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Summary We present the asymptotic properties of double-stage quantile regression
estimators with random regressors, where the first stage is based on quantile regressions
with the same quantile as in the second stage, which ensures robustness of the estimation
procedure. We derive invariance properties with respect to the reformulation of the
dependent variable. We propose a consistent estimator of the variance-covariance matrix
of the new estimator. Finally, we investigate finite sample properties of this estimator by

using Monte Carlo simulations.
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1. INTRODUCTION

Applied researchers increasingly rely on quantile regressions for their
model estimations. This method is often used for wage and living standard
analyses!, but also for studies of firm data® and financial data3, as well as
in non-economic domains?. Quantile regressions produce robust estimates,
particularly for misspecification errors related to non-normality and to the
presence of outliers. They also help the researcher to focus her study on
specific parts of the conditional distribution.

The researchers often study relations in which some right-hand-side vari-
ables are endogenous. For example, socio-economic variables, such as the
education of the individual, appearing in wage equations may be endogenous.
Other sources of endogeneity such as measurement errors are common.

When there are endogenous variables, the estimator of the parameter
of interest is generally inconsistent. A well-known solution is the two-stage
least squares (2SLS) estimation method in which one replaces the endoge-
nous explanatory variables with their predictions from ancillary equations
based on other exogenous variables. However, if researchers are interested
in a specific part of the distribution of the structural variable, other than
the mean, or if they want robust estimates, the 2SLS estimation method is
not appropriate. Amemiya (1982) and Powell (1983) deal with the case of
the double-stage least-absolute deviations (DSLAD) with fixed regressors,
which allow researchers to focus on the median of the distribution of inter-
est. In this paper, we extend Amemiya and Powell works by using quantile
regressions and random exogenous variables’. We use the same quantile
estimation in the two steps and the resulting estimator of the structural pa-
rameter is termed “Double-Stage Quantile Regression estimator (DSQR).”

Other researchers have treated some endogeneity problems in quantile
regressions. Chen and Portnoy (1996) study two-stage quantile regressions
with symmetric error terms where the first-stage estimators are trimmed
least-squares estimators and LAD estimators. Other authors do not rely
on the simple two-stage parametric approach favoured by many empirical
economists. Kemp (1999) and Sakata (2001) study least absolute error dif-
ference estimators (LAED) for estimating a single equation from a simulta-
neous equation model®. Abadie, Angrist and Imbens (2002) design a quantile

'Buchinsky (1995), Machado and Mata (2001).

*Mata and Machado (1996), Machado and Mata (2000).

*Engle and Manganelli (1999).

Lipsitz et al. (1997).

?Koenker and Bassett (1978, 82), Bassett and Koenker (1978, 86), Powell (1983).

“These estimators are not based on first stage estimates of the reduced-form
equations for the right-hand-side endogenous variables. Instead, they use encom-
passed optimisation procedures, in which explicit concentration of formulae is im-
possible. The LAED optimisation is not a linear programming problem and a grid
search must be used for the concentration.



treatment effects estimator (QTE), which is the solution to a convex pro-
gramming problem with first-step nonparametric estimation of a nuisance
function”. MaCurdy and Timmins (2000) propose an estimator for ARMA
models adapted to the quantile regression framework. 8

We do not follow these various approaches in this paper and we rather
focus on two-stage estimation procedures familiar to empirical economists.
Some empirical economists? adopt a direct approach with a first stage of LS
estimators. However, this approach may be delicate for the general type of
problem that we consider since using LS estimation in the first step combined
with Amemiya’s reformulation of the dependent variable may produce an
asymptotic bias (as will be shown in Appendix A). It can also destroy the
robustness properties of the quantile regressions. We shall focus on the case
when the first stage is composed of quantile regressions where the quantile
is the same as for the second stage.

In this paper, we study the asymptotic properties of the DSQR and
we provide invariance results related to the reformulation of the dependent
variable. We also propose a consistent estimator of the asymptotic variance-
covariance matrix of the DSQR. Finally, we investigate the finite sample
properties of this estimator. We emphasize that we study all these properties
in the case of random regressors, in contrast with Amemiya (1982) and
Powell (1983) in which all exogenous variables are assumed fixed.

What are the asymptotic, finite sample, invariance and robustness prop-
erties of the DSQR? How can we estimate its precision? The aim of this
paper is to study these questions. Section 2 discusses the model and the
assumptions. At this occasion we derive invariance properties with respect
to the reformulation of the dependent variable. In Section 3 we prove the
asymptotic normality of the DSQR and discuss the estimation of the asymp-
totic variance-covariance matrix. We present simulation results in Section
4. Finally, Section 5 concludes. The proofs are presented in Appendix 2.

2. THE MODEL

We are interested in the structural parameter, oy = (7§, /3,)’, in an
equation in the following matrix form for a sample of 1" observations:

Y=Y+ X106y +u (1)

where [y, Y] is a T' x (G 4 1) matrix of endogenous variables, X; is T' x K}
matrix of exogenous variables and u is a T'x 1 vector. The matrix Xo contains

"They deal with the case of binary treatment related to sample selectivity by
modifying the typical objective function of the quantile regression problem with
nonparametrically estimated weights.

81t is based on the smoothing of conditional quantile conditions which are incor-
porated in a GMM framework.

? Arias, Hallock and Sosa-Escudero (2001), Garcia, Hernandez and Lopez (2001).



Ks(= K — K;) exogenous variables absent from (1). In this situation the
endogeneity of Y in (1) may cause that Qp(u|Y) # Qg(u), where Qy(-) is
the quantile function of order 6, and Qp(-|Y) is the quantile function of
order 0 conditional on Y. We use this non-equality as a formal definition of
endogeneity for quantile regressions. Moreover, we assume that Y has the
following reduced-form representation:

Y = XIlg+V (2)

where X = [X7, Xy] is a T' x K matrix, Il is a K x G matrix of unknown
parameters and V is a T' X G matrix of unknown error terms. Then, the
reduced-form representation of y is:

y=Xmy+v (3)

0
Define the “check function” py : R — RT for given 0 € (0,1) as

py(2) = 2y(2),
where 1y(z) = 6 — 1,<g and 1 is the Kronecker index. As a natural ex-

tension of Amemiya (1982) and Powell (1983), we define the Double-Stage

Quantile Regression estimator (DSQR(0,q)) & = (¥, B/)’ of oy as a solution
to the following minimisation programme:

where my = lHo, ( Tiey ﬂ ag = H(Ilp)a and v = u + V.

T
mcin ST(av 7, 1L q, 9) = Z Pa(qyt + (1 - q)m;ﬁ— - JZQH(H)O{) (4)
t=1

where y; and z} are the t"* elements in y and X respectively, ¢ is a non-zero
constant chosen in advance by the researcher, and where # and II; are the
first stage estimators obtained by:

T T

ngin tzzlpe(yt - x;ﬂ-) and Hﬁljn ;pG()/]t - x:fﬂj)v (] =1,... 7G)7 (5)

where 7 is a T-vector a parameters, II; and Y; are respectively the gt
columns of the K x G matrix of parameters IT and of Y. The reformulation of
the dependent variable as qy¢+(1—q)z;7 has been introduced by Amemiya as
a generalisation of a property of 2SLS, and an attempt to improve efficiency.
Although, the ability of choosing the value of g should yield estimators
depending on this value, we show in the next proposition that there exist
cases where the DSQR(#, ¢) is invariant with respect to the value of q.



Proposition 1 Let 3(0,y,X) denotes the quantile regression estimator as-
sociated with quantile 8, dependent variable y and matrixz of right-hand-side

A

variables X. Moreover, let & = 3(0,y, X H(II)). Then, we have for ¢ >0 :

(i) B(0,qy + (1 — )X H(ID)a, XH(II)) = &.
(ii) If K2 = G and H(1I) is of full column rank, then the DSQR(0,q) is
given by & = H(II) " 1#.

(i) is an invariance property of & that is also verified by least square
estimators. Although it does not correspond to the composite dependent
variable that we shall consider later on, this result implies that iterating the
estimation by changing the dependent variable in that way is useless, since
the initial DSQR(#, 1) is obtained. Since the choice of g generally intervenes
in the estimation, optimal values of ¢ can be searched to improve the estima-
tion. However, we shall show in Section 3 that the asymptotic distribution
of the DSQR(0, q) does not depend on g. Moreover, (ii) isolates the case
of exact identification, where the distribution of the estimator, and in fact
the estimator itself, do not depend on q. The argument here is analogous
to that used for Indirect Least-Squares estimator (ILS). Indeed, (ii) shows
that estimates of the coefficient in regressions of reduced-form equations can
be used to calculate structural coefficients, but only if there is one-to-one
correspondance between the structural parameters and the reduced form.
Proposition 1 shows how easily the DSQR(#, ¢) can be obtained when the
exact identification condition is satisfied. In that case, no numerical min-
imisation of (4) is necessary and this is the precisely same way in which the
ILS is obtained.

In the next section we discuss the asymptotic representation of the
DSQR(#,q). The following conditions will be useful to obtain this asymp-
totic representation and the asymptotic normality of the DSQR(8, q).

Assumption 1 The sequence {(ut, Vi, x¢)} is independent and identically

distributed (i.i.d.) where uy and V; are the t* elements in u and V respec-

tively.

Assumption 2 (i) E(|jz||*) < oo, where ||z| = (a}z)"/2.

(ii) H(Ip) is of full column rank.

(ili) The conditional densities f(-|x) and g;(-|x) respectively for vy and

Vit are Lipschitz continuous for all x. Moreover, Qo = E{f(0|z¢)xx;} and

Q; = E{g;(0|x;)xix;} are positive definite.

(iv) E{¢g(ve) | 2} =0 and E{gg(Vje) | 2} =0 (G =1,...,G).
Assumption 2(i) is needed to generalise the stochastic equicontinuity re-

sult in Powell (1983) and to prove the consistency of our covariance matrix

estimator. Assumption 2(iv) and 2(iii) are standard in the literature. As-

sumption 2(iv) is a generalisation of Powell’s assumption and states that zero



is the quantile of order 6 of vy and Vj; conditionally on x;. When there is an
intercept term in the model, Assumption 2(iv) is an identification condition
on the coefficient of the intercept.

Assumption 2 (iv) normalises the intercept on the 0™ quantile of the
distributions of v; and Vj;. The occurrence of a bias when different quantiles
are used for the two stages, or when least square estimators are used for the
first stage, is discussed in Appendix A. The problem is that for ¢ # 1 distinct
methods for first and second stages generally imply incompatible restrictions
on error terms, except in restrictive cases. This is the case when different
quantiles are used for the first and second stages since it would entail that
two different conditional quantiles of v; are null. Then, this contradiction is
resolved by the occurrence of a bias in the intercept coefficient.

We also note that the normalisation in Assumption 2 (iv) systemati-
cally simplifies the asymptotic representation by enabling us to substitute
ol X(Fv_‘)l( (0)) with f,;x(0). This is an additional reason to favour this re-
striction, which facilitates the estimation of the accuracy of the estimators
since we need to estimate nonparametrically fJ )1( at 0 instead of f, x and

Fv_‘)l( together. We are now ready to study the asymptotic normality of the
DSQR(9,q)-

3. ASYMPTOTIC NORMALITY
AND COVARIANCE MATRIX

The asymptotic normality of the DSQR(6, q) estimator is based on its
asymptotic representation derived in Appendix A. It is easy to see from
this representation that the DSQR(#, q¢) estimator is asymptotically robust
because its influence function is a linear combination of bounded functions.
However, the robustness would be lost if non-robust first-stage estimators
were used instead of quantile regressions. Therefore, one major advantage
of the DSQR(#, q) is that it preserves the robustness of quantile regressions.

Proposition 2 Under Assumptions 1 and 2, T"/?(& — aq) 4 N(0,DQD"),
where D = Q;le(HO)/[Iv _QOQl_erOl? ) _QOQ(_;LYOG} ’ sz = H(HO)/QOH(HO)
and Q = E(X®uxx}), where X is the matriz of general term vg(Wig)wg(Wit)
with Wy = v, Wy = ‘/i—l,t for2<i<G+1.

Note that although the definition of & depends on g, its asymptotic law
does not. In that case the first-stage estimator 7 intervenes in the calculation
of &, but not in its asymptotic representation. However, & can still be used
for a consistent estimator of the asymptotic covariance matrix. We derive
estimators of D and €2 by using the plug-in principle:

D = Qz_le(ﬂ),[Iv _QOQfl’A}/l, . —QAOQAE;LA}/G]



where Q.. = H(IL)'QoH(I), Qo = (2¢0rT) " X1—1 L|_syp <tn<ior] TtTh:
Qj = (QéjTT)_1 i 1[,@jT§\‘/jt§@jT]$t$27 Oy =y — a7, Vi = Yy — iyl
and ¢jr (j =1,2,...,G) are data-dependent bandwidth;

T
Q = T_l Zit ® mtwg,
=1
where 3, = W®a,2, and W is the matrix of general term vy (Wi )1y (W;q)
with Wlt == @t,mt = ‘/i—l,t for 2 S ) S G+ 1.
Then, the covariance matrix estimator is D)D’. For the consistency of

the covariance matrix estimator we need the following additional assump-
tions.

Assumption 3 (i) There exist positive constants fo and go; such that
f(]z) < fo and g;( - |x) < goj for all x.

(i) There exists a stochastic sequence {¢jr} and a non-stochastic sequence

{cjr} for 7 =0,1,...,G such that we have éjr/c;T 2, cir = 0p(l) and

-1 _ 1/2

cp = op(T7/%).

Proposition 3 Under Assumptions 1,2 and 3, DL D and QL Q.

To the best of our knowledge that is the first time that a proof of conver-
gence of the variance-covariance matrix of the two-stage quantile estimators
is given, including the case of DSLAD and even with non-random regres-
sors. Note that directly substituting consistent estimators in the formula
of the covariance matrix in Proposition 2 generally produces a less efficient
estimator of the variance-covariance matrix when the following simplifica-
tions on diagonal terms are ignored: E {{we(mt)}Q xtxg} =0(1—0)E [z2}] .
Alternatively, one can omit the first-stage estimation with @ by using ¥ =

U + ny instead of o;. We now complete these asymptotic results with small
sample simulations.

4. MONTE CARLO SIMULATIONS

In this section, we conduct simulation experiments to investigate the
finite-sample properties of the DSQR(#,q)'’. Here, parameter q affects the
empirical distribution of the estimator, in contrast with asymptotic results.
We are interested in comparing the small sample behaviour of the quantile
estimator for the structural parameters (v, 3;) in the two cases: (1) when
the endogeneity problem is ignored and (2) when the problem is corrected
by using our procedure. We also want to examine the robustness of the
DSQR(#,q) in small samples.

%See also Ribeiro (1998) for small sample simulations of LAD estimators with a
first step of LS or LAD estimators.



The data generating process used in the simulations is described in
Appendix C. The first (structural) equation has two endogenous variables
and two exogenous variables including a constant, while the total num-
ber of exogenous variables in the system is 4. The first equation is over-
identified by construction and corresponds to parameter values: 74 = 0.5
and (3 = (1,0.2).

We generate the error terms by using three alternative distributions:
the standard normal N(0,1), the Student-¢ with 3 degrees of freedom #(3)
and the Lognormal LN(0,1). The number of replications is 1,000. For each
replication, we estimate the parameter values v, and 3, and the deviation
of the estimates from the true values. Then, we compute the sample mean
and sample standard deviation (when useful, the sample median and the
sample interquartile range) based on the 1,000 replications.

The performance of the one-stage quantile regression estimator for the
different distributions is displayed in Tables 1-3. This estimator exhibits a
systematic bias in finite samples, which does not disappear as the sample size
increases. The results vary little when increasing the number of observations
from 50 to 300.

The results for the DSQR(6, q), denoted (¥ , B), are provided in Tables
4-6. We select three values (0.1, 0.5 and 1) for q. As shown in Proposition
1, when the system is exactly identified, this dependence on ¢ disappears
and we confirm it by simulations of this case (not shown). Whereas the
DSQR(#,q) does not depend on g asymptotically, it does in finite samples,
but as we increase the sample size to 300, the results for different ¢’s become
quantitatively similar. These features for the effect of ¢ are also obtained
with ¢(3) and LN(0,1).

We now discuss the results of Tables 4(a)-4(c) with normal errors. The
means of the DSQR(6, q) estimates, (% — 7o, 3 — 3y), are much closer to
zero than the means of the one-step quantile estimator over all values of 6,
although the corresponding standard deviations are generally greater. For
other distributions too, the changes in the value of ¢ do not substantially
modify the results. The results with Student-¢ error terms, which are partly
displayed in Table 5 show similar features. However, the fatter tails of the
errors entail accuracy losses for both one-stage and two-stage estimators.
The results with lognormal error terms, partly shown in Table 6, differ in
that both estimators are severely biased for large quantiles (for § = 0.95 and
LN(0,1)). The bias of the DSQR(6, ¢) diminishes when the sample size rises
to T" = 300. In a simulation available upon request, the bias disappears
for a sufficiently large number of observations, as opposed to the case of the
one-stage estimator. Also, the performance of the DSQR(#, q) is the best for
small quantiles (eg, # = 0.05), in contrast with the usual better performance
of the DSQR(0, q) for quantiles around 6 = 0.5 and symmetric distributions.

The formula of the diagonal term of the covariance matrix DQD’ suggests
us a conjecture for the occurrence of such effect in large samples, which may



extend to small samples in some cases. Indeed, because of the asymmetric
shape of the lognormal distribution, the mode of the distribution can be far
from zero. Then ¢;(0|z;) may be smaller than for a symmetric distribution.
This inflates the roles of some terms in the diagonal terms of DQD’, in
particular the ones including [E{g;(0]a;) 2} 2. In particular, off diagonal
terms of €2 involve a factor #% and contribute to the diagonal terms of DQD'.
Then, these terms may have larger absolute magnitudes for 6 close to 1, and
smaller for 6 close to 0. This may cause the large bias for § = 0.95and
LN(0,1). On the whole, the DSQR(#, q) well tackles the extreme values that
occur more frequently with Student-t and Lognormal distributions.

For all types of error terms, the one-stage estimator is severely biased
with small samples. In contrast, the DSQR(0, ¢) has good finite sample prop-
erties, although a too small sample size or extreme quantiles (6 = 0.05,0.95)
may degrade its performance. We have calculated some robust measures
(sample medians and sample interquartile ranges) to supplement sample
means and sample standard deviations respectively. We have not found any
significant difference between the robust measures and the usual measures,
except in the case where the error terms are drawn from LN(0,1) and with
large quantiles (f = 0.95). In that case only, the robust measures are re-
ported in the brackets, next to their corresponding usual measures in Tables
4. The dispersion of the sampling distribution of the deviations is slightly
smaller when robust measures are used.

One of the justifications for using the DSQR(#, q) is that it is resistant
to outliers. To confirm this property, we conduct a separate Monte Carlo
experiment in which we compare the DSQR(6,q) with the 2SLS when one
outlier occurs for the dependent variable. Following Cowell and Flachaire
(2002), we generate one outlier in each replication by randomly selecting
one observation and multiplying it by 15. The results are reported in Table
7 for the 2SLS, which is invariant to the value of ¢, and for the DSQR(6, 1).
We report only for the normal error case and ¢ = 1 because the other
distributions and the other values of ¢ deliver similar results. The results
show that the DSQR(0, ¢) is much more robust to outliers than the 2SLS,
which is still more obvious when the robust measures are used (medians and
interquartiles indicators).

5. CONCLUSION

We study in this paper the asymptotic properties, the invariance, the ro-
bustness and the finite sample properties of double-stage quantile regression
estimators with first-stage quantile regressions based on the same quantile
as the second stage. Our results permit valid inferences in models estimated
using quantile regressions with random regressors, in which the possible en-
dogeneity of some explanatory variables is treated via ancillary predictive
quantile regressions.
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A. APPENDIX. ASYMPTOTIC REPRESENTATION

We define an empirical process Mp( - ) by

T T
Mp(A) =T71/? th@be(qvt — T2 Ay =112 Zm(wt, A),
t=1 t=1

where A is a K x 1 vector, wy = (v, )" and m(wy, A) = xbg(que —
T-Y24,A). Since the funtion v, is of bounded variations, the i.i.d. condi-
tion in Assumption 1 and the moment condition on z; in Assumption 2(i)
are sufficient to apply Theorems 1.1 and 1.3 in Andrews (1990), which leads
to:

sup || Mz (A) — Mr(0) + ¢~ QoA = 0p(1).
llAl[<L
This result is a generalisation of the lemma in Powell (1983) when z; is
random.
We outline the proof below. Define Vi (A) = T V2 S5 | [m(wy, A) — BE{m(w;, A)}] =

Mp(A) — E(Mrp(A)). Then, we have

sup  |[Vr(A1) — Vr(Az)|| = 0p(1). (6)
[[A1—Aq||<L

The claim in 6 is a direct application of Theorem II.1 in Andrews (1990), but
in order to apply the theorem the following two conditions must be verified:
(i) m(-,A) satisfies Pollard’s entropy condition with some envelop M (w;).

(ii) For some é > 2, Tlgr(l)o 71 Zthl E [{N[(wt)}ﬂ < 0.

Let fi(w,A) =z and fo(w,A) = 1y(qu — T2’ A) so that m(-,A) =
fi(;A)fo(-,A). Since fi(-,A) is a Type I function and fo(-,A) is a Type
IT function with Lipschitz coefficient B(w) = ||z|| (see Andrews, 1990, for
definitions).  m(-, A) satisfies Pollard’s entropy condition with envelope
||z|| because it is a product of Type I & II functions (See Theorem II1.3
in Andrews, 1990). Hence, (i) is verified. The second condition is now

given by Tlim 7-'yT FE [{]V[(wt)}‘s} =F {||:ct||‘5} which is bounded by
Assumption 2(i).
The result in (6) can be written by setting A; = A and Ay =0 as

e V(&) = M (0) = B (8)) = EQIr(O)} | = op(1): (7

11



Now we want to show that E(Mp(A)) — E(Mr(0)) — —q *QoA as follows.
Noting that E(Mp(A)) = E {T‘l/2 T [th — Ty f,q;ZQT_mA f(v|xt)dv} },
we have E(Mr(A)) — E(Mr(0))

T —lg! P12 A
- _E {T—l/z Z lxt /oq f(v|$t)dv] }

t=1

T —1,0—1/2

P F(q tayT~ Y2 A|xy) — F(0|x)

_ 1 1 / t
= —-F {q T tzzlxtxtA q—lng—l/zA
where F(-|z;) is the conditional cdf. Let G(\) = ¢ M1 21 F(\ay )z} A.
Then, by the Mean Value Theorem and the continuity in Assumption 2,

there exist £ between 0 and ¢~ 12,7~ 1/2A such that E(My(A))—E(Mp(0)) =
—E{G'(&)} = —q ' E{T X1, f(rle)ma; } A — —q QoA where Qo =
E{f(0|x)zz;}. We now show the latter convergence result.

T
Let Qr =Tt Y. f(&p|w)wex) and consider the (i, )™ element of |E(Qr)—
=1

Qo|, which is given by <

T
Y B ({F(€rlae) = F(Oze)} auary;)

T
TS E(If(Epla) — f(Olxy)| || |2]) (by Minkowski’s inequality and
=1
Jensen’s inequality).
T
< T71Y E(Lo |&p| |zti] |zi4]) (for some constant Ly by Assumption
=1
2(ii))

T 1/2
< Lo E(&3)Y211 t; E (:U%Z x?]) "2 Note that 0< E(E%) < q% E(z}A)?

1

T

— 0, which implies E(£7) — 0. Since % > E (Iti xtj> = 0(1), we have
=1

|[E(Qr) = Qo %0, ie. E(Mr(A)) = BE(Mr(0) — —q~' QoA
Hence, we now can replace E(Mp(A)) — E(Myp(0)) in (7) with its limit
—q QoA to obtain

sup ||Mr(A) — Mr(0) + ¢~ QoA = 0p(1).
llAll<L

Combining the result and the fact that TYV%(% — m9) = Oy(1) and
TY2(IT — TIy) = O,(1), we obtain the asymptotic representation for the
DSQR(0,q):

T
TV & —ap) = QZH(M){T™*Y " quitbp(ve) (8)
t=1
+(1 = q)QoT"/*(7 — m0) — QoT/*(I1 — o) o} + 0p(1)

12



where Q.. = H(Ily)'QoH (Ily). Substituting the asymptotic representations

TV2(7t = mo) = Qo T2 S wy(vr) + 0p(1) and TV2(1l; — 1loy) =
Q]-_IT’U2 S 2hy(Vie) +0p(1) into (8) shows that the first term involving
q cancels out with the asymptotic representation of T'1/2 (7 — 7o) multiplied
by —qQo. Collecting terms and simplifying them gives T/2(& — ap)

T
T2 > Q7 H (o) wtg(vy) + 0p(1)
t=1

T
—T1/? > QL H (o) QoQy o zetbg (Vie) + 0p(1)
=1

.
~T7 2N QL H (o) Q@5 voares (Var) + op(1)
t=1

T
= DT 23" Z 4 0,(1) 9)
t=1

where Z; = 1y(W;) @z and D = Q7 H(Ilo)' [I, —QoQ1 Vo1, s —QoQc Voc]-
The expression in (9) is a scaled sample mean to which we can apply a CLT
provided that E(Z;) = 0, which is satisfied by Assumption 2(iv). In partic-
ular, E(Z;) = 0 is met since the same quantile is used in both stages. Now,
we can examine what happens when LS estimation or different quantiles are
used in the first stage. We consider LS estimation first. The correspond-
ing asymptotic representations are TY? (ﬁLS —mp) = Q_lT_l/2 Zthl Ty +
op(1) and TY2(TTES — To)yg = Q1T V2L | 2, Viyg + 0p(1), where Q =
E(xyx}). Substitution of these expressions into (8) gives TV2(& — ap) =
DEST=V2S | Z5+0,(1), where DX = Q' H (o) [¢1, (1-9)QoQ ™", —QoQ ™)
and ZFS = (2ipg(ve), @hvy, 24Virye)'. Tt is clear from this expression that
E(ZF%) # 0 because E{vy(v¢)|z:} = 0 and E{v|x;} = 0 do not generally
hold simultaneously unless § = 1/2 and for symmetric distributions. Next
we investigate the consequence of using different quantiles (6; for the first
stage and 0y for the second stage). The asymptotic representations for the
first step estimators are given by TV/2(7#9 —mo) = Qu 'T~V2 L | 2uty, (ve)+
0p(1) and TV2(TIF — Tlo;) = Q7T V2L, by, (Vje) + 0p(1). Plugging
these representations into (8) results in T%/2(&—ag) = DOT-/2L | 79+
op(1), where D? = QZ'H(Ilp)'[qI, (1 = )1, =QoQ1 o1, - —R0Q¢ Yoc]
and Zi° = ({ug, (v1), 2itg, (v1), 2{tbg, (Vie), . 2ithy, (Vi)Y' Again, we see
that E(ZtQ) # 0 because E{vy, (v¢)|z:} = 0 and E{ty, (v¢)|z¢} = 0 cannot
hold unless 01 = 3. This issue of asymptotic bias caused by E(Z;) # 0 is
analysed in depth in Kim and Muller (2000). They show that the bias can
be isolated in the intercept coeflicient, provide an explicit expression of the
bias and derive the limiting distribution of the slope coefficients.
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B. APPENDIX. PROOFS

Proof of Proposition 1: Recalling Theorem 3.2 in Koenker and Bas-
sett (1978), we have (3(0, \y, X) = A\3(0,y, X) for any A > 0 and ((6,y +
Xv,X) = B(0,y,X) + v, where v is a parameter of appropriate dimension.
The above invariance properties imply that 5(60, qy+(1— Q)X H(I)&, X H(IT))
= 5(0.qy, X H(I))+(1-q)a = ¢B(6,y, XH(I)) +(1-¢)a = g+ (1-q)a =
&. This is result (i).

If Ko = G and H(TI) is of full column rank, then H(TT) is non singular.
Using (3(0,y, XA) = A~'3(0,y,X) for any non singular matrix A (Theo-
rem 3.2 in Koenker and Bassett 1978), we obtain & = 3(6,y, XH(II)) =

H(IT)3(0,y,X) = H(IT) '#. Next we can show that & = @& because us-
ing (i) we have & = ((6,qy + (1 — QX H ()&, XH(IT)) = 3(0,qy + (1 —
q)X7,XH(II)) = &. This shows (ii). QED.

Proof of Proposition 2: Consider (9). Since Z; is i.i.d. by Assumption
1, it is sufficient to show that var(Z;) is bounded to apply the Lindeberg-
Levy’s CLT. The moment condition on x; in Assumption 2(i) is sufficient for
this purpose because 1,(-)? is bounded by 1. Noting that var(Z;) = €, we
have T-12%T | 7, 4, N(0,9), which proves the claim in the proposition.
QED.

Proof of Proposition 3: We first prove the claim Q & Q Consider the
(1,1)-submatrices of Q2 and €, which are given by QH =T STy (04) ),
and Q11 = E{vy(v¢)?xx}}. The consistency of Q1 is proved in two steps:

() |QllT — Q11| = Op( ) and (11) |Qll — QllT| = Op( ) where QllT =
T-5F 4py(vy)? a2}, The first step is a straightforward application of
the LLN for i.i.d. random variables under Assumptions 1 and 2(i). We now
prove the second step. Consider the (i, j)-component of |Q11 — Q117 which
is given by

T
T {g(00) — o (ve) g (0r) + tp(ve) Yaies]
t=1

IA

T
or 1 Z [Vg(0t) — Vg (ve)| || |24
t=1

T
< o7t Z Lijwe<dy] |zei] |5

where dp = ||z¢|| x || — mp||. The first inequality is due to Minkowski’s
inequality and |¢4(-)] < 1 and the second inequality is obtained using v; —
O = 2 (7 — mo), |2y (7t — mo)| < ||2e]| X || — 7o|| and the fact that [1,<o —
1[y§0]| S 1[|1‘§‘1—?JH' Let UT = T_1 ZtT:I 1[\vt\§dT]|xti||xtj| and consider
aset A = {Upr > n} forn > 0. For any event B, we have P(A) <
P(AN B) + P(B®). We choose B = {||&t — mo|| < 2T~} where z > 0 and
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0 <d < 1/2. Then, we have P(B¢) — 0 since T'/?(7 — mg) = Op(1). Now
consider
T

1 [ERIEY S
P(ANB) < (T) ZE{ / f(Ath)dMSCmIthjl}

=1 ~lae|]zT =4
(by the generalised Cebyshev inequality)
= [ERIE A
o) E [ fodAallay
=1 ~lae|]zT =4
(by Assumption 3(i))
= 2zfon T B {||a|| |zl loy]}

IN

The last expression converges to zero because E {||x|||zi||xi;|} < oo by As-
sumption 2(i). Hence, we have proved that Up = T~ 13/, Ujoy | <dp][7ti||745] EN
0 which in turn implies that |Q11 —Qur| = op(l). The second step is now
proved. By combining (i) and (ii), we have |17 — Q11| = 0p(1). The same
argument can be applied to all other diagonal and off-diagonal terms of Q
to show their consistency. Therefore, [ — Q| = 0,(1).

Next, we turn to the claim |D — D| = o,(1). We need to show the
consistency of Qp,Q1,...,Q¢,II and 4. Since the results II — Iy = op(1)
and 4 — vy, = 0,(1) are trivial, we focus on |Qg — Qo| = 0,(1). Let be Qor =
(2corT) ™ SF ) L cop <on<eor) e and Qor = (2¢0rT) ™ Sy L—agp <o, <éor] Lo}
As before, the proof is carried out in three steps: (i) |Qor — Qo| = 0p(1), (i)
|Qor — Qor| = 0p(1) and (iii) [Qor — Qor| = 0p(1).

We start with (i). One can show easily by using the Mean Value The-
orem that E(Qor) = F {T’l Zthl f(§T|$t)mtmg} ;where —cop < &p < cor.
Noting that £y = o0p(1), it can be shown that |E(Qor) — Qo] = o(1) by
Minkowski inequality and Assumptions 2(i) and 2(ii). Using a LLN for
double arrays, we have |Qor — E(Qor)| = 0p(1). Therefore, the first step is
proven.

Now we turn to (ii). Using the fact that |1j,<g — 1 <o)l < 1jjz/<ja—y)}, the
(i,7)" element of |Q0T — Qor| is given by |(2corT) ! Zthl(l[—éngﬁtséOT] -
1 cop<o<cor)) 2ot < (2corT) ™ /21 (Ljweteor| <) +Ljon—cor | <dr]) | el 715 ] =
Urr+Usr, where dr = ||z||x||&—mo||+éor—cor|, Ur = (260rT) ™" =1 Yoot copi<dr] |2l 12151
and Upp = (2co7T) 1, Vv —cor|<dr)|Tti] |7¢j]. By using the same argu-
ment used to show Ur — 0 in the proof of |Qu — Quir| = 0p(1), one can
show Uyr = 0,(1) and Usp = 0p(1) , which implies |Qo — Qo| = 0,(1). The
second step is proven.

To show the last step, we note that Qor — Qor = (cor/éor — I)QOT.
Since Qor = Op(1) and (cor/éor — 1) = 0p(1) by Assumption 3(ii), the last
step is proved. Therefore, we have the desired result: |Qo—Qo| = 0p(1). The
same argument can be applied to show |Q] —Qjl=o0p(1) for j=1,...,G.
Therefore, we have D 2 D. QED.
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C. APPENDIX. SIMULATION DESIGN

/ /
The structural system is given by B l ?}J/t, ] + 'z = U/, where l ?}J/t, ]

¢ ¢
is a 2 x 1 vector of endogenous variables, z} is a 4 x 1 vector of exogenous
variables with the first element set to one, U] is a 2 x 1 vector of errors, B =

1 0. -1 —-0.2

o7 (1)5 and I' = 10 0 (10.4 (10.5 . We are interested
in the first equation of the system and the system is over-identified by the
zero restrictions I'yg = I'yy = I'sg = 0.  Here, the parameters in eq. 1 are
Y = 0.5 and G5 = (1,0.2), X7 is the first two columns in X and u is the
first column in U. The above structural equation can be written in a matrix

representation [ y Y } B' = —XT’ 4+ U, which gives the following reduced
form equations {y Y } :X[WO 11y } + [ v V },Where [ mo I } =
—I"(B)! and [ v V } = U(B)™'. Given the specification of B, we
obtain 7 = (2.3,0.3,0.3,—0.15) and II, = (2.6,0.2,0.6, —0.3).

The errors [ v V } in the above reduced form equations are generated

in such a way that Assumption 2 (iv) is satisfied: v = v — F2'(#) and
V=Ve- F;el (0),where v® and V¢ are generated for the different simulation
sets by using the three distributions N(0, I7),t(3) and LN(0,1) with corre-
lation —0.2, and F,.*(f) and F,}(#) are the inverse cumulative functions of
v® and V¢ evaluated at 6. The second to fourth columns in X are generated
using the normal distribution with mean (0.5,1,—0.1)’, variances equal to
1, cov(xa,x3) = 0.3, cov(xa,z4) = 0.1 and cov(ws,r4) = 0.2. Once we ob-

tain X, | v V |and | mg Iy |, we can generate the endogenous variables

y Y } using the reduced-form equations.

The One-Stage Quantile Regression estimator, without correcting for the
endogeneity problem, is & € argmin S, py(ye—[Y3, 2¢)'a). The DSQR(4, q)
is defined by (4). We have chosen 5 values (0.05, 0.25, 0.50, 0.75, 0.95) for
0.
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Table 1. Simulation Means and Standard Deviations of the Deviations from the True Value

with One Step Quantile Estimator: N(0,1)

| 0 0.05 0.25 0.50 0.75 0.95
7 Mean -0.45 -0.43 -0.43 -0.44 -0.44
Std 0.29 0.18 0.16 0.18 0.29
T =50 B, Mean 1.30 1.31 1.38 1.44 1.52
Std 1.40 0.74 0.55 0.50 0.56
B, Mean 0.17 0.17 0.16 0.16 0.16
Std 0.35 0.22 0.20 0.22 0.34
7 Mean -0.44 -0.44 -0.44 -0.44 -0.44
Std 0.11 0.07 0.06 0.07 0.11
T = 300 B, Mean 1.23 1.32 1.39 1.46 1.57
Std 0.54 0.28 0.22 0.20 0.22
B, Mean 0.17 0.16 0.16 0.17 0.16
Std 0.13 0.09 0.08 0.09 0.13
Table 2. Simulation Means and Standard Deviations of the Deviations from the True Value
with One Step Quantile Estimator: 7 (3)
| | 6 | 0.05 0.25 0.50 0.75 0.95
7 Mean -0.58 -0.49 -0.48 -0.50 -0.59
Std 0.44 0.16 0.13 0.16 0.43
T =50 B, Mean 1.89 1.53 1.55 1.64 1.89
Std 2.34 0.65 0.48 0.48 1.23
B, Mean 0.20 0.18 0.18 0.19 0.20
Std 0.78 0.27 0.22 0.26 0.73
7 Mean -0.57 -0.50 -0.49 -0.50 -0.57
Std 0.15 0.06 0.05 0.06 0.15
T = 300 B, Mean 1.92 1.56 1.57 1.64 1.74
Std 0.84 0.26 0.18 0.19 0.37
B, Mean 0.22 0.18 0.18 0.18 0.21
Std 0.28 0.10 0.08 0.1 0.27
Table 3. Simulation Means and Standard Deviations of the Deviations from the True Value
with One Step Quantile Estimator: LN(0,1)
| 9 0.05 0.25 0.50 0.75 0.95
7 Mean 0.38 0.47 0.52 0.54 0.56
Std 0.15 0.09 0.07 0.05 0.05
T =50 B Mean -0.34 -0.18 0.02 0.29 0.81
Std 0.18 0.09 0.07 0.10 0.25
B, Mean -0.14 -0.17 -0.19 -0.20 -0.21
Std 0.10 0.07 0.07 0.08 0.12
7 Mean 0.35 0.48 0.53 0.56 0.58
Std 0.08 0.04 0.03 0.02 0.02
T = 300 . Mean -0.31 -0.18 0.02 0.31 0.92
Std 0.09 0.04 0.03 0.04 0.10
B, Mean -0.13 -0.18 -0.19 -0.21 -0.21
Std 0.04 0.03 0.03 0.03 0.05




Table 4(a). Simulation Means and Standard Deviations of the Deviations from the True Value

with DSQR(8,q = 0.1): N(0,1).

| | 0 | 0.05 0.25 0.50 0.75 0.95
7 Mean -0.06 0.01 0.01 0.01 -0.03
Std 0.80 0.64 0.40 0.48 0.93
T =50 B Mean -0.07 -0.11 -0.02 0.04 0.37
Std 2.65 2.08 1.26 1.55 3.05
B, Mean 0.03 0.01 0.00 -0.01 0.03
Std 0.52 0.30 0.26 0.30 0.50
7 Mean 0.01 0.01 0.01 0.01 0.00
Std 0.24 0.15 0.14 0.15 0.23
T = 300 B Mean -0.11 -0.03 -0.02 0.00 0.07
Std 0.80 0.48 0.45 0.48 0.76
B, Mean 0.00 0.00 0.00 0.00 0.00
Std 0.17 0.10 0.10 0.11 0.16
Table 4(b). Simulation Means and Standard Deviations of the Deviations from the True Value
with DSOR(6, g =0.5) : N(0,1).
| | 6 | 0.05 0.25 0.50 0.75 0.95
7 Mean -0.07 0.01 0.00 0.01 -0.03
Std 0.78 0.64 0.40 0.48 0.97
T =50 B Mean 0.15 -0.07 0.00 -0.02 0.14
Std 2.58 2.10 1.26 1.54 3.18
B, Mean 0.04 0.01 0.00 0.00 0.03
Std 0.50 0.29 0.26 0.30 0.50
7 Mean 0.01 0.01 0.01 0.01 0.00
Std 0.25 0.15 0.14 0.15 0.23
T = 300 B Mean -0.04 -0.02 -0.02 -0.02 0.01
Std 0.80 0.48 0.45 0.48 0.74
B, Mean -0.01 0.00 0.00 0.00 0.00
Std 0.17 0.10 0.10 0.11 0.16
Table 4(c). Simulation Means and Standard Deviations of the Deviations from the True Value
with DSQOR(6, g =1) : N(0,1).
| | 6 | 0.05 0.25 0.50 0.75 0.95
7 Mean -0.04 0.02 0.00 0.00 -0.04
Std 0.85 0.68 0.41 0.49 0.88
T =50 B, Mean 0.11 -0.08 -0.01 -0.02 0.11
Std 2.82 2.22 1.30 1.59 2.87
B, Mean 0.02 0.00 0.00 0.00 0.02
Std 0.53 0.31 0.26 0.31 0.51
7 Mean 0.01 0.01 0.01 0.00 0.00
Std 0.25 0.15 0.14 0.15 0.23
T = 300 N Mean -0.03 -0.02 -0.02 -0.02 0.01
Std 0.81 0.49 0.46 0.50 0.75
B, Mean 0.00 0.00 0.00 0.00 0.00
Std 0.18 0.10 0.10 0.11 0.16




Table 5. Simulation Means and Standard Deviations of the Deviations from the True Value

with DSQR(0,q =1): t(3).

| | 0 | 0.05 0.25 0.50 0.75 0.95
7 Mean -0.31 -0.02 0.00 -0.05 -0.32
Std 1.40 0.73 0.49 0.81 1.35
T =50 B, Mean 0.80 0.07 0.00 0.19 1.26
Std 4.76 2.26 1.56 2.55 4.34
B, Mean 0.14 0.00 0.00 0.03 0.13
Std 1.15 0.37 0.31 0.44 1.16
7 Mean -0.06 0.00 -0.01 0.00 -0.07
Std 0.76 0.19 0.15 0.19 0.63
T = 300 B, Mean 0.14 0.00 0.04 0.02 0.23
Std 2.46 0.62 0.49 0.62 2.17
B, Mean 0.03 -0.01 0.00 -0.01 0.02
Std 0.41 0.13 0.11 0.14 0.41
Table 6. Simulation Means and Standard Deviations of the Deviations from the True Value
with DSOR(,g =1): LN(0,1).
| | 6 | 0.05 0.25 0.50 0.75 0.95
7 Mean 0.00 0.00 0.02 0.12 0.49 (0.47)
Std 0.08 0.11 0.34 0.70 0.44 (0.34)
T =50 B Mean -0.06 -0.05 -0.02 0.00 0.37 (0.40)
Std 0.05 0.07 0.18 0.31 0.78 (0.60)
B, Mean 0.00 0.00 -0.01 -0.04 -0.19 (-0.20)
Std 0.06 0.08 0.15 0.27 0.49 (0.46)
7 Mean 0.00 0.00 0.00 0.00 0.29 (0.30)
Std 0.02 0.04 0.07 0.15 0.52 (0.33)
T = 300 B Mean -0.08 -0.06 -0.04 0.01 0.28 (0.32)
Std 0.02 0.03 0.05 0.10 0.47 (0.43)
B, Mean 0.00 0.00 0.00 0.00 -0.10 (-0.12)
Std 0.02 0.03 0.05 0.11 0.40 ( 0.33)
Table 7. Simulation Means and Standard Deviations of the Deviations from the True Value
with DSOR(6,q =1) and 2SLS with a single outlier: N(0,1).
| | 0 | 0.05 0.25 0.50 0.75 0.95 2SLS
7 Mean -0.04 0.02 0.01 0.01 0.02 0.24
Std 0.86 0.64 0.42 0.52 1.56 2.08
T =50 B Mean 0.12 -0.05 0.00 0.02 0.53 0.23
Std 2.89 2.05 1.33 1.67 4.91 6.51
B, Mean 0.03 0.00 0.00 0.00 0.01 -0.01
Std 0.53 0.31 0.27 0.33 1.47 1.54
7 Mean 0.01 0.01 0.01 0.00 0.00 0.04
Std 0.25 0.15 0.14 0.15 0.24 0.32
T = 300 . Mean -0.03 -0.02 -0.02 -0.01 0.03 0.04
Std 0.81 0.49 0.46 0.50 0.79 1.03
B, Mean 0.00 0.00 0.00 0.00 0.01 0.01
Std 0.18 0.11 0.10 0.1 0.17 0.25
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