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1. Introduction

Comparative statics is important in economics because it describes the main prop-
erties of agentsClbehaviour and the main properties of equilibria resulting from the
interactions of economic agents. However, despite a long history of studies of the com-
parative statics in the economic literature!, the profund mechanisms intervening in
comparative statics are not fully understood yet. A better understanding of complex
comparative statics is likely to assist the development, the specidration and the esti-
mation of realistic models. Moreover, from a theoretical standpoint it is unclear how
to compare the decision elasticities with respect to parameters of interest for models
that do not share the same objective and constraint functions or the same decisions
and parameters. In this paper, we tackle all these difficulties by conducting a full
geometrical analysis of the comparative statics of general models. Thus, we break
down the decision changes into integrated geometrical structures, easy to understand,
to specify and to compare.

Using general models is important because many economic problems involve com-
plications: several nonlinear inequality constraints and general parameters appearing
simultaneously in the objective function and in some constraints. These complications
occur for: the New Household Economics?, agricultural household models®, models

with nonlinear budget constraints arising from quality effects*, nonlinear taxation®,

le.g. Slutsky (1915), Samuelson (1947), Kalman (1973), Silberberg (1974), Edlefsen
(1981), Hatta (1980), Caputo (1999).

2Becker (1965), Lancaster (1966).

3Sen (1966), Barnum and Squire (1980), Pitt and Rosenzweig (1985), Singh, Squire and
Strauss (1986), Benjamin (1992).

1 Houthakker (1952), Edlefsen (1981, 1983).

% Hausman (1985), Weymark (1987), Balestrino, Cigno and Pettini (2000).



productive consumption®, nonlinear wage schedule’, rationing®, nonlinear pricing by
&rms with monopoly power, international trade theory, collective household models’,
bargaining or game theory models.

Although this paper is related to the important articles by Kalman and Intriligator
(1973), Silberberg (1974), Chichilnisky and Kalman (1978b), Hatta (1980), Edlefsen
(1981), Blomquist (1989), the focus of the analysis and the results obtained are sub-
stantially different. Our approach is original in several aspects that are not jointly
present in previous articles. Firstly, we consider problems with several nonlinear con-
straints, which is rare!’. Secondly, parameters are not restricted to prices and income
as in consumer theory. In particular, we allow for parameters common to objec-
tive and constraints''. Parameters common to objective and constraint functions are
important because of exogenous variables that in! uence preferences as well as con-
straints. For example, exogenous skills may in! uence both the preferences and the
productivity of an individual. Also, optima considered in incentive or game theory
problems often correspond to objective and constraint functions de&med from simi-
lar utility functions. Then, the same exogenous determinants of these utilities may
appear in objective and constraint functions. Thirdly, we study several fundamen-
tal structures which have not been exhibited before: (1) the intrinsic metric of the

optimisation problem; (2) the fundamental hyperplanes of the problem; (3) a projec-

6 Suen and Hung Mo (1994).

"Weymark (1987), Blomquist (1989).

$Madden (1991).

9 Chiappori (1988, 1992), Browning and Chiappori (1998).

10See however Silberberg (1974), Chichilnisky and Kalman (1978a, 1978b), Hatta (1980),
Caputo (1999), Drandakis (2000).

1 as in Kalman (1968), Kalman and Intriligator (1973), Chichilnisky and Kalman (1978a,
1978b).



tion on the tangent subspace to the constraints; (4) the change in relative implicit
prices respectively associated with the indifference hypersurfaces and the constraints.
Fourthly, we breakdown the comparative statics into elementary building blocks that
have simple geometric interpretations. This decomposition is pushed further and is
more redmed than what has been done in the literature.

What is the full geometrical structure of the general comparative statics? How
does it help us: to clarify the analysis of decisions, to specify and to estimate general
models, to compare heterogeneous models? The aim of this paper is to answer these
questions. In Section 2, we present the general optimisation problem of interest. We
study the geometry of the comparative statics in Section 3. We provide examples of
application in Section 4. Finally, we conclude in Section 5. The proofs are generally

presented in the appendix.

2. The Fundamental Structures of the Optimisation Problem
2.1. The problem

We consider the following general optimisation programme.

(PB) max U(z;0) subject to:  g(z;0) <p, x € X CR", €O CR™,

where x is the decision vector and 6 is the parameter vector. U is the objective
function from X x© to R where X and © are open sets and X is convex. U is assumed
to be of class C? at the optimum on X. Moreover, g is a vector of constraint functions
from X x © to RY, which is of class C? at the optimum on X. p is a parameter in

R7that can be interpreted as the vector level of implicit resources when g is increasing



in z. The parameter vector 6 is common to U and g, while some components of § may
appear only in U or in g. p enables us to conveniently denote the constraint levels
that will intervene in the interpretation of the comparative statics. However, this is
not necessary and more general programmes can be written with this parameter p
absorbed in parameter 6 as well stated in Pauwels (1979) and Caputo (1999). They
would essentially yield the same type of results. To avoid absurdities we assume that
there are more decisions than constraints, i.e. n > q.

To ensure the constraint quali&cation, the gradient vectors Vg are assumed to be
linearly independent for all binding constraints, ¢ = 1 through g. The notations for
matrix operations and differential operations are given in the appendix.

We use the primal method to derive results of comparative statics because it
enables us to break down the sensitivity equation into its basic contributing elements
in terms of functions U and g that are often the functions that researchers specify.
However, similar results could be obtained by using a dual approach!?.

The Lagrange function associated to Problem (PB)is L = U—\'g where ) is a vec-
tor of Kuhn-Tucker multipliers. Because of the linear independence of the constraint
gradients, the &rst-order Kuhn-Tucker conditions, denoted KTC, are necessary for an

optimum.Next, we give a sufficient condition for the KTC to characterise a unique

optimum. In the following of the paper, we operate under this weak assumption so
as to focus on a unique solution. However, locally unique optima could be treated

similarly.

12Dual approaches of general optimising models have been studied for example by Silber-
berg (1974), Hatta (1980), Caputo (1999).



Proposition 1. If U is strictly pseudo-concave and g is quasi-convez (i.e. each co-
ordinate of g is quasi-convex, which is equivalent to the convexity of the feasible set

provided that X is convex), the KTC are sufficient for a unique global optimum.

With several regimes (sets of binding constraints), the derivation of optimal so-
lutions by using the implicit function theorem may lead to non-continuous or non-
differentiable decison functions. We therefore focus on a single regime so as to study
the comparative statics with differentiable decision functions, without mixing them
with the question of change in regime. In a specidc regime, the KTC can be simpliéed

as follows.

Ua: - gm/\ -
g(xve) =H (21)

A>0

When the Jacobian matrix of the KTC with respect to (z, \) is not singular, the
implicit function theorem can be applied to the set of equations in System 2.1. Then,
there exist optimal and locally unique solutions (0, p) and A(6, ) of class C!. Their

differentials are represented by eq. 2.2.

-1

dzr Ly —9z —Lg, O do
= (2.2)

A ~9 0 96 —1d, dp

We now enter in the geometric interpretation of the comparative statics, by dis-

cussing &rst the fundamental hyperplanes associated with the KTC, then the intrinsic



metric of the optimisation problem. The geometric structure of the comparative stat-
ics is anchored on the motion of these hyperplanes and the consequences of this motion

on decision changes is measured in terms of this metric.

2.2. The fundamental hyperplanes

We now need to discuss the fundamental hyperplanes that structure the problem.
These hyperplanes characterise (1) the directions in which decisions can change; (2)
the optimal decisions themselves as solutions of the KTC; (3) the contribution of
the different constraints to the decision changes. For comparative statics, these hy-
perplanes are sufficient &rst-order approximations of the structures of the problem,
and therefore summarize fully its marginal changes. Each hyperplane is completely
described by its level and its direction vector, whose sole changes will be needed to
describe the impact of parameter changes on the problem. Firstly, from the deriva-
tion of the i** binding constraints, one can de&ne a tangent hyperplane. Its equation
is the j'* equation in System 2.3. Secondly, by grouping all these equations we ob-
tain System 2.3 that de&nes the tangent subspace to the constraints at a point z° on
the frontier and where x is the unknown vector. Because of the constraint quali&ca-
tion condition, the tangent hyperplanes of two distinct constraints cannot be parallel.
From the gradient of these hyperplanes, one can de&ne a multi-dimensional cone in
which the gradient vector of the optimal indifference hypersurface at the optimal point
is included. When there are only equality constraints, the tangent cone is the tan-
gent subspace. Therefore, the tangent subspace is the intersection of all the tangent

hyperplanes to speciéc constraints.



¥ (29,0).(x —2°) =0
(2.3)

4 (20,0).(x — 2°) =0
Thirdly, the separating hyperplane (SH) at the optimum separates the optimal
indifference hypersurface and the feasible set dedmed by the constraints. Its equation

in x can be characterised by the hyperplane tangency to the indifference curve at the

optimum, as in eq. 2.4.

Ul(z*,0).(x —2*) =0 (2.4)

where x* is the optimal decision vector and z is an unknown decision vector.
Equivalently, by using the KT'C it can be written in terms of the hyperplane tangency
to the constraint frontier at the optimum, as in eq. 2.5. In that case, the gradients
of different constraints are linked by the optimal Kuhn-Tucker multipliers A}, which

exist under constraint quali&cation.

Z Neg¥(x*,0).(x —2%) =0 (2.5)

Note that, even at the optimum, the tangent hyperplane to a given constraint
is not necessarily tangent to the optimal indifference surface, and therefore does not
generally correspond to the SH. However, the tangent hyperplane to a given constraint
includes directions that are tangent at the optimum to the optimal indifference hy-

persurface. They are the directions included in the tangent subspace.



It is useful not to restrict the attention to the SH only as it is usually done, but to
examine also the constraint-specidx tangent hyperplanes. Indeed, in contrast with the
SH, once z* is known the tangent hyperplanes can be observed if the constraints are
observable. Then, the unobservable motion of the SH induced by changes in parame-
ters can be described in terms of observable motions of the constraint-speci&e tangent
hyperplanes and of generally unobservable KTC multipliers. Each of these motions
can be separately analysed. Finally, the normal vector of each tangent hyperplane is
important for this paper because it is related to implicit prices that will intervene in
the analysis. To be able to relate measures of the motion of the fundamental hyper-
planes with measures of the decision changes, we need to study the intrinsic metric
of the optimisation problem. To our knowledge, this is the &rst time that this metric

has been considered in the economic literature.

2.3. The intrinsic metric

To describe this metric, we borrow our vocabulary from differential geometry (see
Dieudonné, 1972). The system L, = 0, which characterises the decision functions from
the KTC, describes an hypersurface that can be parameterised by = = (z1,...,2y).
This hypersurface is the differential manifold of the stationary points of the Lagrange
function, or Lagrangian stationary set (denoted LSS). Then, the Jacobian matrix of
L, with respect to x, which is L;, embodies the information contained in the &rst
differential form on this hypersurface.

To clarify this point, let us consider the example of a 3-dimensional space and a

surface parameterised as a(u,v), where u and v are the surface parameters. On this



surface, the length [ of a curve parametrised by t as (v = ¢, (t),v = ¢p5(t)) and limited

by a <t <bis given by | = [*\/E.(§7(£))2 + 2F.¢, (1) da(t) + G-(d5(t))2dt,

where E =< %,% > F =< %,% > G =< %,% > and <, > denotes the
canonical scalar product. Here, the derivatives of the function a describing the surface
determine the surface metric. In the case of the hypersurface of equation L, = 0 in
a n-dimensional space, the analogues of the three differential elements E, F,G in
dimension 3 can be directly calculated from L,, by using two independent directions
for each element. Therefore, L,, characterises the érst fundamental metric form
(Rheinhart and Soeder, 1997) of the hypersurface LSS. Geometric properties that
only depend on the &rst fundamental form are called Gntrinsic propertiesl] We have
therefore exhibited the intrinsic metric of the LSS.

What is the origin of this metric? Contrarily to what is generally believed, the
effect of parameter changes on decisions does not occur freely in the canonical space
of decisions. Because we deal with marginal optimal variations, we need to remember
that all these changes occur on the hypersurface deémed by the KTC. All variations
in parameters and decision functions are ineluctably linked by the fact that they cor-
respond to an optimum and must therefore satisfy L, = 0. Therefore, the geometric
structure of the comparative statics is more fundamentally characterised in the LSS
and by referring to the shape of the LSS, which is locally described by its intrinsic
metric.

However, it is usually to express the decision changes in terms of the canonical
spacesof decisions, that is in R™ in our case. Therefore, we must convert the fun-

damental decision changes occurring in the LSS in terms of these canonical spaces.



These conversions are made by using the metric matrix (L,,)~!, which is symmetric
and positive dedmiteness and therefore de&nes a scalar product.

The scalar product arises when one considers the second-order local quadratic
approximation of the Lagrange function. At the optimum z*, L, = 0, then L(x) ~
L(z*)+ (x — 2*).Lyp(2*).(x — 2*) where z is the unknown vector. Therefore, matrix
L., summarises the local shape of the optimisation problem at z™. (Lm)_1 is the
metric matrix that controls for the shape of the Lagrangian in its role of connection
of decisions and parameters.

It is unclear which perspective on (L,,)~! is the most appropriate: &rst differ-
ential form of the LSS, approximation of the Lagrange function, matrix of change in
vector basis between the LSS and R"™. We encompass these different point of view
by denoting (L,,)~! the fntrinsic metric of the problem™ Equipped with the above
geometric notions, we are now ready to analyse the geometry of the comparative

statics.

3. The Geometry of the Comparative Statics

We now successively examine the sensitivity equation and its geometric components:
the generalised substitution and resource matrices; the implicit prices and the im-
plicit resources; the rotations and the translations. Then, we end this section with a

discussion of the application of this geometric structure.

3.1. The sensitivity equation

From the inversion in System 2.2 by blocks by denoting

10



—1
L:c:c —Jzx S *R

= , we obtain the sensitivity equation:

—g, O —-R' —E

:c:fSUgmd9+SZ/\kggdeJer,u—Rg;dG
k

where R = (Lya) ™" 0 [0} (Luw) "102) 7! = 22

and S = (Lzz)_l[ln — Oz [g; (Lzm)_lgz]_l g; (Lzz)_l}'

(3.1)

Eq. 3.1 can also be synthetically rewritten: dx = —S Lg, df + Rdu — R g d6.

Based on this characterisation, Proposition 1 exhibits the fundamental components

of the comparative statics.

Proposition 1. The matriz of the marginal variations of decisions can be written as

Its general term is

n

az SRS !
L Zszk k+zzszk ZRzp 89

p=1k=1

(3.2)

(3.3)

where PP = ApgP(x;0) is denoted the vector of the implicit price functions

associated with the p*® constraint, and

. a .
P = Y PPis denoted the vector of the implicit price functions associated

p=1

with the frontier (of the constraints).

p . Cq. . PP
25 is the tridimensional tensor composed of the 2L =1

39/7p

sy Q.

11



P=U, (x,0) is denoted the vector of the implicit price functions associated
with the preferences.
D= g(z, 0) is denoted the vector of the implicit resource functions associated

with the constraints. Moreover,

57 =R (3.4)

As we shall show eqgs. 3.2 and 3.4 embody the geometric content of the comparative
statics. Eqgs. 3.2 and 3.3 generalise important results for the basic consumer model
(Hicks, 1939) and consumer models with one nonlinear constraint (Edlefsen, 1981,
Blomquist, 1989, Suen and Hung Mo, 1994). Hicks introduces the diagramme of
substitution and income effects for a consumer with two goods. In this diagramme,
the motion of the budget line is decomposed in a rotation and a translation that yield
convenient illustrations of the substitution and income effects. Edlefsen generalises
it by considering the motion of the implicit budget line in the case of one nonlinear
budget constraint and with &xed preferences. Our contribution here is to generalise
such geometrical approach to the case of several constraints and general parameters
allowing for preferences changes. One particularity of the case of several constraints
is that several tangent hyperplanes to the constraints can be distinguished.

Also, the change in preferences can be accounted for by the motion of the SH.
This leads to multiple terms with implicit prices and implicit resources. The follow-

ing paragraph clarides the geometrical nature of the components of the comparative

12



statics, starting with matrices S and R.

3.2. The components

(a) The generalised substitution and resource matrices: eq. 3.4 shows that matrix
R describes the effect of the implicit resources, p, associated with the levels of the
constraints. We denoted it the [generalised resource matrixl Matrix S is denoted the
[generalised substitution matrix[] This is justi&ed by the fact that the term Rgj df
in eq. 3.1 describes the resource changes necessary to compensate the translation of
constraints corresponding to vector gj df. Indeed, the compensation has a form akin
to that of the [resources effects’] Rdu. Thus, matrix S converts Ly, into the global
substitution effect (or [Gompensated substitution effect).

Various substitution matrices have been well studied in the literature, often for
special cases. Matrices similar to S are in Slutsky (1915), Hicks (1939), Samuelson
(1947) and Eldlefsen (1981) with one constraint, and in McKay and Withney (1980)
and Drandakis (2000) with several constraints; matrices similar to S Lg, are in Kalman
(1968), Kalman and Intriligator (1973), Blomquist (1988) with one constraint and in
Chichilnisky and Kalman (1978), Hatta (1980), Drandakis (2000) with several con-
straints; matrices similar to L}, SLg, are in Silberberg (1974), Hatta (1980), Caputo
(1999) with several constraints. In the appendix, we further discuss the contribution
of these authors who do not deal with the same geometry of the comparative statics
and have different focus from ours.

The structural formula of the generalised substitution matrix, shown below eq.

3.1, has been derived in the literature only in the one constraint case (see Kalman

13



and Intriligator) with a scalar division instead of the matrix inversion with several
constraints, and we extend it to the multi-constraint case. Symmetry, negative semi-
de&niteness, rank and orthogonality properties of S have been studied (Pauwels, 1979)
for generalised substitution matrices or related ones and we simply recall them now:
S is symmetric; dim(KerS) = ¢ (the number of linearly independent constraints);
S is orthogonal to the gradient vectors of the constraints; S is negative de&nite in
the tangent space to the constraints. The symmetry of S is related to Frobenius
conditions of local integrability of the Lagrange function from the KTC. The negative
semi-dedniteness of matrix S at the optimum corresponds to the negative response of
compensated decisions to marginal variations in the direct implicit prices associated
to the constraint frontier. It is related to the local stability of the equilibrium that
is ensured by the negative de&mitiveness of matrix L., in the tangent space to the
constraints. By contrast, the decomposition of S into a projector matrix and a metric

matrix has not been investigated. We &l this gap in Proposition 2.

Proposition 2. Inside each regime, the generalised substitution matriz S is as below

eq. 3.1 and is equal to S = (Lyy) ' [I, — P1],

where Py = g, (¢} (Laz) 1 92) 71 0 (Loe) ™. Thus, S satis€ées:

(a) Ly, S =1,—P; is the matriz of the oblique projector onto the tangent sub-
space to the constraints, with (Ly; )~ the matriz of the scalar product characterising
the obliqueness of the projection.

Py is the oblique projector onto the subspace spanned by Vg with (L)' the

matriz of the scalar product describing the obliqueness of the projection.

14



(b) § = M[I,, - PyJM where M = (L,,)~"/? and Py = N[N'N]='N’ is the
orthogonal projection onto the subspace spanned by the columns of N= (Lm)_l/QVg.

Moreover, Py = MP{M™1.

To our knowledge, the results in Proposition 2 have never been stated before. They
allow us to break down the formula of S, making it easier to interpret. Given the
matrix of the scalar product, the projectors are uniquely determined by the subspace
onto which the projection takes place. Result (a) and the formula of S indicate
that the generalised substitution matrix can be described as a &rst-stage projection
onto the tangent subspace to the constraint followed by a second-stage normalisation
based on the scalar product of the intrinsic metric. Result (b) exhibits the projection
involved in the substitution matrix from the perspective of the LSS. The normalisation
with respect to the intrinsic metric can therefore be applied after the projection, or
in two steps, before and after the projection. These different perspectives depend
on if one considers the projection as in the manifold dedmed by the KTC or in the
canonical affine space.

The orthogonality of the projection explicitly appears in P> and not in P;. This
orthogonality is with respect to (L., )~ 'gs, not with respect to g,. However, P; and
P are akin. Indeed, I — P, represents the projection on the constraints in the LSS,
while I — P; represents it in the canonical space. As (b) shows, M is the matrix of the
change in basis between these two spaces. The Sphericised Cmatrix N = (Lm)_l/ 2Vg
is the transformation of the matrix of the gradient vectors of the constraints, Vg, as
it appears in the canonical space, into the formula in the LSS. Therefore, P; is the

matrix of the orthogonal projector (in the LSS) onto the hypersurface orthogonal to

15



N, which is the tangent space to the constraints in the LSS.

The rank and orthogonality properties of S result from the decisions x remaining
on the constraints, via the projection operator incorporated in S. We now turn to

the generalised resource matrix, R.

Proposition 3. The Generalised Resource Matriz is deéned by

R= (Lmz)ilgm {g; (Lzz)ilgz]il'
R is a right-inverse of g.,.

This structural formula for R has not been explicited for the multi-constraint case.
It is a generalisation of the matrix of income effects with one nonlinear budget con-
straint, for the which matrix inversion can be written as a scalar division. R is a
right-inverse of ¢/, rather than an inverse because there are more decisions than con-
straints. In a sense, g/, converts the decision variations into the constraint variations
and its right-inverse R plays the opposite role.

It is now easy to exploit the general formulae of matrices .S and R to derive a ma-
trical characterisation of the compensation mechanism. This characterisation shows
that the compensation has two natural alternative interpretations as a translation or
as a dilatation of the inverse of the Hessian of the Lagrange function. Indeed, on the
hand S = L' = RG'L~!, where L = L, and G = g,. The second term in the above
right-hand side term is a clearly linear combination of the resource effects described
by matrix R. This corresponds to the compensation by a translation of the fun-

damental hyperplane. In this optic, the decomposition in substitution and resource
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effects is revealed as a decomposition property of the intrinsic metric represented by
L' =S+RGL

On the other hand, S = (I, — RG')L ™!, where matrix I,, — RG’ can be seen to
[dilate the symmetric and negative de&mitive L~!. Here, the substitution effects
are seen as resulting from a dilatation of the curvature of Lagrangian, i.e. of the
intrinsic metric. These two alternative interpretations are more fundamental than
usual substitution/resource effects, since they do not depend on the implicit prices
and the implicit resources. Let us now turn to the changes in the relative implicit
prices that are combined with matrix S to yield the complete substitution effect.

(b) The relative implicit prices: P is composed of elements similar to marginal
utilities in consumer theory, and P to marginal productivities (g if ¢* is a produc-
tion function) in producer theory. Therefore, their interpretation in terms of implicit
prices can be naturally related to usual prices in consumer theory and producer the-
ory. Naturally, other normalisations are possible, e.g. by dividing P and P by the
Lagrange multiplier of a given constraint. The projection in S selects what compo-
nents of the changes in the implicit prices actually matter for decisions. Egs. 3.2
and 3.4 correspond to the rigid motion of the general SH, decomposed into the rigid
motions of the constraint-specide tangent hyperplanes and the rigid motion coming
from preferences change. The absolute direction of the SH is determined by vector P
(equivalently by vector P because of the KTC). Now, that is the change in the vector
of relative implicit prices, defmed as B = P — P, that is crucial for describing the
relevant motion of the SH. Indeed, By = Lg,, drives the relative marginal rotation of

the SH. What matters for the properties of decisions are the relative changes in the

17



two types of implicit prices, and not their absolute changes. The decision changes are
determined by the relative motion of the family of indifference hypersurfaces and of
the frontier of the constraints. This situation is summarised by the relative motion
of the SH with respect to constraints and indifference curves. The (virtual) relative
rotation of the SH is the combination of two actual rotations with respect to the axes,
respectively corresponding to the variations in P and P.

An interesting feature has been well noted by Edlefsen with one nonlinear budget
constraint, which is here valid in a more general setting. As in consumer theory or
producer theory where all the commodity prices intervene in demand and supply func-
tions, the implicit prices of all the decisions may intervene in the general comparative
statics. However, this number can be here multiplied by the number of constraints
plus one if one wants to push the decomposition to its limits. We now describe the
relative rotation of the SH.

(c¢) The relative rotation: The SH and the constraint-speciéx tangent hyperplanes
are rigid hypersurfaces. This is why their motions can be described by rigid motions.
Every rigid motion is the commutative product of a translation and an affine rotation
(in several dimensions). In the sensitivity equation 3.1, the terms —Rgpdf + Rdu
correspond to indmitesimal translations of the SH, while the other right-hand-side
term, —SLg,df, corresponds to in&nitesimal affine rotations of the SH. These facts
may be more obvious in eq. 3.3 that shows the change in a speciéx decision z; that
results from a change in a scalar parameter 6;. By analogy with consumer theory,
—SLg, describes the effect of the compensated rotation of the SH about the initial

optimum, although here the rotation is relative to the positions of the indifference
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hypersurfaces and the constraints rather than absolute. The affine subspace in which
the rotation takes place is determined by the projection in matrix S and by the &xed
point z(f, u). Since matrix S is of rank n — ¢, the subspace in which the rotation
occurs is of dimension n — ¢q. Thus, the substitution effect is a combination of a
projection, a metric operator and a relative rotation of the SH.

The multi-dimensional relative rotation of the SH can be seen as the composi-
tion of m rotations in dimension two (into a plane), each one corresponding to a §;
(j = 1,...,m). Each of these elementary relative rotation can be decomposed in two
absolute rotations, respectively associated with the change in the two types of implicit
prices.

Let us complete the description of the relative rotation by characterising the ro-
tation angle. Note &rst that 27 radiant rotations are possible, therefore also periodic
positions of the SH that are equivalent for the changes in decisions. Moreover, what
matters is the difference in changes in P and 15, and not only their absolute changes.
These two facts imply that the observation of decision changes may be insufficient to
recover the changes in the implicit prices.

(]3, P+ dﬁ) and (]5, P+ dP) respectively de&ne the angles 8; and ; of the two
absolute rotations of the SH that are caused by a variation df; of the 4t coordinate
of 6. The angles 3; and v; are easy to characterise because they can be dedmed
respectively from the two absolute rotations of the normal vector of SH. The angle
formulae are valid in any dimension since the angle of two non-colinear vectors can
be de&ned in the plan de&ned by these two vectors. The angle of the relative rotation

can then be dedned as a; = 3; —v; [27]. The angles can be calculated as shown in
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the following proposition.

Proposition 4. The angles (3; and vy; of the two absolute rotations of the SH that

correspond to a variation df; of the jt" coordinate of the parameter are:

Bi = (U, A (Us+ Uy o) I/1U=II?) d6;  [27]

and 7y = (120 S, M dp {95 A (024 9,0} 1A MegblZ) do; (2,

where A is the vectorial product and ||.|| is the euclidean norm.

Let us now turn to the other rigid motion of the SH, its translation.
(d) The translation: A change in 6; also induces a translation of the SH, associated

with decision changes Rgéjdt‘) i, along the directions orthogonal to the tangent space to

the constraints. Indeed, ngggj do; = géj df; and besides ngaa_,f, = aai/ The vector

of resource effects on decision x; of a per-unit translation associated with the k**
constraint, with translation vector ggj df;, is measured by R;;. The global translation
effect can be broken down into several terms, each one corresponding to a change in a
speci&e constraint level. As a direct consequence of Proposition 3, matrix R satis&es

the following property similar to Engel aggregation in consumer theory.

Proposition 5.

At the optimum: P’R = P'R = ).
Proposition 5 shows that the Lagrange multipliers can be interpreted as the im-

plicit values of the implicit resource effects for unitary translation vector. Thus, they

can be seen as implicit prices of the changes in constraint levels. We now present a
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graphic illustration that shows how changes in decisions, in constraints and in indif-
ference hypersurfaces are related to the motions of the SH and of the optimum.

(e) Graphic illustration: Figure 1 shows the substitution effect corresponding to
a parameter variation ([the shock[) that implies changes in the objective indifference
curves and in the two constraint curves. Marginal variations are metaphorically repre-
sented by &nite variations. Owing to the shock, the optimal decision goes from points
A to D. Points B and C are optimal points associated with the successively envisaged
changes in the constraint curves gl and g2 (respectively denoted gli and g2i before
the shock; glf and g2f after the shock), without change in the indifference curves.
Finally, the shift of the optimal decision from C to D corresponds to the effect of the
change in the family of indifference curves (represented by Ui before the shock and
by Uf after the shock). The generalised substitution effect corresponds to the move of
the optimal decision from A to A”, where A and A” are on the same SH, and where
the SH moves from BCi (the initial implicit budget constraint() to BCf” (the &nal
implicit budget constraint without resource effects) due to the simultaneous changes
in the constraints and in the indifferences curves. BCf” has the same direction as BCf
(the &nal implicit budget constraint).

The motion from BCi to BCf represents the absolute motion of the SH, while the
motion from BCi to BCf” only represents the absolute rotation of the SH. The relative
motion of the SH is the difference of two absolute motions associated with the motion
from the solution from point A to point C, which corresponds to the change in P
and the motion from C to D, which corresponds to the change in P. We now wrap

up the discussion by envisaging the application of the geometrical structure.
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3.3. Application of the geometrical structure

The geometrical framework of the comparative statics that we have exhibited can be
used for several purposes: understanding, specifying, testing, estimating and compar-
ing models.

(a) Understanding the model mechanismsd by decomposing the decision changes

in elementary elements that are geometrically inter-related: the decomposition of the

comparative statics is very detailed, since beyond resource and substitution effects,
it is carried out across all the parameters, all the decisions, all the constraint and
objective functions. Each combination of these elements in eq. 3.3 corresponds to an
elementary comparative statics effect. Not only this but also the structure of matrices
S and R provide considerable redmement of the simple use of the implicit function
theorem for the KT'C. Thhis new perspective on the projection and metric structures
is likely to guide the theoretical debate on the subject. In particular, special attention
must be devoted to matrices L., and g,.

Importantly, the list of the relevant implicit prices and implicit resources is now
straightforward to establish and facilitates model analysis. We have shown that what
matters is the difference in the changes of the two types of implicit price vectors. This
suggests to simultaneously analyse and specify the objective and constraint changes.

One can choose the aggregation level of the comparative statics equations to un-
derstand it better. At the highest aggregation level, the term (—SLg;) in eq. 3.1 is
the sum of all substitution effects and has the simple geometric interpretation of rep-

resenting the (relative) rotation of SH as for for consumer theory. The component S;y,
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of S measures the per-unit substitution effect on x; of the SH relative pivoting associ-

. . .. . th . . .. . oL o 315]‘.7315,‘,
ated with the marginal variation in the £** relative implicit price (5-%g5- 50; = 90, — 00

for any j). At a lower aggregation level, —Sgg_ describes the effect of the absolute
rotation of the tangent hyperplane of the p** constraint. The rotations of the tangent
hyperplanes to the various constraints can be linearly aggregated by using Lagrange

multipliers (A\,) that express the impact of a change in level of this pt" constraint on

8D
06’

the objective level. Similarly, the resource effects caused by the change in 6, — R
in eq. 3.2, can be decomposed in g constraint-speciéx terms. By cancelling the ap-
propriate terms in eq. 3.3, we can derive contra-factual comparative statics to study
cases where some constraints or the indifference curves are &ed. The comparative
statics of different optimisation regimes can thus be easily related.

Finally, the projection reveals that what matters for the substitution effects are
only the features that are conserved by this projection. For example, Muller (2001)
exploits this property for deriving weak concavity conditions for general models. All
this clari&cation of the structure of the comparative statics can be used in the model
speci&eation as we discuss now.

(b) Specifying models for objective, constraint and decision functions: we mean
by Specifyingl] dedning the functional form of the functions and of the associated
error terms, but also selecting the decisions, parameters and constraints to consider.
The analysis shows that it may be appropriate to directly start the speciération with
implicit prices and implicit resources (or with rotation angles and translation vectors)

rather than with constraint and objective functions. In particular, a preliminary

re! exion on the variations of the implicit prices and implicit resources may yield
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models with better properties. For general models, the specication of the interaction
of the constraint functions and of the objective function should be carefully dealt with.
This simultaneous speci&cation is possible because the list of the implicit prices and
implicit resources is easy to read in the comparative statics equations. Moreover,
each of these implicit prices and implicit resources can be the object of specialised
speci&cation work if they are of particular interest for the study. Another usual
approach is to start from the functional form of the constraint and utility functions.
These forms can be examined to characterise the properties of the various decision-
speci&e implicit prices. This should yield a better understanding of the mechanisms
involved in the comparative statics and guide the choice of these functional forms.

The comparative statics equations can also be used to dedme reduced-form equa-
tions where only the terms for implicit resources and implicit prices need be speci&ed.
The coefficients coming from matrices R and S are here considered as unknown or are
to be estimated from the data. In that case, the differentied KTC need not be solved
explicitely. Alternatively, explanatory variables of the implicit prices and implicit re-
sources can be used to de&ne the reduced-forms by replacing these implicit elements
with, for example, linear combinations of the explanatory variables. In particular, the
aggregative hierarchisation of the implicit prices and implicit resources could guide
the introduction of these explanatory variables. Then, theoretical restrictions on the
coefficients of the reduced-form equations could be imposed or tested by using the
properties of matrices Rand S. We discuss now how some data to test or to estimate
the model.

(¢) Helping model test and estimation for applied work: Our framework highlights
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the geometrical meaning of the theoretical restrictions on matrices S and R. Symme-
try and negative semi-de&miteness restrictions are ultimately originated in L., that
is inversed and truncated by a projection to produce matrix S. The decomposition of
the comparative statics may help to express these restrictions in terms of observable
elements because it facilitates the manipulation of equations. This will be illustrated
in the example section.

Because elementary implicit prices and elementary implicit resources are clearly
identided and characterised, one can estimate the comparative statics equations in two
stages by plugging for the second stage the predicted implicit prices and predicted
implicit resources obtained from a preliminary estimation. This method has been
used by Jacoby (1993) for models with one technological constraint for the analysis of
peasant family labour supply in Peru. It can be generalised to complex models when
sufficient data is available.

(d) Comparing heterogeneous model: &nally, our geometric framework evinces the
fundamental elements to compare across heterogeneous models that may incorporate
different constraints, different functional forms, different decisions and different pa-
rameters. Because the comparative statics is summarised by S, R, 159,]59 and bg,
these elements can be compared across models sharing a decision and a parameter of
interest. Also, the formulae of the angles and translation vectors can be compared
across models. Therefore, the response of the decision to a change in the param-
eter can be compared from a theoretical standpoint in the different models. More
fundamentally, one could directly compare the properties of matrices L., and g, for

different models, since they are the basic components of S and R.
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A more restrictive way of comparing heterogeneous models is to compare the
substitution effects embodied in S across models sharing the same set of decisions
since the dimensions of S depends only on the number of decisions and not on the
constraints or on the parameters. This approach was &rst proposed by Edlefsen with
one constraint. It can be extended to several constraints and varying preferences.
Similarly, the resource effects can be compared via matrix R across models sharing
the same set of decisions and constraints, but not necessarily the same parameters
and the same objective. However, what we have shown above is that the range of
comparisons can be much broader and does not even require that the models to
compare necessarily have the same set of decisions or the same set of constraints. To
illustrate our geometric framework, we now examine a few examples, starting with

well-known economic models.

4. Examples

(a) Consumer model: the optimisation programme is: max U(z) subject to p'z = p,
where U is a strongly quasi-concave utility function of type C? and increasing in
its arguments, x is the vector of consumption demands, p is the price vector and is
the parameter of interest. p is the consumer income. To simplify the exposition,
the positivity constraints are omitted for all the examples. A\ denotes the Lagrange

multiplier in all the examples with one constraint. The fundamental elements of the
model are:

P:)\p;P:Uz;D:p’x;g;;:/\. n;g—;’,:o;gg:x’.
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S = Ugs) ! {I— 2P Wee) | ang B = eal p

wa) ! Usa
P (Usa) " 'p P (Usa) ™ 'p

Under this form S is sometimes called the fundamental matrix of consumer the-
ory[] These well-known formulae of S and R have not been found easy to interpret
in the literature. In our framework, the projection subspace and the metric associ-
ated with the optimisation problem provide a natural interpretation of these matrices.
Then, all that need to be known for a clear understanding of Sand R are the ma-
trices (L) ! and g,. In the consumer case, matrix Sembodies: (1) an oblique
projection on the budget constraint of direction determined by p, and (2) a metric
(Uzz)~™! determined by the convexity of preferences.

It is now easy to understand why the economists have not noticed this geometrical
structure of S in consumer theory. Indeed, &rstly, in the above formula of S the
division by a scalar compound hides the matrical shape that would help to recognize
a projection operator. Secondly, the linear constraint disappears in L., = U,,, which
hides the presence of the intrinsic metric of the optimisation problem. Finally, the
price vector p appears instead of the explicit constraint gradient that would have
revealed the role of the tangent space to the constraint.

This suggests that for each model of interest, it is useful to systematically examine
the tangent subspace as projection set and the intrinsic metric. This is particularly
interesting when the metric has special characterics. For example, in the consumer
model the metric does not depend on the Lagrange multiplier nor on the constraints.

For models where there is only one constraint, we denote from now R;; as R;.The

comparative statics equations of the consumer model are: % = S;;A — R;x; and
J
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%—”ZL = R; (i,7 = 1,...,n). The fact that only one elementary substitution effect
(Si;A) intervenes in the &rst equation results from two simpli&cations: (1) there is no
change in preferences; (2) there is a unique constraint that is bilinear in parameters
and decisions. Let us now see what happens if preferences can change.

(b) Consumer with prices in the preferences (Kalman, 1968, Kalman and Intriliga-

tor, 1973): the optimisation programme is: max U(z,p) subject to p'x = u, with the
x

avH

same notations than for Example (a). This gives: P = Ap; P = U,; D = p'z; gp, =

LOP _ .8D _
A.In,a—p,—Upz,a—p,—l'.

The formulae for S and R are the same than for the basic consumer model. By

contrast, the equations of the comparative statics are now more complex:

T = ( ; Sikvpm> +8ijA = Rizj and G4 = R;.

The comparative statics of Examples (a) and (b) only differ by the presence of
terms from Up,, while they admit the same structural formulae for S and R. This
corresponds to the fact that the decision changes are driven by the derivatives of the
implicit prices (]50 and ]59) and of the implicit resources (ﬁg) rather by the levels
of these implicit prices and implicit resources. The term in parentheses in the right-
hand-side term of the &rst equation was not decomposed by past authors. However,
the above equation clearly shows that this term can be analysed to see how its sign
may change depending on the type of in! uence of prices on the various arguments
of preferences and thereby to guide the model specidcation. Note that even the

traditional direct substitution effect (in the sense of g—zf + xi%—“ﬁ) is not necessary

negative in that case. Therefore, the usual negativity test of consumer theory would
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fail. We now examine an extension of this model with a nonlinear production function
in the budget constraint.

(¢) General mono-producer model (Kalman and Intriligator, 1973): the optimisa-
tion programme is: max U(z;p,w) subject to m = pf(x) — w’z, where U is the objec-
tive function, x is the vector of input demands, p is the output price, w is the vector of
input prices, f is the production function and 7 is the pro&t that is considered as &xed
(e.g. by stockholders). From now, the generalised concavity and differentiability prop-
erties of the functions are omitted to avoid a too tedious presentation. The parameters

are: 6§ = (p,w’)’;u = m. The implicit prices, implicit resources and their variations

are: P=M\pf, —w|; P=U,; D =pf(x) —w'x; BP:Afm;%—IS:U 0D — g,

" op PTG’
83—5, = f/\In;g—f, = Uypu; % = f(x). Matrices S et R can be deduced from
Lyy = Upy — ADfze and g, = pfy — w. This shows that this model is of different

nature from those of the previous examples that are isomorphic as far as S, R, P and

P are concerned. The comparative statics equations are:

g% = ;Sikvwm + SijA — R;f(x) and %i# =R;.
Again, the global substitution effect can be of either sign. Note the new occurrence
of the production function in these equations as compared with Example (b). We now
turn to two special cases of the general mono-producer model.
(d) Proét mazimising mono-producer: it is Example (c¢) with U(z,p, w) = pf(x)—
w’z with elimination of the constraint. We obtain: %“"pi = — zk:Sik fup, and g—g? =

—S;j. There is no income effect. The well-known symmetry and positivity restrictions
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of input demands are apparent.

S = (fzz) %/p. The formula of Sis simple because the constraint has been elim-
inated and the objective function is simple. In this case the projection incorporated
in S is the identity transformation. Then, S is the intrinsic metric matrix itself. Note
that specifying the problem differently as a pro&t maximisation subject to a produc-
tion function leads to L., singular. This difficulty disappears by substitution of the

production in the objective function.

e (e) Baumol producer: it is Example (c¢) with U(x,p,w) = pf(z). Here, the
constraint is not substituted, which generates implicit prices associated with
the objective, P= pfz, and implicit prices associated with the constraint, P=

Apfz — w). The metric matrix is % The equations of the comparative

statics are:

ou %;Sikka.(/\ —1) = Rif(x); §%- = —SijA + Rif(z) and G2 = R;.

Ow;

There is a resource effect that is proportional to the production level. The next
example includes consumption demands and two production constraints, but no mar-
kets.

(f) Autarkic household with two productions: the optimisation programme is:
max U(xy,x9,l, E) subject to: 1 = F(L,E)—py;20 = G(N,E)—pg; L+ N+1 =T,

1,22,

where U is the utility function, x; and x5 are the consumption demands of the two

productions, [ is the leisure, L and N are the labour inputs allocated to the production
of each good, T is the total available time. F and G are the two production functions,

1 and p, are &xed costs for the respective production processes. E is an exogenous
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skill parameter, which may in! uence preferences and technologies. The last two equa-
tions can be regrouped by substitution of N. This yields: zo = G(T — L —[; E) — ps.
The two obtained constraints are binding because the marginal utilities of the two
productions are assumed indmite at zero or above (e.g. if the utility function is of

the Cobb-Douglas type). The decision vector is: @ = (z1,22,l, L)’ . The parameter
vector of interest is: 6 = (E,T)".
The implicit resource vector is D = (x1 — F(L, E),z9 — G(T — L — [, E))".
The implicit price vectors are: P = (Uy,,Us,,Us,0); P! = (A,0,0, =\ F1) and
P2 = (0, A2, \aGn, \aGn), where \; and Ay are the Lagrange multipliers respec-

tively associated with the two constraints. Moreover,

U:E]:E'l U:E]:EQ U:E]l 0
Uwzwl Uzzzz Uzzl 0

Uz, Uy, Ui+ 2Gnn AGyN

0 0 MG NN MFLL +XGnN

In general L., is not block-diagonal because of the presence of [ in the system. In
the case Gyny =0 (i.e. G affine in N), a block invertion of L, is possible to yield a

block-diagonal metric matrix. The resource effects are g—if = R;1 and g—fjg = R;o for
x; =x1,29,0,Land i =1,2,3,4.

The effects on the i*” decision of a change in the skill level and in the total available
time are: 9% = —S, Uy, g — SioUs, 5 — Sis(Uie — MaGnE) + Sia(— M Frp + MGnp) +

Ri1 Fg + RioGE, for x; = x1,x9,l, L and i = 1,2, 3, 4.
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%—?‘ = (513 -+ Si4))\2GNN -+ RiQGN, for xz; = Il,IQ,Z,L and 7 = 1,2,3,4.

These equations show the variety of the implicit prices and implicit resources that
may intervene even in relatively simple models. There are two resource effects to
compensate in order to isolate the global substitution effect of a change in skill, but
only one resource effect for the decision changes caused by a change in total time
because of the initial substitution of the variable of the labour input in F' by the
residual time from other time uses. In general the global substitution effects are of
ambiguous sign.

The difference in implicit prices, Uz —A2G v g, describes the impact of skills on the
difference between the value of leisure from the preferences and the value of working
time for the second technology. Similarly, AoGnyg — M\ FrLg describes the impact of
skills on the difference between the values of working time for the two technologies.
These two differences of implicit prices could be the object of speci&e modelling since
they express a central feature of the model. That may be a convenient alternative
to the separate specidration of U, G and F. The household allocates the three time
uses according to their relative marginal valuations. The presence of S;3 + Sis in
the comparative statics equations is related to the existence of two channels, each
associated to one production, for the impact of a change in the implicit price of
leisure. When this price changes, there is substitution of leisure with the two labour
inputs.

The effect on decisions of a change in the available time can be conveniently
estimated in two stages, with a preliminary estimation of production function G that

would yield predictions for Gy and Gy that could be plugged in the equation for
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This approach is more delicate for the effect of the skill parameter because of the
large number of implicit prices and implicit resources intervening and the difficulty of
observing preferences changes.

What happens when the skill parameter does not intervene in the preferences or

in one of the technologies? In that case the general formulae for S, R, P, ]5, D stay the

same, but the variations in P, P and D can be simpli&ed. One obtains comparative

statics equations that can be deduced from the initial equation by cancelling appro-

priate terms according to modidrations in the de&mitions of 9B 9D apd 2D

597 00 00 We now

conclude this section with a simple game theory model.
(g) Collective household model: Browning and Chiappori (1998), denoted B&C,

propose the following model of collective household.

w(p, I).ut(g?,¢%, Q) + (1 —w(p, 1)) uP(¢*, ¢, Q)
max )

a4,45,Q . A, B
subject to p'(¢* +¢° +Q) -1 =0

where function w(p, I') that represents the relative decision power of member A is
homogeneous of degree 0. u” (u?) is the utility of member A (B). ¢ (¢?) is the vec-
tor of private consumption of member A (B). @ is the vector of the household public
consumption. p is the price vector and I is the household exogenous income. Here,
= (¢*,¢%,Q") and @ = (p',I)’. There is no parameter uniquely describing the level
of the budget constraint, although I could partly play this role. Naturally, implicit re-
source effects still exist and could be explicited by introducing virtual parameters. Al-
though, B&C do not comment the comparative statics since their main interest is the
derivation of theoretical restrictions for household global demands, it is easy to do so.

The metric matrix and the constraint gradients are formally identical to what they are
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in consumer theory. The vectors of implicit prices, the implicit resource and the com-
parative statics equations are: P = wul +(1—w)u?, P=Xp,D= (g +qP+Q) 1.

G = — Xk: Sir(u? —uB)w; — R;.

B = =2 Sulul —wlwy, + 30 Sueh + Ri(a" +4° + Q).

This model is a special case of the consumer Gwith prices (and income) in the
preferencesland is largely isomorphic to the models of Examples (a) and (b) with
the same type of matrices S and R. The difference of the comparative statics with
the pure consumer case essentially comes from the presence of terms with changes in
implicit prices associated with the preferences. Here, these terms involve the quantity
u? — u®B revealing the importance of the cardinal speci&eation of preferences.

We now show that it is easy to derive B&C theoretical restrictions from our com-

parative statics equations without having to use their dual approach. Indeed, by

combining the above equations we obtain:

ox; dx;
ap, T %ol = < Zk:Sik> (ug' —up)(wrz, + wp,) + /\Xk: Sik-
The last term in the right-hand-side term is similar to the Slutsky matrix term

in the pure consumer model. The &rst term can be written as taken from a matrix

a.b/, which is the main result of B&C for whom the general term of b is w;x, +

wp, and the general term of a is %”Z; Then, the traditional Slutsky matrix is the
sum of a symmetric matrix with a matrix of rank 1. We just need to show that
<§]€:Sik> (uf —uB) = %. This is easy to obtain by returning to the initial
programme and considering w as a parameter itself instead of a function of p and

I. Then, applying again the geometrical derivation of the comparative statics for a

change in parameter w delivers the result.
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5. Conclusion

We provide in this paper a full geometrical elucidation of the comparative statics of
general optimising models with several nonlinear constraints and with general param-
eters. The results can be used: to clarify the fundamental mechanisms of the decision
changes, to help model speci&cation and estimation, and to compare heterogenous
models.

The comparative statics of a complex model can be entirely decomposed into
elementary geometric elements across parameters, decisions, constraint and objective
functions. Our approach improves on the previous literature by several features: very
general problems of comparative statics are studied with several constraints, varying
preferences and general parameters; more fundamental mathematical structures are
exhibited, including the intrinsic metric of the problem and a fundamental projection;
the importance of simultaneously considering the changes in the constraints and in
the preferences is stressed and explicitely treated; general implicit prices and implicit
resources are introduced, a full characterisation of the rigid motions involved in the
comparative statics is achieved, notably by identifying fundamental hyperplanes (i.e.
the constraint-speciéc tangent hyperplanes and the separating hyperplane) and by
expliciting the formulae for rotation angles and translation vectors.

A generalised substitution matrix and a generalised resource matrix help the con-
vertion of the decision changes from the stationary manifold of the Lagrange function
into the canonical space. Parameter variations are converted into variations in implicit

prices of the decisions and in implicit resources, which can all be decomposed across
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constraint and objective functions. Ultimately, what matters for the comparative
statics is the change in the difference in several types of implicit prices, respectively
associated with the preferences and with the constraints. The changes in implicit
prices can be interpreted in terms of rotation of the fundamental hyperplanes, while
the change in implicit resources correspond to translations of these hyperplanes.

The analysis clarides the mechanism intervening in the general comparative statics.
Notably, the geometrical framework allows us to easily derive generalised Slutsky
equations for general models. Also, elementary geometrical elements can be easily
studied and handled. Such clarid&cation can assist specixation, test and estimation of
general models, by exhibiting what are the structural characteristics of the decision
functions, but also by allowing estimation procedures with preliminary estimations
of implicit prices and implicit resources. Finally, the comparison of heterogeneous
models can be based on the comparison of the basic elements of the geometrical
structure of the comparative statics.

The changes in optimisation regime can be partly dealt with by substituting terms
in the general comparative statics equation. However, the possibility of discontinuity
or non-differentiability of decisions at the point of regime change must be studied
with other methods. Note &nally that a similar geometric analysis can be carried out

for the dual approach of the problem.
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Abstract

How to analyse decision changes in general optimising models? How to
guide the specidration and the estimation of these models? How to compare
heterogeneous models sharing some decisions and parameters? To explore these
questions, we derive the fundamental geometrical structure of the comparative
statics for models with several nonlinear constraints, varying preferences and
general parameters.

We clarify the comparative statics, &stly by identifying the intrisic metric
of the optimisation problem and secondly by decomposing the decision changes
by using a projection onto the tangent subspace to the constraints, and the rigid
motions of the fundamental hyperplanes of the problem. Changes in implicit
prices and implicit resources associated with the objective and with the con-
straints describe the rotations and translations of the fundamental hyperplanes
on which the decomposition of the comparative statics is based. Finally, we
illustrate our theoretical results with several examples.

Résumé

Comment analyser les décisions de modeéles doptimisation complexes? Com-
ment guider la spécidration et liéstimation de ces modeéles? Comment comparer
des modeles hétérogénes partageant certaines décisions et certains parameétres?
Pour répondre a ces questions, nous mettons en évidence la structure géométrique
fondamentale de la statique comparative pour les modeles représentés par des
programmes dloptimisation impliquant plusieurs contraintes non linéaires, des
préférences évolutives et parameétres généraux.

Nous clari&ons les méchanismes de la statique comparative dlabord en iden-
tidant la métrique intrinséque du probléme dloptimisation et les hyperplans
fondamentaux; ensuite en décomposant les variations des décisions en utilisant
une projection sur le sous-espace tangent aux contraintes, et les déplacements
affines des hyperplans fondamentaux.

Les variations des prix implicites et des ressources implicites associés aux
fonctions objectif et contraintes décrivant les caractéristiques des rotations et
translations des hyperplans fondamentauc. Finalement, nous illustrons nos ré-
sultats théoriques par plusieurs examples.
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Appendix

Notations:

We denote the transpose matrix of M by M’. All derivatives are written
in vector or matrix form. They are denoted with a subscript corresponding to
the vector with respect to which the differentiation is made. We also denote

the Jacobian matrix of a vector function f with respect to vector z, by of

) ox'
fr. Tts general term is %, where i denotes the row number and j the column
J

number. The Hessian matrix of a function g with respect to vector z is given

or

2
by guze- Its general term is %, with ¢ the row index and j the column index.

For a vector function g, Vg = g, denotes the matrix g—ggcj_where ¢ 18 the row

index and j is the column index.
General substitution matrices in the literature

Silberberg (1974) proposes a systematic primal-dual approach of problems
with several constraints in which the Hessian of the Lagrangian for a primal-
dualCproblem is symmetric and negative semi-dednite, and can therefore pass
for a substitution matrix if we accepts that these properties are characteris-
tic of a possible substitution matrix. Pauwels (1979) recovers Silberbergls re-
sults by using the primal approach. For a similar problem, Chichilnisky and
Kalman (1976) discuss a [Slutsky-Hicks-Samuelson operator In another dual
approach, Hatta (1980) uses a [gain function[with several constraints, to derive
envelop theorems, while Caputo (1999) explicits the link between Silberberg(s
and Hattals approaches. Silberberg, Hatta and Caputo do not explicitly mention
any generalised substitution matrix, although they use matrices whose product
is the opposite of the Hessian of the gain function, and is symmetric and negative
semi-de&nite. Thus, past articles exhibit Hessian matrices that could qualify for
being considered as generalised substitution matrices. Despite the differences
in the formulae, our matrix SLg, is proportional to the Hessians of Silberbergs
and Hattals dual objective functions.

Proof of Propositions:

Proof of Proposition 1:

Let z be a decision vector chosen in the feasible set and (z*,\*) satisfying
the KTC such that x #z*. Then, ¢g'(z) < g*(z*), for all i and A* > 0.

Since all g are quasi-convex, we have Vg(z*)(z — 2*) < 0, for all i.

Therefore, using the KTC and since A >0, for all i, we can deduce:

VU (z*)(x —x*) > 0, which implies since U is strictly pseudo-concave and
x #a*, that U(z*) > U(z). QED.

Proof of Proposition 2:
(a) LpwS = I—g2[0)(Laz) tgx) 19L(Lys)~tis of the form I-G[G'F 1G] 1G'F1L.
This shows that L, S is the oblique projector onto the tangent subspace to the



constraints, with F = (L,,)~! the matrix of the scalar product describing the
obliqueness of the projection. See Magnus and Neudecker (1988) for a descrip-
tion of oblique projectors. Therefore, Ker(L,,.S) is the subspace spanned by
G = g, and dim(Ker(Ly,S)) = ¢, which implies dim(KerS) = ¢ since L, is
invertible. Then, if Ly, is full column rank, Rank(S) =n — q.

(b) is obtained by simple algebra.

Proof of Proposition 3:

R = (Lyz) '92]0.(Laz)"tgz]~t. Let us denote G = g, F = Ly, then
R=F1G'[GF'G'|7'. Then, ¢,R=GF 'G'|GF G =1,

Proof of Proposition 4:

. _ ||PA(P+dP) . _||PA(P+dP)

We have sin§; = [BF+aP| and siny; = BiZEE
P=3, gk, dP = %d@ and dP =Y, )\k%“%dﬁj. Therefore, because
the rotation angle is in&nitesimal a &rst-order Taylor expansion yields the angle
formulae shown in the Proposition. Note that a similar formula of sine cannot
be given for «; because a [relativeCdirection described by a vector B = P — P

has no meaning at the optimum for which P — P = 0. QED.

where P = U,

Proof of Proposition 5:
. . . a . . .
We have P = U,; PP = \,¢g2 and P = > PP. At the optimum P = P.
p=1
q %'
Therefore, PR=P'R= 5 \pg?” R = [ A A ]| R =
p=1

q/
9z

[)\1 )\q]g;R:[)\l )\q]Iq:/\/'QED'



