This is readily veri…ed

by chasing de…nitions.
Figure 5 shows the individual and aggregate share correspondences of

a contest involving two players with di¤erent technologies. The share cor-
respondences of contestants A and B are labelled, respectively, aa/aa and
bb/bb. The zero branch of the aggregate share correspondence coincides
with the zero branch of player B. Elsewhere, it is represented by the thicker
lines in the diagram which are obtained by set addition. In the contest de-
picted by the …gure, there is a single equilibrium level of Y , at which both
contestants are active.

Note that, even if there is a unique value of Y ¤ such that S§ (Y ¤) contains
unity, we may not be able to conclude that there is a unique Nash equilib-
rium (though this is not the case in Figure 5). This is because there may
be more than one set of shares contained in the individual correspondences
and summing to one. In particular, consider an asymmetric equilibrium of
a symmetric contest. Then any permutation of the active players will yield
another equilibrium with the same aggregate input. This suggests that there
are two ways in which equilibria may fail to be unique. Firstly, if S§ (Y ¤)
contains unity for only one value of Y ¤, we may still have multiple equilibria.
But, if we have reason to believe that the players can coordinate on an equi-
librium, we can predict the value of Y ¤ even if we cannot predict individual
strategies. On the other hand, S§ (Y ) contains one for several values of
Y , the problem posed by multiple equilibria is more severe: without a full
resolution of the coordination problem, we cannot even predict equilibrium
Y .

In contests in which some participants have increasing returns to scale and
others have decreasing returns, the former will have share correspondences
whilst the latter will have share functions. However, we can apply the same
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technique in the natural way. By regarding share functions as single-valued
correspondences, they can be added to the multi-valued correspondences of
participants with decreasing returns.

Now consider a contest in which all players have production functions of
the form fi (x) = aix

ri where all ri > 1. It will prove convenient to refer
to a subset of contestants IA as an active set if it is the set of contestants
supplying positive e¤ort in some Nash equilibrium. For any active set, there
is a unique equilibrium. This follows by a similar argument to that used to
establish Proposition 4.1 and rests on the fact that s+i is strictly decreasing.
However, an arbitrarily chosen subset IA of contestants may not be an active
set, for, if i is to be an active participant, equilibrium Y cannot exceed the
maximum value for which s+i is de…ned: Y i. Hence, (i) the sum of s+i
over IA evaluated at the least Y i amongst the contestants in IA should not
exceed unity. Similarly, for contestant j to be inactive, equilibrium Y must
be at least Y j . This requires that (ii) the sum of s+i over IA evaluated at
the greatest Y j amongst the contestants not in IA should be at least unity.
Conversely, if (i) and (ii) both hold for some set IA, there is a value of Y at
which the sum of s+i over IA is equal to one. The set of active participants
at the corresponding equilibrium is precisely IA.

The following theorem summarises these observations and extends them
to include contestants with both increasing and decreasing returns. In this
case, active sets refer only to subsets of the contestants with increasing re-
turns: IA is an active set if there is a Nash equilibrium in which contestant
i with ri > 1 supplies positive e¤ort if and only if i 2 IA.

Theorem 5.1 Suppose that fi (x) = aixri, with ri > 1 for all i 2 I, where
I is a non-empty subset of contestants. If A.1. is satis…ed for all other
contestants, then IA µ I is an active set if and only if

sA

µ
min
i2IA

Y i

¶
6 1 6 sA

µ
max
j2I¡IA

Y j

¶
, (13)

where
sA (Y ) =

X

i2IA
s+i (Y ) +

X

k=2I
sk (Y ) .

In this sum, sk is the share function for each contestant k =2 I and s+i (Y ) is
de…ned as in Proposition 4.1. Furthermore, for each active set IA, there is
a unique Nash equilibrium.

With a little care in its interpretation, the theorem holds even if the
active set IA is empty or equal to the set I itself, provided we interpret the
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maximum of an empty set as 0 and the minimum of an empty set as 1. (As
usual, sums over an empty set are taken to be 0.) We also need to interpret
the value of sA as a limit when its argument is 0 or 1. But sA approaches
zero for large Y , so the left-hand inequality in (13) is automatically satis…ed
when IA is empty and the condition reduces to the right-hand inequality.
Similarly, since all s+i and sk approach unity for small Y , the right-hand
side of (13) is automatically satis…ed if all players are active: IA = I ; the
condition reduces to the left-hand inequality.

Theorem 5.1 has several consequences. For IA to be an active set, we
may use the fact that each s+i is decreasing (by Proposition 5.1) to deduce
that

1 > sA

µ
min
i2IA

Y i

¶
>

X

i2IA
s+i

µ
min
i2IA

Y i

¶
>

X

i2IA
s+i

¡
Y i

¢
=

X

i2IA

ri ¡ 1
ri

by the …rst inequality of the previous proposition. This conclusion implies
the following corollary.

Corollary 5.2 Under the hypotheses of the preceding theorem, IA µ I can-
not be an active set if X

i2IA

1

ri
< nA ¡ 1, (14)

where IA has nA members.

This result may be applied to the case when all contestants have increas-
ing returns. Under the hypothesis of Corollary 5.2, if the contestants are
labelled so that 1 < r1 6 r2 6 ¢ ¢ ¢ 6 rn and

1

r1
+
1

r2
< 1, (15)

the game has no equilibria. This follows since there must be at least two
active participants and (15) implies that (14) holds for all IA with at least
two members.

If ri = r > 1 for all i, stronger conclusions can be drawn even if the
e¢ciency factors ai vary between contestants. For example, it follows im-
mediately from (15) that a contest with r > 2 can have no equilibria. This
conclusion is valid no matter what values are taken by the e¢ciency factors.
However, non-existence is a more extensive problem. Indeed, if r > 1, the
e¢ciency factors can be chosen so that the resulting contest has no equilibria
for any r > 1. To see this, set n = 2 and a2 > a1= (r ¡ 1) where r 6 2.
Since Y i is proportional to ai, min

©
Y 1; Y 2

ª
= Y 1 and, if we can show that

s+1
¡
Y 1

¢
+ s+2

¡
Y 1

¢
> 1, (16)
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it follows from Theorem 5.1 that both contestants cannot be active so there
is no equilibrium. To justify (16), …rst recall that s+1

¡
Y 1

¢
= (r ¡ 1) =r.

Second, since a2 > a1= (r ¡ 1), we have

Á2

µ
1

r

¶
= a2R

r [r ¡ 1]r
rr¡1

> a1R
r

�
r ¡ 1
r

¸r¡1
= Y 1,

where Á2 is de…ned as in (12). Hence, s+2
¡
Y 1

¢
> 1=r and (16) follows.

The strongest results are obtained when all contestants are identical. Our
conclusions are set out in the following theorem, which extends the results
of Perez-Castrillo and Verdier for symmetric contests. The proof is given in
Appendix 3 and is a direct application of the characterisation of equilibria in
Theorem 5.1.

Theorem 5.3 Suppose fi (x) = axr for i = 1; : : : ; n where r > 1 and (drop-
ping subscripts) write & for [s+ (Y )]¡1. The set of all equilibria for 1 < r
6 2 may be characterised as follows.

1. If n < &, there is a unique equilibrium in which all participants are
active.

2. If n > &, there is an equilibrium with m active participants if and only

& 6 m 6 min fr= (r ¡ 1) ; ng .

3. In an equilibrium withm active participants, each supplies e¤ort Rr (m¡ 1) =m2.

Note that both Á and Y are proportional to a which means that & in
this theorem depends on r but not on a. The following lemma, proved in
Appendix 3, gives more information on &.

Lemma 5.1 If & is de…ned as in Theorem 5.3, the interval [&; r= (r ¡ 1)]
contains an integer.

The following existence result is an immediate consequence..

Corollary 5.4 If fi (x) = axr for i = 1; : : : ; n, the contest has an equilibrium
if and only if r 6 2.
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5.3 Large games and rent dissipation

Extending the asymptotic results in the previous sections encounters di¢-
culties when there are contestants with increasing returns, since equilibria of
large contests may involve few active participants. Share correspondences
help to illustrate what underpins these results. Suppose all contestants are
identical and their number grows large. If each contestant had a share func-
tion with a …nite dropout point, the aggregate share function would pivot
clockwise about this point pushing the equilibrium level towards the dropout
point and leading to full dissipation in the limit. When the share function is
replaced by a correspondence, the maximum value of the correspondence at
any Y has a …nite downwards jump at Y and as the number of contestants
increases by one, as well as rotating clockwise the aggregate value of this
maximum moves up [by r= (r ¡ 1)]. Eventually this exceeds unity so that,
although the rightmost equilibrium moves towards Y , it may stop short of Y
even when there are many contestants. Indeed, the ‘limit’ is Y , implying full
rent dissipation if and only if r= (r ¡ 1) is an integer. Even when contestants
di¤er, an upper bound on rent dissipation can be derived provided that they
all have the same ri. Details are given in the next proposition, proved in
Appendix 3.

Proposition 5.3 Suppose fi (x) = aixr for i = 1; : : : ; n, where r > 1.

1. The number of active participants in equilibrium cannot exceed r= (r ¡ 1).

2. The proportion of the rent dissipated at an equilibrium with m active
participants will not exceed (1¡ 1=m) r( 6 1) and will equal this if and
only if all active players are identical.

Part 2 implies that rent dissipation will be maximised when contestants
are identical. In this respect, results are the same for r > 1 as for r 6 1.
However, the maximum rent dissipation depends in a non-monotonic way on
r. Theorem 5.3 and Lemma 5.1 show that there is an equilibrium with m
active participants where m is the greatest integer not exceeding r= (r ¡ 1).
If r= (r ¡ 1) is an integer (m), Part 2 of the theorem implies that the rent
will be fully dissipated. Even where r= (r ¡ 1) is not an integer, m must
satisfy

m >
r

r ¡ 1 ¡ 1 = 1

r ¡ 1
and therefore the proportion of rent dissipated in this equilibrium is

µ
1¡ 1

m

¶
r > 1¡ 1

m2
. (17)
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Since two or more contestants must be active, at least 75% of the rent is
dissipated in any such equilibrium and, for r close to one, m is large and
almost all the rent is dissipated. Note that it is not necessary to have a large
number of active contestants for all or nearly all the rent to be dissipated.
All these conclusions make very strong assumptions about the ability of the
contestants to coordinate on an equilibrium, particularly when the interval
[&; r= (r ¡ 1)] contains more than one integer. In the latter case, there will be
several equilibrium values Y some entailing rent dissipation below the lower
bound in (17).

When returns are non-increasing, we saw that more e¢cient contestants,
provided they are su¢ciently numerous, will drive their less e¢cient oppo-
nents out of the game. No such conclusion can be drawn when there are
increasing returns. Suppose that all contestants share the same value of r
but there are several types with di¤erent e¢ciency factors. If r= (r ¡ 1) is
equal to an integer m, there are equilibria in which m participants of the
same type are active and no other contestants are active. This applies for
any type and so includes equilibria in which only the most ine¢cient con-
testants actively participate. Even for more general r there can be equilibria
with active contestants who are less e¢cient than inactive contestants. Note
that this will have an e¤ect on rent dissipation. However, if the contestants
can coordinate so that all active participants are of the same type, the lower
bound on rent dissipation in (17) still applies. If r= (r ¡ 1) is an integer, all
the rent is dissipated in such an equilibrium.

Figures 6 and 7 illustrate the possibilities implied by our formal analysis
and are drawn on the assumption that a = R = 1. In Figure 6 r = 9=7,
which implies that r= (r ¡ 1) = 4:5. The share correspondence of a typical
contestant consists of two branches. These are the segments marked aa.
Observe that for all Y such that Y i < Y < Y i, there are two values of
the individual’s share - one zero and one strictly positive - consistent with
the value of the aggregate. The aggregate share correspondence consists
of the thick segments. Between the values Y i and Y i the segments of the
aggregate function are obtained by vertically adding the positive branches
of the individual share correspondence. The …gure shows that there are two
equilibria. The point N3 represents an equilibrium at which there are 3
active contestants. There is a second equilibrium at N4 at which there are
four active contestants.

Figure 7 shows the individual and aggregate share correspondences im-
plied by r = 2. With three potential contestants, the aggregate share corre-
spondence is represented by the thick segments. In this case, there is a unique
Nash equilibrium value of Y , at which any two of the three contestants are
active. It is marked N2 in the …gure. Note that, if r increases above 2,
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the positive branch of the individual share correspondence shifts upwards.
Therefore, so too does the segment of the aggregate correspondence asso-
ciated with two active contestants. In this case, an equilibrium does not
exist.

6 Conclusions

A number of themes have emerged in our analysis of contests.

1. Contests have a unique Nash equilibrium when all production functions
have constant or decreasing returns.

2. Contestants with increasing returns typically imply multiple equilibria
and consequent problems of coordination.

3. If the elasticities of production functions are too large, contests may
have no equilibria.

4. The rent is almost fully dissipated in large symmetrical contests with
constant or decreasing returns.

5. Under increasing returns, the number of active participants is bounded
even in large games but all the rent may still be dissipated.

6. Rent dissipation is reduced by limiting the number of active partici-
pants (strategic e¤ects) and by asymmetry.

We have also sought to illustrate the usefulness of share functions and
share correspondences as tools for analysing contests. They contain the
same information as best response functions and correspondences but are
usually easier to handle (by simple addition) often permitting a complete
analysis of Nash equilibria, especially existence, uniqueness and large-game
limits. As we have seen they can take simpler forms than the corresponding
best response functions. More is possible. For reasons of space, we have not
given results for comparative statics but the share function approach provides
a useful tool (cf. Nti[19], for a traditional approach). It can also be used
when contestants are risk averse (another possible explanation for partial
rent dissipation): Cornes and Hartley[4] apply the approach to the case of
constant absolute risk aversion, and examine situations in which contestants
di¤er in their attitudes to risk.
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APPENDICES
Appendix 1
In this appendix we give the proof of Proposition 3.2:
Proof. Let SC denote the set of active contestants and Y ¤[X¤] the equi-

librium values of aggregate input [e¤ort]. If ¾i = si (Y ¤),

X¤ =
X

i2SC
x¤i =

X

i2SC

¾iY ¤

ai
= R

X

i2SC
¾i (1¡ ¾i) ,

since ¾i = 1 ¡ (Y ¤=aiR) for i 2 SC by Theorem 3.1. In equilibrium,P
i2SC ¾i = 1, so

X¤

R
=

X

i2SC
¾i (1¡ ¾i) =

m¡ 1
m

¡
X

i2SC

µ
1

m
¡ ¾i

¶2

which establishes the proposition.

Appendix 2
In this appendix, we give the proofs of propositions and theorems in

Section 4. In the proofs of Propositions 4.1 and 4.2, we can drop the subscript
i without confusion.

Proof of Proposition 4.1. The left-hand side of (9) exceeds the right
at ¾ = 1 and is non-decreasing in ¾, whereas the right-hand side is strictly
decreasing. We may conclude that there is a unique share value for any
Y > 0 which is zero if and only if g0 (0)Y > R. The proof is completed by
observing that g0 (0) = [f 0 (0)]¡1 :

Proof of Proposition 4.2. First, note that shares are continuous
(indeed di¤erentiable where positive) by the implicit function theorem, es-
tablishing Part 1. Second, since g0 (0) is …nite, letting Y ¡! 0 in both sides
of (10) shows that the share must approach one as Y approaches zero, giving
Part 2. Third, observe that the left-hand side of (10) is strictly decreasing in
¾ and the right-hand side is non-decreasing in ¾ and strictly increasing in Y
for positive ¾. We may deduce that positive shares are strictly decreasing in
Y : Part 3. The fourth part is an immediate consequence of Proposition 4.1.
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Finally, suppose that the marginal product f 0 (0) is unbounded, which im-
plies g0 (0) = 0. Then (10) can hold as Y ¡! 1 only if s (Y ) Y approaches
zero in this limit and hence if s itself also approaches zero.

Proof of Theorem 4.2. Let Y (n)[X (n)] denote the equilibrium level
of Y [X] when there are n identical contestants. At the Nash equilibrium,
we know that

Pn
i=1 si

¡
Y (n)

¢
= 1. Since the contest is symmetric and has

a unique equilibrium, si
¡
Y (n)

¢
= 1=n for all i. Therefore, as n ¡! 1,

Proposition 4.2 implies that Y (n) ¡! Rf 0i (0). Hence, as n ! 1, we have

X(n) =
nX

i=1

x(n)i = ngi
£
Y (n)=n

¤
! [Rf 0i (0)] g

0
i (0) = R,

where x(n)i is player i’s equilibrium e¤ort in the n-player contest.
Proof of Proposition 4.3. Let Y ¤[X¤] denotes the equilibrium value

of aggregate input [e¤ort]. By hypothesis, gi (y) = (y=ai)
1=r so that g0i (y) =

y(1¡r)=r=ra1=ri for each i. Applying Proposition 4.1, contestant i’s share
function satis…es si (Y ¤) = ¾i, where

(1¡ ¾i) rRa
1
r
i = Y

¤¾
1¡r
r
i (Y ¤)

1¡r
r .

Hence,

X¤ =
nX

i=1

x¤i =
nX

i=1

µ
¾iY

¤

ai

¶1
r

= rR
nX

i=1

¾i (1¡ ¾i) .

The proof is completed as in the proof of Proposition 3.2 in Appendix 1.

Appendix 3
In this section, we give proofs of propositions and theorems in Section 5.

In the proofs of Propositions 5.1 and 5.2 as well as Lemma 5.1, we drop the
subscript i for ease of exposition.

Proof of Proposition 5.1. With production functions as speci…ed in
the proposition, a contestant’s payo¤ may be expressed in the form:

¼
³
y; eY

´
=

y

y + eY
R¡

³y
a

´1
r

,

except when y = eY = 0, in which case ¼ (0; 0) = 0.
Part 1 is established by observing that the least upper bound of ¼ (y; 0)

is R but, because of the discontinity at y = 0, no non-negative y achieves
this. Hence, there is no best response to eY = 0.
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Turning to best responses to eY > 0, we aim to relate them to the …rst-

order conditions. Note …rst that ¼
³
0; eY

´
= 0 and ¼

³
y; eY

´
! ¡1 as

y ! 1. For y > 0,

@¼

@y
=

eY³
y + eY

´2R ¡ 1

ry

³y
a

´ 1
r
.

The marginal payo¤ is negative for all small enough y and has at most two
zeroes. To justify the latter claim observe that

@¼i
@y

= 0 () y
r¡1
2r

p
a
1
r rR eY = y + eY .

This condition sets a strictly concave function of y equal to a linear function
of y and such an equation can have at most two solutions.

To summarise our conclusions so far, as y increases from 0, the payo¤
¼

³
y; eY

´
starts at 0, initially decreases, has at most two stationary points

and is eventually negative. Hence the payo¤ is maximised either at 0 or at
the right-most stationary point. The latter holds if the payo¤ evaluated at
this stationary point is zero or greater. (The payo¤ at the other stationary
point is always negative.) Hence, by > 0, is a best response to eY > 0 if and
only if it is a stationary point with non-negative payo¤. When the payo¤ at
by is exactly 0, there are two maxima: 0 and by. This happens if and only if

@¼

@y

³
by; eY

´
= 0 and ¼

³
by; eY

´
= 0.

These equations have a unique solution: eY = Y ,

by = aRr
�
r ¡ 1
r

¸r
.

This establishes Part 3.
To obtain Part 2, note that ¼ (by; Y ) = 0 implies that ¼

³
by; eY

´
> 0 for

0 < eY < Y since ¼
³
by; eY

´
is a strictly decreasing function of eY . Because the

payo¤ can take positive values for eY in this interval, our previous remarks
show that the best response is positive and therefore must have positive
payo¤ and zero marginal payo¤. Rearranging these conditions in a more
convenient form gives Part 2.

To prove Part 4, we start from the fact that y = 0 maximises ¼ (y; Y ),
from the de…nition of Y . This shows that ¼ (y; Y ) 6 0 for all y > 0. Using
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the fact that ¼
³
y; eY

´
is a strictly decreasing function of eY , we deduce that,

if 0 < eY < Y , then ¼
³
y; eY

´
< 0 = ¼

³
0; eY

´
for all y > 0. The best response

to such a eY must be 0, completing the proof.
Proof of Proposition 5.2. Zero shares were dealt with in the preamble

to the proposition. By de…nition, ¾ 2 S (Y ) if and only if ¾Y is a best
response to (1¡ ¾)Y and Proposition 5.1 implies that this is true for positive
¾ if and only if

Y = Á (¾) and Y 6 aRr¾r¡1. (18)

These conditions are obtained by substituting ¾Y for y and (1¡ ¾)Y for
eY in (11) and rearranging the results. For (18) to be satis…ed, we must
have rr (1¡ ¾)r 6 1 or ¾ > (r ¡ 1) =r. Now Á is non-negative, has a
unique stationary point at ¾ = (r ¡ 1) = (2r ¡ 1) < (r ¡ 1) =r and satis…es
Á (0) = Á (1) = 0. It follows that the restriction of Á to the set [(r ¡ 1) =r; 1]
is strictly decreasing. Since Á ([r ¡ 1] =r) = Y , we can de…ne a function

s+ :
¡
0; Y

¤
¡!

µ
1;
r ¡ 1
r

¸

by ¾ = s+ (Y ) if and only if Y = Á (¾). Clearly, s+ is continuous, strictly
decreasing and approaches 1 as Y ! 0.

Proof of Proposition 5.3. The theorem follows readily from Proposi-
tion 5.1 which states that there is an equilibrium with m < n players if and
only if

ms+
¡
Y

¢
= m

r ¡ 1
r

6 1 6 ms+ (Y ) =
m

&
.

For m = n, this condition is modi…ed by dropping the right hand inequality.
Part 1 and 2 follow immediately. (For Part 1, we use the fact that 1=& >
1¡ 1=r since s+ is decreasing.) Part 3 is an immediate corollary of Part 2
of Proposition 5.3 proved below.

We can prove Lemma 5.1 by establishing an appropriate upper bound on
&. In doing this, we …nd it convenient to divide the interval (1; 2] into two
subintervals.

Lemma .1 If r >
p
2, then & 6 2.

Proof. The inequality (r ¡ 2)2 > 0, satis…ed for all r, can be rewritten

r2

2
> 2 (r ¡ 1) .
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Since, by assumption, r2 > 2,
µ
r2

2

¶r

>
µ
r2

2

¶r¡1
> 2r¡1 (r ¡ 1)r¡1 .

It follows that, if Á is de…ned as in (12),

Á

µ
1

2

¶
=
a rrRr

22r¡1
= aRr

�
r2

2

¸r
1

rr2r¡1
> aRr

[r ¡ 1]r¡1
rr

= Y .

Since s+ is the inverse function of Á in the relevant range, s+ (Y ) > 1=2 so
& = [s+ (Y )]¡1 6 2.

Lemma .2 If 1 < r 6
p
2, then & < (r ¡ 1)¡1.

Proof. De…ne Ã (r) = r2 (2¡ r). Then Ã00 (r) < 0 so that Ã is strictly
concave. Furthermore, Ã (1) = 1 < Ã

¡p
2
¢

and we may conclude that
Ã (r) > 1 for 1 < r 6

p
2. It follows that, if Á is de…ned as in (12),

Á (r ¡ 1) = aRr [Ã (r)]
r [r ¡ 1]r¡1
rr

> aRr
[r ¡ 1]r¡1

rr
= Y .

As in the preceding lemma, s+ (Y ) > r ¡ 1 so & < (r ¡ 1)¡1 :
These lemmas allow us to complete the proof of Lemma 5.1.
Proof of Lemma 5.1. When

p
2 6 r 6 2, we have 2 < r= (r ¡ 1) and

2 lies in the interval [&; r= (r ¡ 1)]. When 1 < r 6
p
2 we have

r

r ¡ 1 ¡ 1 = 1

r ¡ 1 > &

and the greatest integer less than r= (r ¡ 1) lies in the interval [&; r= (r ¡ 1)].

Proof of Proposition 5.3. Let IA be a subset of I with nA members.
The …rst part is a consequence of Corollary 5.2 since inequality (14) becomes
nA=r < nA ¡ 1. Hence, if nA > r= (r ¡ 1), IA cannot be an active set.

Let bY denote the value of Y at an equilibrium with m active participants
and write ¾i = s+i

³
bY
´

for participant i. If i is active, Proposition 5.1
implies

bY = Ái (¾i) = aiRrrr (1¡ ¾i)r ¾r¡1i , (19)

where Ái is de…ned as in (12) and using the fact that s+i is the partial inverse
of Ái. Writing bxi for participant i’s e¤ort, the production function implies
that aibxri = ¾ibY . Summing over the active participants:

bX =
X

i

bxi =
X

i

µ
¾i
ai

¶ 1
r bY 1

r = rR
X

i

¾i (1¡ ¾i) ,
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using (19). The proof of Part 2 is completed as in the proof of Proposition
3.2 in Appendix 1. (The inequality follows from Part 1.)
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Figure 3:

Figure 4:
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Figure 5:

Figure 6:
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Figure 7:
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